Impact of Scleral Lenses on Visual Acuity and Ocular Aberrations in Corneal Ectasia: A Comprehensive Review
Abstract
:1. Introduction
2. Scleral Lenses
2.1. Classification
2.2. Design
2.3. Fitting
3. Clinical Applications of Scleral Lenses
3.1. Custom Scleral Lenses
3.2. Wavefront-Guided Scleral Lenses
4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roberts, C.J.; Dupps, W.J. Biomechanics of Corneal Ectasia and Biomechanical Treatments. J. Cataract Refract. Surg. 2014, 40, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Sharif, R.; Bak-Nielsen, S.; Hjortdal, J.; Karamichos, D. Pathogenesis of Keratoconus: The Intriguing Therapeutic Potential of Prolactin-Inducible Protein. Prog. Retin Eye Res. 2018, 67, 150–167. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.A.P.; Tan, D.; Rapuano, C.J.; Belin, M.W.; Ambrósio, R.; Guell, J.L.; Malecaze, F.; Nishida, K.; Sangwan, V.S. Global Consensus on Keratoconus and Ectatic Diseases. Cornea 2015, 34, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.J.; Gokul, A.; Vellara, H.R.; McGhee, C.N.J. Progression of Keratoconus in Children and Adolescents. Br. J. Ophthalmol. 2023, 107, 176–180. [Google Scholar] [CrossRef]
- Romero-Jiménez, M.; Santodomingo-Rubido, J.; Wolffsohn, J.S. Keratoconus: A Review. Cont. Lens. Anterior Eye 2010, 33, 157–166. [Google Scholar] [CrossRef]
- Godefrooij, D.A.; de Wit, G.A.; Uiterwaal, C.S.; Imhof, S.M.; Wisse, R.P.L. Age-Specific Incidence and Prevalence of Keratoconus: A Nationwide Registration Study. Am. J. Ophthalmol. 2017, 175, 169–172. [Google Scholar] [CrossRef]
- Santodomingo-Rubido, J.; Carracedo, G.; Suzaki, A.; Villa-Collar, C.; Vincent, S.J.; Wolffsohn, J.S. Keratoconus: An Updated Review. Cont. Lens. Anterior Eye 2022, 45, 101559. [Google Scholar] [CrossRef]
- Wang, Y.; Rabinowitz, Y.S.; Rotter, J.I.; Yang, H. Genetic Epidemiological Study of Keratoconus: Evidence for Major Gene Determination. Am. J. Med. Genet. 2000, 93, 403–409. [Google Scholar] [CrossRef]
- Mathan, J.J.; Gokul, A.; Simkin, S.K.; Meyer, J.J.; Patel, D.V.; McGhee, C.N.J. Topographic Screening Reveals Keratoconus to Be Extremely Common in Down Syndrome. Clin. Exp. Ophthalmol. 2020, 48, 1160–1167. [Google Scholar] [CrossRef]
- Elder, M.J. Leber Congenital Amaurosis and Its Association with Keratoconus and Keratoglobus. J. Pediatr. Ophthalmol. Strabismus 1994, 31, 38–40. [Google Scholar] [CrossRef]
- Yam, G.H.F.; Fuest, M.; Zhou, L.; Liu, Y.C.; Deng, L.; Chan, A.S.Y.; Ong, H.S.; Khor, W.B.; Ang, M.; Mehta, J.S. Differential Epithelial and Stromal Protein Profiles in Cone and Non-Cone Regions of Keratoconus Corneas. Sci. Rep. 2019, 9, 2965. [Google Scholar] [CrossRef] [PubMed]
- Navel, V.; Malecaze, J.; Pereira, B.; Baker, J.S.; Malecaze, F.; Sapin, V.; Chiambaretta, F.; Dutheil, F. Oxidative and Antioxidative Stress Markers in Keratoconus: A Systematic Review and Meta-Analysis. Acta Ophthalmol. 2021, 99, e777–e794. [Google Scholar] [CrossRef] [PubMed]
- Alkanaan, A.; Barsotti, R.; Kirat, O.; Khan, A.; Almubrad, T.; Akhtar, S. Collagen Fibrils and Proteoglycans of Peripheral and Central Stroma of the Keratoconus Cornea—Ultrastructure and 3D Transmission Electron Tomography. Sci. Rep. 2019, 9, 19963. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, P.; Dadachanji, Z.; Shetty, R.; Nagarajan, S.A.; Khamar, P.; Sethu, S.; D’Souza, S. Relevance of IgE, Allergy and Eye Rubbing in the Pathogenesis and Management of Keratoconus. Indian J. Ophthalmol. 2020, 68, 2067–2074. [Google Scholar] [CrossRef]
- Naderan, M.; Jahanrad, A.; Farjadnia, M. Clinical Biomicroscopy and Retinoscopy Findings of Keratoconus in a Middle Eastern Population. Clin. Exp. Optom. 2018, 101, 46–51. [Google Scholar] [CrossRef]
- Martínez-Abad, A.; Piñero, D.P. New Perspectives on the Detection and Progression of Keratoconus. J. Cataract Refract. Surg. 2017, 43, 1213–1227. [Google Scholar] [CrossRef]
- Kanclerz, P.; Khoramnia, R.; Wang, X. Current Developments in Corneal Topography and Tomography. Diagnostics 2021, 11, 1466. [Google Scholar] [CrossRef]
- Martínez-Abad, A.; Piñero, D.P. Pellucid Marginal Degeneration: Detection, Discrimination from Other Corneal Ectatic Disorders and Progression. Cont. Lens. Anterior Eye 2019, 42, 341–349. [Google Scholar] [CrossRef]
- Moshirfar, M.; Edmonds, J.N.; Behunin, N.L.; Christiansen, S.M. Current Options in the Management of Pellucid Marginal Degeneration. J. Refract. Surg. 2014, 30, 474–485. [Google Scholar] [CrossRef]
- Kamiya, K.; Hirohara, Y.; Mihashi, T.; Hiraoka, T.; Kaji, Y.; Oshika, T. Progression of Pellucid Marginal Degeneration and Higher-Order Wavefront Aberration of the Cornea. Jpn. J. Ophthalmol. 2003, 47, 523–525. [Google Scholar] [CrossRef]
- Jinabhai, A.; Radhakrishnan, H.; O’Donnell, C. Pellucid Corneal Marginal Degeneration: A Review. Cont. Lens. Anterior Eye 2011, 34, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Krachmer, J.H.; Feder, R.S.; Belin, M.W. Keratoconus and Related Noninflammatory Corneal Thinning Disorders. Surv. Ophthalmol. 1984, 28, 293–322. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Prats, J.; Galal, A.; Garcia-Lledo, M.; De La Hoz, F.; Alió, J.L. Intracorneal Rings for the Correction of Pellucid Marginal Degeneration. J. Cataract Refract. Surg. 2003, 29, 1421–1424. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.T. Interdependent Roles for Hypoxia Inducible Factor and Nuclear Factor-KappaB in Hypoxic Inflammation. J. Physiol. 2008, 586, 4055–4059. [Google Scholar] [CrossRef]
- Sahu, J.; Raizada, K. Pellucid Marginal Corneal Degeneration; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Rodrigues, M.M.; Newsome, D.A.; Krachmer, J.H.; Eiferman, R.A. Pellucid Marginal Corneal Degeneration: A Clinicopathologic Study of Two Cases. Exp. Eye Res. 1981, 33, 277–288. [Google Scholar] [CrossRef]
- Ambrósio, R. Post-LASIK Ectasia: Twenty Years of a Conundrum. Semin. Ophthalmol. 2019, 34, 66–68. [Google Scholar] [CrossRef]
- Zhao, L.; Yin, Y.; Hu, T.; Du, K.; Lu, Y.; Fu, Q.; Zhang, Y.; Wu, X.; Li, Y.; Wen, D. Comprehensive Management of Post-LASIK Ectasia: From Prevention to Treatment. Acta Ophthalmol. 2023, 101, 485–503. [Google Scholar] [CrossRef]
- Randleman, J.B.; Woodward, M.; Lynn, M.J.; Stulting, R.D. Risk Assessment for Ectasia after Corneal Refractive Surgery. Ophthalmology 2008, 115, 37–50. [Google Scholar] [CrossRef]
- Garcia-Ferrer, F.J.; Akpek, E.K.; Amescua, G.; Farid, M.; Lin, A.; Rhee, M.K.; Varu, D.M.; Musch, D.C.; Mah, F.S.; Dunn, S.P. Corneal Ectasia Preferred Practice Pattern®. Ophthalmology 2019, 126, P170–P215. [Google Scholar] [CrossRef]
- Padmanabhan, P.; Rachapalle Reddi, S.; Sivakumar, P.D. Topographic, Tomographic, and Aberrometric Characteristics of Post-LASIK Ectasia. Optom. Vis. Sci. 2016, 93, 1364–1370. [Google Scholar] [CrossRef]
- Bohac, M.; Koncarevic, M.; Pasalic, A.; Biscevic, A.; Merlak, M.; Gabric, N.; Patel, S. Incidence and Clinical Characteristics of Post LASIK Ectasia: A Review of over 30,000 LASIK Cases. Semin. Ophthalmol. 2018, 33, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.C.; Hufnagel, T.J.; Buxton, D.F. Bilateral Keratectasia after Unilateral Laser in Situ Keratomileusis: A Retrospective Diagnosis of Ectatic Corneal Disorder. J. Cataract Refract. Surg. 2003, 29, 2015–2018. [Google Scholar] [CrossRef] [PubMed]
- McGhee, C.N.J.; Kim, B.Z.; Wilson, P.J. Contemporary Treatment Paradigms in Keratoconus. Cornea 2015, 34 (Suppl. S10), S16–S23. [Google Scholar] [CrossRef] [PubMed]
- Shneor, E.; Piñero, D.P.; Doron, R. Contrast Sensitivity and Higher-Order Aberrations in Keratoconus Subjects. Sci. Rep. 2021, 11, 12971. [Google Scholar] [CrossRef] [PubMed]
- Naderan, M.; Jahanrad, A.; Farjadnia, M. Ocular, Corneal, and Internal Aberrations in Eyes with Keratoconus, Forme Fruste Keratoconus, and Healthy Eyes. Int. Ophthalmol. 2018, 38, 1565–1573. [Google Scholar] [CrossRef]
- Yang, B.; Liang, B.; Liu, L.; Liao, M.; Li, Q.; Dai, Y.; Zhao, H.; Zhang, Y.; Zhou, Y. Contrast Sensitivity Function after Correcting Residual Wavefront Aberrations during RGP Lens Wear. Optom. Vis. Sci. 2014, 91, 1271–1277. [Google Scholar] [CrossRef]
- Lombardo, M.; Lombardo, G. Wave Aberration of Human Eyes and New Descriptors of Image Optical Quality and Visual Performance. J. Cataract Refract. Surg. 2010, 36, 313–331. [Google Scholar] [CrossRef]
- Applegate, R.A.; Howland, H.C.; Sharp, R.P.; Cottingham, A.J.; Yee, R.W. Corneal Aberrations and Visual Performance after Radial Keratotomy. J. Refract. Surg. 1998, 14, 397–407. [Google Scholar] [CrossRef]
- Applegate, R.A.; Hilmantel, G.; Howland, H.C.; Tu, E.Y.; Starck, T.; Zayac, E.J. Corneal First Surface Optical Aberrations and Visual Performance. J. Refract. Surg. 2000, 16, 507–514. [Google Scholar] [CrossRef]
- Bruce, A.S.; Catania, L.J. Clinical Applications of Wavefront Refraction. Optom. Vis. Sci. 2014, 91, 1278–1286. [Google Scholar] [CrossRef]
- Bohac, M.; Biscevic, A.; Ahmedbegovic-Pjano, M.; Jagic, M.; Gabric, D.; Lukacevic, S.; Mravicic, I. Management of Post-LASIK Ectasia. Mater. Sociomed. 2023, 35, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Andreanos, K.D.; Hashemi, K.; Petrelli, M.; Droutsas, K.; Georgalas, I.; Kymionis, G.D. Keratoconus Treatment Algorithm. Ophthalmol. Ther. 2017, 6, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, M.S.; Mahesh, S.; Bansal, A.K.; Nutheti, R.; Rao, G.N. Pellucid Marginal Corneal Degeneration. Ophthalmology 2004, 111, 1102–1107. [Google Scholar] [CrossRef] [PubMed]
- Rathi, V.M.; Dumpati, S.; Mandathara, P.S.; Taneja, M.M.; Sangwan, V.S. Scleral Contact Lenses in the Management of Pellucid Marginal Degeneration. Cont. Lens. Anterior Eye 2016, 39, 217–220. [Google Scholar] [CrossRef]
- Kumar, M.; Shetty, R.; Lalgudi, V.G.; Khamar, P.; Vincent, S.J.; Atchison, D.A. The Effect of Scleral Lenses on Vision, Refraction and Aberrations in Post-LASIK Ectasia, Keratoconus and Pellucid Marginal Degeneration. Ophthalmic Physiol. Opt. 2021, 41, 664–672. [Google Scholar] [CrossRef]
- Dorronsoro, C.; Barbero, S.; Llorente, L.; Marcos, S. On-Eye Measurement of Optical Performance of Rigid Gas Permeable Contact Lenses Based on Ocular and Corneal Aberrometry. Optom. Vis. Sci. 2003, 80, 115–125. [Google Scholar] [CrossRef]
- Rathi, V.M.; Mandathara, P.S.; Taneja, M.; Dumpati, S.; Sangwan, V.S. Scleral Lens for Keratoconus: Technology Update. Clin. Ophthalmol. 2015, 9, 2013–2018. [Google Scholar] [CrossRef]
- El Bahloul, M.; Bennis, A.; Chraïbi, F.; Abdellaoui, M.; Benatiya, I. Scleral Contact Lenses: Visual Outcomes and Tolerance. A Prospective Study about 98 Eyes. J. Fr. Ophtalmol. 2021, 44, 549–558. [Google Scholar] [CrossRef]
- Picot, C.; Gauthier, A.S.; Campolmi, N.; Delbosc, B. Quality of Life in Patients Wearing Scleral Lenses. J. Fr. Ophtalmol. 2015, 38, 615–619. [Google Scholar] [CrossRef]
- Baali, M.; Belghmaidi, S.; Ahammou, H.; Belgadi, S.; Hajji, I.; Moutaouakil, A. Evaluation of the Quality of Life of Patients Fitted with Scleral Lenses Using a Moroccan Version of NEI-VFQ 25. J. Fr. Ophtalmol. 2018, 41, 201–205. [Google Scholar] [CrossRef]
- Baudin, F.; Chemaly, A.; Arnould, L.; Barrénéchea, E.; Lestable, L.; Bron, A.M.; Creuzot-Garcher, C. Quality-of-Life Improvement after Scleral Lens Fitting in Patients with Keratoconus. Eye Contact Lens 2021, 47, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Ozek, D.; Kemer, O.E.; Altiaylik, P. Visual Performance of Scleral Lenses and Their Impact on Quality of Life in Patients with Irregular Corneas. Arq. Bras. Oftalmol. 2018, 81, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Michaud, L.; Lipson, M.; Kramer, E.; Walker, M. The Official Guide to Scleral Lens Terminology. Cont. Lens. Anterior Eye 2020, 43, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Pillay, R.; Hansraj, R.; Rampersad, N. Historical Development, Applications and Advances in Materials Used in Spectacle Lenses and Contact Lenses. Clin. Optom. 2020, 12, 157–167. [Google Scholar] [CrossRef]
- van der Worp, E.; Barnett, M.; Johns, L. Scleral Lenses: History & Future. Cont. Lens. Anterior Eye 2018, 41, 243–244. [Google Scholar] [CrossRef]
- Barnett, M.; Courey, C.; Fadel, D.; Lee, K.; Michaud, L.; Montani, G.; van der Worp, E.; Vincent, S.J.; Walker, M.; Bilkhu, P.; et al. CLEAR—Scleral Lenses. Cont. Lens. Anterior Eye 2021, 44, 270–288. [Google Scholar] [CrossRef]
- Nunziata, S.; Petrini, D.; Dell’Anno, S.; Barone, V.; Coassin, M.; Di Zazzo, A. Customized Scleral Lenses: An Alternative Tool for Severe Dry Eye Disease—A Case Series. J. Clin. Med. 2024, 13, 3935. [Google Scholar] [CrossRef]
- Bavinger, J.C.; DeLoss, K.; Mian, S.I. Scleral Lens Use in Dry Eye Syndrome. Curr. Opin. Ophthalmol. 2015, 26, 319–324. [Google Scholar] [CrossRef]
- Schornack, M.M.; Nau, C.B.; Harthan, J.; Shorter, E.; Nau, A.; Fogt, J. Current Trends in Scleral Lens Prescription, Management, and Evaluation. Eye Contact Lens 2023, 49, 56–62. [Google Scholar] [CrossRef]
- Ruiz-Lozano, R.E.; Gomez-Elizondo, D.E.; Colorado-Zavala, M.F.; Loya-Garcia, D.; Rodriguez-Garcia, A. Update on Indications, Complications, and Outcomes of Scleral Contact Lenses. Med. Hypothesis Discov. Innov. Ophthalmol. 2022, 10, 165–178. [Google Scholar] [CrossRef]
- Gelles, J.D.; Cheung, B.; Akilov, S.; Krisa, S.; Trieu, G.; Greenstein, S.A.; Chung, D.; Hersh, P.S. Ocular Impression-Based Scleral Lens with Wavefront-Guided Optics for Visual Improvement in Keratoconus. Eye Contact Lens 2022, 48, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Marsack, J.D.; Ravikumar, A.; Nguyen, C.; Ticak, A.; Koenig, D.E.; Elswick, J.D.; Applegate, R.A. Wavefront-Guided Scleral Lens Correction in Keratoconus. Optom. Vis. Sci. 2014, 91, 1221–1230. [Google Scholar] [CrossRef] [PubMed]
- Sabesan, R.; Johns, L.; Tomashevskaya, O.; Jacobs, D.S.; Rosenthal, P.; Yoon, G. Wavefront-Guided Scleral Lens Prosthetic Device for Keratoconus. Optom. Vis. Sci. 2013, 90, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Hastings, G.D.; Applegate, R.A.; Nguyen, L.C.; Kauffman, M.J.; Hemmati, R.T.; Marsack, J.D. Comparison of Wavefront-Guided and Best Conventional Scleral Lenses after Habituation in Eyes with Corneal Ectasia. Optom. Vis. Sci. 2019, 96, 238–247. [Google Scholar] [CrossRef]
- Nguyen, L.C.; Kauffman, M.J.; Hastings, G.D.; Applegate, R.A.; Marsack, J.D. Case Report: What Are We Doing for Our “20/20 Unhappy” Scleral Lens Patients? Optom. Vis. Sci. 2020, 97, 826–830. [Google Scholar] [CrossRef]
- Penbe, A.; Kanar, H.S.; Simsek, S. Efficiency and Safety of Scleral Lenses in Rehabilitation of Refractive Errors and High Order Aberrations After Penetrating Keratoplasty. Eye Contact Lens 2021, 47, 301–307. [Google Scholar] [CrossRef]
- Ritzmann, M.; Caroline, P.J.; Börret, R.; Korszen, E. An Analysis of Anterior Scleral Shape and Its Role in the Design and Fitting of Scleral Contact Lenses. Cont. Lens Anterior Eye 2018, 41, 205–213. [Google Scholar] [CrossRef]
- Shorter, E.; Fogt, J.; Nau, C.; Harthan, J.; Nau, A.; Schornack, M. Image- and Impression-Based Technology for Scleral Lens Fitting for Keratoconus: Efficiency of the Fitting Process. Cont. Lens Anterior Eye 2024, 47, 102174. [Google Scholar] [CrossRef]
- Fadel, D. The Influence of Limbal and Scleral Shape on Scleral Lens Design. Cont. Lens Anterior Eye 2018, 41, 321–328. [Google Scholar] [CrossRef]
- Vincent, S.J.; Alonso-Caneiro, D.; Collins, M.J. Regional Variations in Postlens Tear Layer Thickness during Scleral Lens Wear. Eye Contact Lens 2020, 46, 1368–1374. [Google Scholar] [CrossRef]
- Vincent, S.J.; Alonso-Caneiro, D.; Collins, M.J. The Time Course and Nature of Corneal Oedema during Sealed Miniscleral Contact Lens Wear. Cont. Lens Anterior Eye 2019, 42, 49–54. [Google Scholar] [CrossRef]
- Postnikoff, C.K.; Pucker, A.D.; Laurent, J.; Huisingh, C.; McGwin, G.; Nichols, J.J. Identification of Leukocytes Associated with Midday Fogging in the Post-Lens Tear Film of Scleral Contact Lens Wearers. Investig. Ophthalmol. Vis. Sci. 2019, 60, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.; Collins, M.J.; Vincent, S.J. Conjunctival Prolapse during Open Eye Scleral Lens Wear. Cont. Lens Anterior Eye 2021, 44, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Romero-Jiménez, M.; Flores-Rodríguez, P. Utility of a Semi-Scleral Contact Lens Design in the Management of the Irregular Cornea. Cont. Lens Anterior Eye 2013, 36, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Viñuela, J.; Frogozo, M.J.; Piñero, D.P. What We Know about the Scleral Profile and Its Impact on Contact Lens Fitting. Clin. Exp. Optom. 2023, 106, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Visser, E.S.; Visser, R.; Van Lier, H.J.J.; Otten, H.M. Modern Scleral Lenses Part I: Clinical Features. Eye Contact Lens 2007, 33, 13–20. [Google Scholar] [CrossRef]
- Fuller, D.G.; Wang, Y. Safety and Efficacy of Scleral Lenses for Keratoconus. Optom. Vis. Sci. 2020, 97, 741–748. [Google Scholar] [CrossRef]
- Schornack, M.M. Scleral Lenses: A Literature Review. Eye Contact Lens 2015, 41, 3–11. [Google Scholar] [CrossRef]
- van der Worp, E.; Bornman, D.; Ferreira, D.L.; Faria-Ribeiro, M.; Garcia-Porta, N.; González-Meijome, J.M. Modern Scleral Contact Lenses: A Review. Cont. Lens Anterior Eye 2014, 37, 240–250. [Google Scholar] [CrossRef]
- Harthan, J.; Shorter, E.; Nau, C.; Nau, A.; Schornack, M.M.; Zhuang, X.; Fogt, J. Scleral Lens Fitting and Assessment Strategies. Cont. Lens Anterior Eye 2019, 42, 9–14. [Google Scholar] [CrossRef]
- Schornack, M.M.; Patel, S.V. Relationship between Corneal Topographic Indices and Scleral Lens Base Curve. Eye Contact Lens 2010, 36, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Carrasquillo, K.G.; Chaudhary, S.; Basu, S. A Multi-Parameter Grading System for Optimal Fitting of Scleral Contact Lenses. F1000Res 2022, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Nau, A.; Shorter, E.S.; Harthan, J.S.; Fogt, J.S.; Nau, C.B.; Schornack, M. Multicenter Review of Impression-Based Scleral Devices. Cont. Lens Anterior Eye 2021, 44, 101380. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.K.; Schornack, M.M.; Vincent, S.J. Anatomical and Physiological Considerations in Scleral Lens Wear: Conjunctiva and Sclera. Cont. Lens Anterior Eye 2020, 43, 517–528. [Google Scholar] [CrossRef]
- Macedo-de-Araújo, R.J.; van der Worp, E.; González-Méijome, J.M. In Vivo Assessment of the Anterior Scleral Contour Assisted by Automatic Profilometry and Changes in Conjunctival Shape after Miniscleral Contact Lens Fitting. J. Optom. 2019, 12, 131–140. [Google Scholar] [CrossRef]
- DeNaeyer, G.; Sanders, D.R. SMap3D Corneo-Scleral Topographer Repeatability in Scleral Lens Patients. Eye Contact Lens 2018, 44 (Suppl. S1), S259–S264. [Google Scholar] [CrossRef]
- Consejo, A.; Behaegel, J.; Van Hoey, M.; Iskander, D.R.; Rozema, J.J. Scleral Asymmetry as a Potential Predictor for Scleral Lens Compression. Ophthalmic Physiol. Opt. 2018, 38, 609–616. [Google Scholar] [CrossRef]
- Macedo-De-Araújo, R.J.; Faria-Ribeiro, M.; McAllinden, C.; Van Der Worp, E.; González-Méijome, J.M. Optical Quality and Visual Performance for One Year in a Sample of Scleral Lens Wearers. Optom. Vis. Sci. 2020, 97, 775–789. [Google Scholar] [CrossRef]
- Rijal, S.; Hastings, G.D.; Nguyen, L.C.; Kauffman, M.J.; Applegate, R.A.; Marsack, J.D. The Impact of Misaligned Wavefront-Guided Correction in a Scleral Lens for the Highly Aberrated Eye. Optom. Vis. Sci. 2020, 97, 732–740. [Google Scholar] [CrossRef]
- Formisano, M.; Franzone, F.; Alisi, L.; Pistella, S.; Spadea, L. Effects of Scleral Contact Lenses for Keratoconus Management on Visual Quality and Intraocular Pressure. Ther. Clin. Risk Manag. 2021, 17, 79–85. [Google Scholar] [CrossRef]
- Marty, A.S.; Jurkiewicz, T.; Mouchel, R.; Febvay, C.; Caillat, T.; Burillon, C. Benefits of Scleral Lens in the Management of Irregular Corneas and Dry Eye Syndrome After Refractive Surgery. Eye Contact Lens 2022, 48, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Dutta, R.; Iyer, G.; Srinivasan, B.; Iqbal, A. Aberration Change after Scleral Lens Wear in Eyes with Pellucid Marginal Degenerations. Indian J. Ophthalmol. 2024, 72, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Guirao, A.; Williams, D.R.; Cox, I.G. Effect of Rotation and Translation on the Expected Benefit of an Ideal Method to Correct the Eye’s Higher-Order Aberrations. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2001, 18, 1003. [Google Scholar] [CrossRef] [PubMed]
- Guirao, A.; Cox, I.G.; Williams, D.R. Method for Optimizing the Correction of the Eye’s Higher-Order Aberrations in the Presence of Decentrations. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2002, 19, 126. [Google Scholar] [CrossRef]
- Fogt, J.S. Midday Fogging of Scleral Contact Lenses: Current Perspectives. Clin. Optom. 2021, 13, 209–219. [Google Scholar] [CrossRef]
- Macedo-de-Araújo, R.J.; van der Worp, E.; González-Méijome, J.M. A One-Year Prospective Study on Scleral Lens Wear Success. Cont. Lens Anterior Eye 2020, 43, 553–561. [Google Scholar] [CrossRef]
- Schornack, M.M.; Fogt, J.; Harthan, J.; Nau, C.B.; Nau, A.; Cao, D.; Shorter, E. Factors Associated with Patient-Reported Midday Fogging in Established Scleral Lens Wearers. Cont. Lens Anterior Eye 2020, 43, 602–608. [Google Scholar] [CrossRef]
- Walker, M.K.; Bergmanson, J.P.; Miller, W.L.; Marsack, J.D.; Johnson, L.A. Complications and Fitting Challenges Associated with Scleral Contact Lenses: A Review. Cont. Lens Anterior Eye 2016, 39, 88–96. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Mahadevan, R. Quality of Life and Handling Experience with the PROSE Device: An Indian Scenario. Clin. Exp. Optom. 2017, 100, 710–717. [Google Scholar] [CrossRef]
Year | Research Group | Key Findings |
---|---|---|
2013 | Sabesan et al. [64] | Custom wfgSLs reduced HOAs and improved contrast sensitivity in KC patients, though VA did not reach normal levels. |
2014 | Marsack et al. [63] | wfgSLs significantly reduced the lower-order and higher-order RMS errors, with visual image quality metrics falling within normal ranges for most participants. |
2019 | Hastings et al. [65] | wfgSLs showed significant reductions in the HO-RMS wavefront error and notable improvements in VA and contrast sensitivity, particularly in patients with more severe ectasia. |
2020 | Macedo-de-Araújo et al. [89] | SLs improved VA in both irregular and regular corneas, with significant reductions in night vision disturbances and HOAs. Patients reported decreased visual symptoms such as glare, halos, and starbursts, with improvements maintained over 12 months. |
2020 | Rijal et al. [90] | Misalignment of wfgSLs significantly degraded visual quality, highlighting the critical importance of accurate alignment for optimal outcomes in wavefront-guided corrections. |
2021 | Formisano et al. [91] | SLs provided superior VA compared to spectacles and RGP lenses in KC patients, with high levels of comfort and extended wear time. |
2021 | Kumar et al. [46] | SLs significantly improved CDVA, refractive outcomes, and HOAs in patients with post-LASIK ectasia, KC, and PMD. |
2021 | Nguyen et al. [66] | wfgSLs reduced the HO-RMS wavefront error and improved VA and visual Strehl ratios in KC patients who were dissatisfied with conventional SLs due to residual HOAs. |
2022 | Marty et al. [92] | SLs were highly effective in managing irregular corneas post-refractive surgery, improving BCVA, reducing OSDI scores, and decreasing ocular aberrations. |
2024 | Dutta et al. [93] | SLs significantly improved CDVA, contrast sensitivity, and HOAs in PMD patients. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barone, V.; Petrini, D.; Nunziata, S.; Surico, P.L.; Scarani, C.; Offi, F.; Villani, V.; Coassin, M.; Di Zazzo, A. Impact of Scleral Lenses on Visual Acuity and Ocular Aberrations in Corneal Ectasia: A Comprehensive Review. J. Pers. Med. 2024, 14, 1051. https://doi.org/10.3390/jpm14101051
Barone V, Petrini D, Nunziata S, Surico PL, Scarani C, Offi F, Villani V, Coassin M, Di Zazzo A. Impact of Scleral Lenses on Visual Acuity and Ocular Aberrations in Corneal Ectasia: A Comprehensive Review. Journal of Personalized Medicine. 2024; 14(10):1051. https://doi.org/10.3390/jpm14101051
Chicago/Turabian StyleBarone, Vincenzo, Daniele Petrini, Sebastiano Nunziata, Pier Luigi Surico, Claudia Scarani, Francesco Offi, Valentina Villani, Marco Coassin, and Antonio Di Zazzo. 2024. "Impact of Scleral Lenses on Visual Acuity and Ocular Aberrations in Corneal Ectasia: A Comprehensive Review" Journal of Personalized Medicine 14, no. 10: 1051. https://doi.org/10.3390/jpm14101051
APA StyleBarone, V., Petrini, D., Nunziata, S., Surico, P. L., Scarani, C., Offi, F., Villani, V., Coassin, M., & Di Zazzo, A. (2024). Impact of Scleral Lenses on Visual Acuity and Ocular Aberrations in Corneal Ectasia: A Comprehensive Review. Journal of Personalized Medicine, 14(10), 1051. https://doi.org/10.3390/jpm14101051