Exploring the Structural and Functional Consequences of Deleterious Missense Nonsynonymous SNPs in the EPOR Gene: A Computational Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Work Plan
2.2. Data Collection
2.3. Identification of the Deleterious nsSNPs in the EPOR Gene
2.4. Predicting the Effect of SNPs on EPO-R Protein Structure and Function
2.5. Prediction of SNP-Disease Associations
2.6. Predicting the Effect of SNPs on Protein Stability
2.7. Predicting Pathogenicity and Its Molecular Mechanism
2.8. Assessing the Conservation of Amino Acid Positions
2.9. Analyzing Protein Properties
2.10. Identifying the Protein Functional Sites
2.11. Conducting Molecular Dynamics Simulations
2.12. Displaying 3D Structural Change Using PyMol Software
3. Results
3.1. Effect of nsSNPs on Protein Structure and Function
3.2. Predicting SNPs-Disease Association
3.3. Analyzing the Impact of SNPs on Protein Stability
3.4. Predicting the Molecular Mechanism of Pathogenicity
3.5. Analyzing Protein Sequence Conservation
3.6. Analysis of Protein Properties
3.7. Predicting the Protein Functional Sites
3.8. Molecular Dynamics Simulations of Wild Type and Mutant Variants
3.8.1. Root-Mean-Square Deviation (RMSD)
3.8.2. Root-Mean-Square Fluctuation (RMSF)
3.8.3. Radius of Gyration (Rg)
3.8.4. Number of Hydrogen Bonds over Time
3.8.5. Solvent-Accessible Surface (SAS)
3.9. 3D Simulation of EPO-R Protein Structural Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsiftsoglou, A.S. Erythropoietin (EPO) as a key regulator of erythropoiesis, bone remodeling and endothelial transdifferentiation of multipotent mesenchymal stem cells (MSCs): Implications in regenerative medicine. Cells 2021, 10, 2140. [Google Scholar] [CrossRef] [PubMed]
- Youn, M.; Wang, N.; LaVasseur, C.; Bibikova, E.; Kam, S.; Glader, B.; Sakamoto, K.M.; Narla, A. Loss of Forkhead box M1 promotes erythropoiesis through increased proliferation of erythroid progenitors. Haematologica 2017, 102, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, J.; Jin, Q.; Ambroise, Y.; Satoh, S.; Desharnais, J.; Capps, K.; Boger, D.L. Erythropoietin mimetics derived from solution phase combinatorial libraries. J. Am. Chem. Soc. 2002, 124, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Oren-Young, L.; Klingmuller, U.; Neumann, D. Protein tyrosine phosphatase 1B participates in the down-regulation of erythropoietin receptor signalling. Biochem. J. 2004, 377 Pt 2, 517–524. [Google Scholar] [CrossRef]
- Watowich, S.S.; Mikami, A.; Busche, R.A.; Xie, X.; Pharr, P.N.; Longmore, G.D. Erythropoietin receptors that signal through Stat5 or Stat3 support fetal liver and adult erythropoiesis: Lack of specificity of stat signals during red blood cell development. J. Interferon Cytokine Res. 2000, 20, 1065–1070. [Google Scholar] [CrossRef]
- Ueda, F.; Tago, K.; Tamura, H.; Funakoshi-Tago, M. Three tyrosine residues in the erythropoietin receptor are essential for Janus kinase 2 V617F mutant-induced tumorigenesis. J. Biol. Chem. 2017, 292, 1826–1846. [Google Scholar] [CrossRef]
- Juul, S.E.; Yachnis, A.T.; Rojiani, A.M.; Christensen, R.D. Immunohistochemical localization of erythropoietin and its receptor in the developing human brain. Pediatr. Dev. Pathol. 1999, 2, 148–158. [Google Scholar] [CrossRef]
- Juul, S. Erythropoietin in the central nervous system, and its use to prevent hypoxic-ischemic brain damage. Acta Paediatr. Suppl. 2002, 91, 36–42. [Google Scholar] [CrossRef]
- Jean-Baptiste, W.; Yusuf Ali, A.; Inyang, B.; Koshy, F.S.; George, K.; Poudel, P.; Chalasani, R.; Goonathilake, M.R.; Waqar, S.; George, S.; et al. Are there any cardioprotective effects or safety concerns of erythropoietin in patients with myocardial infarction? A systematic review. Cureus 2022, 14, e25671. [Google Scholar] [CrossRef]
- Wang, L.; Di, L.; Noguchi, C.T. Erythropoietin, a novel versatile player regulating energy metabolism beyond the erythroid system. Int. J. Biol. Sci. 2014, 10, 921–939. [Google Scholar] [CrossRef]
- Farrell, F.; Lee, A. The erythropoietin receptor and its expression in tumor cells and other tissues. Oncologist 2004, 9 (Suppl. S5), 18–30. [Google Scholar] [CrossRef] [PubMed]
- Jelkmann, W.; Bohlius, J.; Hallek, M.; Sytkowski, A.J. The erythropoietin receptor in normal and cancer tissues. Crit. Rev. Oncol. Hematol. 2008, 67, 39–61. [Google Scholar] [CrossRef] [PubMed]
- Winkelmann, J.C. The human erythropoietin receptor. Int. J. Cell Cloning 1992, 10, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Lo Riso, L.; Vargas-Parra, G.; Navarro, G.; Arenillas, L.; Fernández-Ibarrondo, L.; Robredo, B.; Ballester, C.; López, B.; Perez-Montaña, A.; Sampol, A.; et al. Identification of two novel EPOR gene variants in primary familial polycythemia: Case report and literature review. Genes 2022, 13, 1686. [Google Scholar] [CrossRef]
- Bakhit, Y.H.; Ibrahim, M.O.; Amin, M.; Mirghani, Y.A.; Hassan, M.A. In silico analysis of SNPs in PARK2 and PINK1 genes that potentially cause autosomal recessive Parkinson disease. Adv. Bioinform. 2016, 2016, 9313746. [Google Scholar] [CrossRef]
- Savas, S.; Geraci, J.; Jurisica, I.; Liu, G. A comprehensive catalogue of functional genetic variations in the EGFR pathway: Protein-protein interaction analysis reveals novel genes and polymorphisms important for cancer research. Int. J. Cancer 2009, 125, 1257–1265. [Google Scholar] [CrossRef]
- Mahmoud, T.A.; Abdelmoneim, A.; Murshed, N.S.; Mohammed, Z.O.; Ahmed, D.T.; Altyeb, F.A. In silico analysis of IDH3A gene revealed novel mutations associated with retinitis pigmentosa. bioRxiv 2019. [Google Scholar] [CrossRef]
- Mustafa, M.I.; Abdelhameed, T.A.; Abdelrhman, F.A.; Osman, S.A.; Hassan, M.A. Novel deleterious nsSNPs within MEFV gene that could be used as diagnostic markers to predict hereditary familial Mediterranean fever: Using bioinformatics analysis. Adv. Bioinform. 2019, 2019, 1651587. [Google Scholar] [CrossRef]
- Sim, N.L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012, 40, W452–W457. [Google Scholar] [CrossRef]
- Mohammadpour, T.; Mohammadzadeh, R. A comprehensive in silico analysis of the functional and structural consequences of the deleterious missense nonsynonymous SNPs in human GABRA6 gene. OBM Genet. 2024, 8, 227. [Google Scholar] [CrossRef]
- Rezaeirad, A.; Karasakal, Ö.F.; Kaman, T.; Karahan, M. Evaluation of SNP in the CDH8 and CDH10 genes associated with autism using in-silico tools. Turk. J. Sci. Tech. 2024, 19, 213–222. [Google Scholar] [CrossRef]
- Hicks, S.C.; Wheeler, D.A.; Plon, S.E.; Kimmel, M. Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed. Hum. Mutat. 2011, 32, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Liu, X.; Fu, Y.X. Incorporating predicted functions of nonsynonymous variants into gene-based analysis of exome sequencing data: A comparative study. BMC Proc. 2011, 5, S20. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, E.; Martelli, P.L.; Fariselli, P.; Casadio, R. Blind prediction of deleterious amino acid variations with SNPs&GO. Hum. Mutat. 2017, 38, 1064–1071. [Google Scholar]
- Mustafa, M.I.; Mohammed, Z.O.; Murshed, N.S.; Elfadol, N.M.; Abdelmoneim, A.H.; Hassan, M.A. In silico genetics revealing 5 mutations in CEBPA gene associated with acute myeloid leukemia. Cancer Inform. 2019, 18, 1176935119870817. [Google Scholar] [CrossRef]
- Mustafa, M.I.; Abdelmoneim, A.H.; Elfadol, N.M.; Murshed, N.S.; Mohammed, Z.O.; Hassan, M.A. Identification of novel key biomarkers in Simpson-Golabi-Behmel syndrome (SGBS): Evidence from bioinformatics analysis. Int. Ann. Sci. 2019, 8, 1–11. [Google Scholar] [CrossRef]
- Reva, B.; Antipin, Y.; Sander, C. Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Res. 2011, 39, e118. [Google Scholar] [CrossRef]
- Capriotti, E.; Fariselli, P.; Casadio, R. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005, 33 (Suppl. S2), W306–W310. [Google Scholar] [CrossRef]
- Laskar, F.S.; Bappy, M.N.I.; Hossain, M.S.; Alam, Z.; Afrin, D.; Saha, S.; Zinnah, K.M.A. An in silico approach towards finding the cancer-causing mutations in human MET gene. Int. J. Genom. 2023, 2023, 9705159. [Google Scholar] [CrossRef]
- Haque, S.; Patil, G.; Mishra, A.; Lan, X.; Popik, W.; Malhotra, A.; Skorecki, K.; Singhal, P.C. Effect of APOL1 disease risk variants on APOL1 gene product. Biosci. Rep. 2017, 37, BSR20160531. [Google Scholar] [CrossRef]
- Arifuzzaman, M.; Mitra, S.; Das, R.; Hamza, A.; Absar, N.; Dash, R. In silico analysis of nonsynonymous single-nucleotide polymorphisms (nsSNPs) of the SMPX gene. Ann. Hum. Genet. 2019, 84, 54–71. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.M.; Faisal, A.M.; Nila, T.A.; Binti, N.N.; Hosen, M.I.; Shekhar, H.U. A computational in silico approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene. PLoS ONE 2021, 16, e0260054. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Akhtar, N.; Wani, A.K.; Raza, K.; Kaushik, V. Discovering deleterious single nucleotide polymorphisms of human AKT1 oncogene: An in silico study. Life 2023, 13, 1532. [Google Scholar] [CrossRef] [PubMed]
- Pejaver, V.; Urresti, J.; Lugo-Martinez, J.; Pagel, K.A.; Lin, G.N.; Nam, H.; Mort, M.; Cooper, D.N.; Sebat, J.; Iakoucheva, L.M.; et al. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat. Commun. 2020, 11, 5918. [Google Scholar] [CrossRef]
- Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016, 44, W344–W350. [Google Scholar] [CrossRef]
- Venselaar, H.; Beek, T.A.; Kuipers, R.; Hekkelman, M.L.; Vriend, G. Protein structure analysis of mutations causing inheritable diseases: An e-science approach with life scientist friendly interfaces. BMC Bioinform. 2010, 11, 548. [Google Scholar] [CrossRef]
- Mitchell, A.L.; Attwood, T.K.; Babbitt, P.C.; Blum, M.; Bork, P.; Bridge, A.; Brown, S.D.; Chang, H.-Y.; El-Gebali, S.; Fraser, M.I.; et al. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2018, 47, D351–D360. [Google Scholar] [CrossRef]
- Blum, M.; Chang, H.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.L.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2020, 49, D344–D354. [Google Scholar] [CrossRef]
- Elnageeb, M.E.; Elfaki, I.; Adam, K.M.; Ahmed, E.M.; Elkhalifa, E.M.; Abuagla, H.A.; Ahmed, A.A.E.M.; Ali, E.W.; Eltieb, E.I.; Edris, A.M. In Silico Evaluation of the Potential Association of the Pathogenic Mutations of Alpha Synuclein Protein with Induction of Synucleinopathies. Diseases 2023, 11, 115. [Google Scholar] [CrossRef]
- Mooers, B.H.M. Simplifying and enhancing the use of PyMOL with horizontal scripts. Protein Sci. 2016, 25, 1873–1882. [Google Scholar] [CrossRef]
- Chai, C.; Maran, S.; Thew, H.; Tan, Y.C.; Rahman, N.M.A.N.A.; Cheng, W.; Lai, K.-S.; Loh, J.-Y.; Yap, W.-S. Predicting deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) of HRAS gene and in silico evaluation of their structural and functional consequences towards diagnosis and prognosis of cancer. Biology 2022, 11, 1604. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, K.M.; Fairbairn, D.J.; Jackson, K.A.; Morris, K.; Tey, S.; Kennedy, G. A novel mutation of the erythropoietin receptor gene associated with primary familial and congenital polycythaemia. Int. J. Hematol. 2011, 93, 542–544. [Google Scholar] [CrossRef] [PubMed]
- Bouafi, H.; Bencheikh, S.; Krami, A.L.M.; Morjane, I.; Charoute, H.; Rafiey, H.; Saile, R.; Benhnini, F.; Barakat, A. Prediction and structural comparison of deleterious coding nonsynonymous single nucleotide polymorphisms (nsSNPs) in human LEP gene associated with obesity. Biomed. Res. Int. 2019, 2019, 1832084. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, M.; Rao, A.; Mohanty, K. Role of mitochondrial mutations in ocular aggregopathy. Cureus 2022, 14, e27129. [Google Scholar] [CrossRef] [PubMed]
- Al-nakhle, H. In silico evaluation of coding and non-coding nsSNPs in the thrombopoietin receptor (MPL) proto-oncogene: Assessing their influence on protein stability, structure, and function. Curr. Issues Mol. Biol. 2023, 45, 9390–9412. [Google Scholar] [CrossRef]
- Vera, R.; Synsmir-Zizzamia, M.; Ojinnaka, S.; Snyder, D.A. Prediction of protein flexibility using a conformationally restrained contact map. Proteins 2018, 86, 1111–1116. [Google Scholar] [CrossRef]
- Cho, C.; Horzempa, C.; Jones, D.; McKeown-Longo, P.J. The fibronectin III-1 domain activates a PI3-Kinase/Akt signaling pathway leading to αvβ5 integrin activation and TRAIL resistance in human lung cancer cells. BMC Cancer 2016, 16, 574. [Google Scholar] [CrossRef]
- Cao, L.; Nicosia, J.; Larouche, J.; Zhang, Y.; Bachman, H.; Brown, A.; Holmgren, L.; Barker, T.H. Detection of an integrin-binding mechanoswitch within fibronectin during tissue formation and fibrosis. ACS Nano 2017, 11, 7110–7117. [Google Scholar] [CrossRef]
- Lee, J.; Park, B.; Moon, B.; Park, J.; Moon, H.; Kim, K.; Lee, S.-A.; Kim, D.; Min, C.; Lee, D.-H.; et al. A scaffold for signaling of Tim-4-mediated efferocytosis is formed by fibronectin. Cell Death Differ. 2019, 26, 1646–1655. [Google Scholar] [CrossRef]
- Chandler, E.M.; Saunders, M.P.; Yoon, C.J.; Gourdon, D.; Fischbach, C. Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors. Phys. Biol. 2011, 8, 015008. [Google Scholar] [CrossRef]
- Stine, J.M.; Sun, Y.; Armstrong, G.S.; Bowler, B.E.; Briknarová, K. Structure and unfolding of the third type III domain from human fibronectin. Biochemistry 2015, 54, 6724–6733. [Google Scholar] [CrossRef] [PubMed]
- Kausar, H.; Gull, S.; Ahmad, W.; Awan, S.J.; Sarwar, M.T.; Ijaz, B.; Ansar, M.; Asad, S.; Hassan, S. Role of alternative phosphorylation and O-glycosylation of erythropoietin receptor in modulating its function: An in silico study. Turkish J. Biol. 2017, 41, 816–825. [Google Scholar] [CrossRef]
- Zhong, C.; Jiang, Z.; Guo, Q.; Zhang, X. Protective effect of adenovirus-mediated erythropoietin expression on the spiral ganglion neurons in the rat inner ear. Int. J. Mol. Med. 2018, 41, 2669–2677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zeng, W.; Li, P.; Feng, J.; Zhang, Y.; Jin, S.; Deng, J.; Qi, S.; Lu, H. The effects of missense OPN3 mutations in melanocytic lesions on protein structure and light-sensitive function. Exp. Dermatol. 2022, 31, 1932–1938. [Google Scholar] [CrossRef]
- Muhseen, Z.T.; Kadhim, S.; Yahiya, Y.I.; Alatawi, E.A.; Alkhayl, F.F.A.; Almatroudi, A. Insights into the binding of receptor-binding domain (RBD) of SARS-CoV-2 wild type and B.1.620 variant with hACE2 using molecular docking and simulation approaches. Biology 2021, 10, 1310. [Google Scholar] [CrossRef]
- Yin, T.; Purpero, V.M.; Fujii, R.; Jing, Q.; Kazlauskas, R.J. New structural motif for carboxylic acid perhydrolases. Chem. Eur. J. 2013, 19, 3037–3046. [Google Scholar] [CrossRef]
- Khan, A.; Wei, D.; Kousar, K.; Abubaker, J.; Ahmad, S.; Ali, J.; Al-Mulla, F.; Ali, S.S.; Nizam-Uddin, N.; Mohammad Sayaf, A.; et al. Preliminary structural data revealed that the SARS-CoV-2 B.1.617 variant’s RBD binds to ACE2 receptor stronger than the wild type to enhance the infectivity. ChemBioChem 2021, 22, 2641–2649. [Google Scholar] [CrossRef]
- Bonet, L.; Loureiro, J.; Pereira, G.R.C.; Silva, A.N.R.D.; Mesquita, J.F.D. Molecular dynamics and protein frustration analysis of human fused in sarcoma protein variants in amyotrophic lateral sclerosis type 6: An in silico approach. PLoS ONE 2021, 16, e0258061. [Google Scholar] [CrossRef]
Variant ID | Alleles | Amino Acid Change | SIFT | Polyphene2 | SNAP2 | ||||
---|---|---|---|---|---|---|---|---|---|
Prediction | Score | Prediction | Score | Prediction | Score | Expected Accuracy | |||
rs199645071 | G>A | P380L | Deleterious | 0.00 | Probably | 0.961 | Effect | 56 | 75% |
rs750657898 | A>G | L199P | Deleterious | 0.05 | Probably | 1.000 | Effect | 19 | 56% |
rs773564773 | A>C | W233G | Deleterious | 0.00 | Probably | 1.000 | Effect | 90 | 95% |
rs1968317522 | T>C | K301E | Deleterious | 0.02 | Probably | 0.991 | Effect | 13 | 59% |
rs139756642 | G>A | P287L | Deleterious | 0.00 | Probably | 1.000 | Effect | 50 | 75% |
rs149831382 | G>A | P168L | Deleterious | 0.00 | Probably | 0.998 | Effect | 25 | 63% |
rs192441411 | A>C | L376R | Deleterious | 0.00 | Probably | 1.000 | Effect | 59 | 75% |
rs368363386 | C>A | D351Y | Deleterious | 0.00 | Probably | 1.000 | Effect | 3 | 53% |
rs370541202 | T>A | I464F | Deleterious | 0.00 | Probably | 0.997 | Effect | 22 | 63% |
rs373709817 | C>T | V260M | Deleterious | 0.02 | Probably | 0.999 | Effect | 37 | 66% |
rs376951711 | A>C | S465A | Deleterious | 0.00 | Probably | 0.999 | Effect | 32 | 66% |
rs533014098 | A>G | L207P | Deleterious | 0.00 | Probably | 1.000 | Effect | 71 | 85% |
rs542643797 | G>A | P239L | Deleterious | 0.01 | Probably | 1.000 | Effect | 19 | 59% |
G>C | P239R | Deleterious | 0.01 | Probably | 1.000 | Effect | 35 | 66% | |
rs751506215 | G>A | R45W | Deleterious | 0.00 | Probably | 0.987 | Effect | 39 | 66% |
rs751621912 | A>G | L93P | Deleterious | 0.02 | Probably | 1.000 | Effect | 51 | 75% |
rs752527298 | T>A | D430V | Deleterious | 0.00 | Probably | 1.000 | Effect | 53 | 75% |
rs754199429 | G>A | R100C | Deleterious | 0.03 | Probably | 1.000 | Effect | 30 | 66% |
rs757072422 | C>T | E425K | Deleterious | 00.0 | Probably | 1.000 | Effect | 23 | 63% |
rs758272993 | C>T | E336K | Deleterious | 0.01 | Probably | 0.999 | Effect | 28 | 63% |
rs760437132 | A>C | L429R | Deleterious | 0.00 | Probably | 0.999 | Effect | 54 | 75% |
rs764303927 | C>G | C52S | Deleterious | 0.00 | Probably | 1.000 | Effect | 71 | 85% |
rs765009836 | C>T | E181K | Deleterious | 0.01 | Probably | 1.000 | Effect | 66 | 80% |
rs765615096 | C>T | R202H | Deleterious | 0.04 | Probably | 0.999 | Effect | 55 | 75% |
rs771507239 | C>A | D366Y | Deleterious | 0.00 | Probably | 1.000 | Effect | 68 | 80% |
rs771666923 | C>T | V143M | Deleterious | 0.01 | Probably | 1.000 | Effect | 28 | 63% |
rs772238101 | C>A | R165L | Deleterious | 0.03 | Probably | 1.000 | Effect | 43 | 71% |
rs775003412 | T>C | Q305R | Deleterious | 0.04 | Probably | 0.958 | Effect | 13 | 59% |
rs776340905 | G>A | N491K | Deleterious | 0.00 | Probably | 1.000 | Effect | 17 | 59% |
rs776800957 | A>C | C52G | Deleterious | 0.00 | Probably | 1.000 | Effect | 77 | 85% |
rs779186064 | A>G | W64R | Deleterious | 0.00 | Probably | 1.000 | Effect | 91 | 95% |
rs781454885 | G>C | A40D | Deleterious | 0.00 | Probably | 0.992 | Effect | 22 | 63% |
rs781710022 | A>T | I178N | Deleterious | 0.00 | Probably | 1.000 | Effect | 61 | 80% |
rs940691487 | T>C | Y368C | Deleterious | 0.00 | Probably | 1.000 | Effect | 53 | 75% |
rs991881188 | C>G | R223P | Deleterious | 0.03 | Probably | 1.000 | Effect | 84 | 91% |
rs1026783071 | T>G | D467A | Deleterious | 0.00 | Probably | 1.000 | Effect | 24 | 63% |
rs1184535377 | T>C | D372G | Deleterious | 0.00 | Probably | 1.000 | Effect | 59 | 75% |
rs1192368347 | A>T | L257H | Deleterious | 0.02 | Probably | 0.975 | Effect | 68 | 80% |
rs1193366124 | T>C | D461G | Deleterious | 0.00 | Probably | 0.989 | Effect | 56 | 75% |
rs1206022201 | C>T | G471R | Deleterious | 0.00 | Probably | 1.000 | Effect | 5 | 53% |
rs1209147888 | T>G | K453T | Deleterious | 0.00 | Probably | 1.000 | Effect | 3 | 53% |
rs1228428456 | G>A | R179C | Deleterious | 0.01 | Probably | 1.000 | Effect | 45 | 71% |
rs1233264153 | G>A | R215C | Deleterious | 0.03 | Probably | 1.000 | Effect | 6 | 63% |
rs1236502126 | A>T | L266Q | Deleterious | 0.00 | Probably | 1.000 | Effect | 28 | 63% |
rs1254633566 | C>A | V124F | Deleterious | 0.01 | Probably | 0.997 | Effect | 69 | 80% |
rs1277913272 | G>A | S473F | Deleterious | 0.00 | Probably | 0.998 | Effect | 25 | 63% |
rs1281927241 | G>A | P499S | Deleterious | 0.00 | Probably | 0.999 | Effect | 14 | 59% |
G>T | P499T | Deleterious | 0.00 | Probably | 0.999 | Effect | 19 | 59% | |
rs1291097518 | C>G | E290Q | Deleterious | 0.04 | Probably | 1.000 | Effect | 14 | 59% |
rs1312478601 | T>A | D351V | Deleterious | 0.00 | Probably | 0.997 | Effect | 2 | 53% |
rs1321784132 | C>T | G302S | Deleterious | 0.02 | Probably | 1.000 | Effect | 43 | 71% |
rs1326443454 | C>T | V182M | Deleterious | 0.02 | Probably | 0.992 | Effect | 57 | 75% |
rs1329852497 | A>G | C107R | Deleterious | 0.00 | Probably | 0.995 | Effect | 70 | 85% |
rs1331043902 | C>T | C107Y | Deleterious | 0.00 | Probably | 1.000 | Effect | 77 | 85% |
rs1335771561 | A>G | C62R | Deleterious | 0.00 | Probably | 0.994 | Effect | 78 | 85% |
rs1368251390 | A>G | L455P | Deleterious | 0.00 | Probably | 0.995 | Effect | 27 | 63% |
rs1393553623 | A>C | Y216D | Deleterious | 0.00 | Probably | 1.000 | Effect | 91 | 95% |
rs1404996393 | T>C | Y504C | Deleterious | 0.00 | Probably | 1.000 | Effect | 46 | 71% |
rs1436380909 | A>G | V260A | Deleterious | 0.05 | Probably | 0.976 | Effect | 8 | 53% |
rs1453095403 | G>A | R221C | Deleterious | 0.00 | Probably | 1.000 | Effect | 85 | 91% |
rs1465679458 | T>G | E402D | Deleterious | 0.00 | Probably | 0.976 | Effect | 2 | 53% |
rs1471802731 | G>T | P484H | Deleterious | 0.00 | Probably | 0.996 | Effect | 6 | 53% |
rs1568328293 | C>A | V333F | Deleterious | 0.01 | Probably | 1.000 | Effect | 66 | 80% |
rs1968305256 | T>C | Y489C | Deleterious | 0.00 | Probably | 1.000 | Effect | 34 | 66% |
rs1968305306 | A>T | Y489N | Deleterious | 0.00 | Probably | 1.000 | Effect | 67 | 80% |
rs1968306772 | C>T | G471E | Deleterious | 0.00 | Probably | 1.000 | Effect | 30 | 66% |
rs1968306993 | T>C | Y468C | Deleterious | 0.00 | Probably | 1.000 | Effect | 54 | 75% |
rs1968307255 | A>G | I464T | Deleterious | 0.00 | Probably | 0.997 | Effect | 24 | 63% |
rs1968310587 | T>A | D398V | Deleterious | 0.00 | Probably | 0.997 | Effect | 32 | 66% |
T>C | D398G | Deleterious | 0.00 | Probably | 0.988 | Effect | 15 | 59% | |
rs1968314573 | C>G | E332Q | Deleterious | 0.02 | Probably | 1.000 | Effect | 50 | 75% |
rs1968315618 | A>G | C314R | Deleterious | 0.05 | Probably | 0.996 | Effect | 5 | 53% |
rs1968317423 | T>A | N303Y | Deleterious | 0.00 | Probably | 1.000 | Effect | 41 | 71% |
rs1968318332 | G>A | P284L | Deleterious | 0.00 | Probably | 1.000 | Effect | 55 | 75% |
rs1968345368 | G>A | R275C | Deleterious | 0.01 | Probably | 1.000 | Effect | 59 | 75% |
rs1968350306 | G>A | R223C | Deleterious | 0.00 | Probably | 1.000 | Effect | 60 | 80% |
rs1968351370 | T>A | N209I | Deleterious | 0.05 | Probably | 0.988 | Effect | 51 | 75% |
rs1968351718 | T>C | T203A | Deleterious | 0.04 | Probably | 0.967 | Effect | 38 | 66% |
rs1968363098 | T>C | E181G | Deleterious | 0.03 | Probably | 1.000 | Effect | 70 | 85% |
rs1968364624 | C>A | G160V | Deleterious | 0.05 | Probably | 0.974 | Effect | 5 | 53% |
Accession No. | Substitution | Amino Acid Change | SNPs & Go | PhD-SNP | ||
---|---|---|---|---|---|---|
Prediction | R1 | Prediction | Score | |||
rs750657898 | A>G | L199P | Disease | 7 | Disease | 5 |
rs773564773 | A>C | W233G | Disease | 6 | Disease | 2 |
rs192441411 | A>C | L376R | Disease | 7 | Disease | 4 |
A>T | L376Q | Disease | 6 | Disease | 4 | |
rs368363386 | C>A | D351Y | Disease | 4 | Disease | 1 |
rs533014098 | A>G | L207P | Disease | 8 | Disease | 6 |
rs542643797 | G>A | P239L | Disease | 5 | Disease | 0 |
rs751506215 | G>A | R45W | Disease | 1 | Disease | 3 |
G>C | R45G | Disease | 0 | Disease | 1 | |
rs751621912 | A>G | L93P | Disease | 8 | Disease | 1 |
rs752527298 | T>A | D430V | Disease | 6 | Disease | 1 |
rs754199429 | G>A | R100C | Disease | 7 | Disease | 5 |
rs760437132 | A>C | L429R | Disease | 8 | Disease | 4 |
rs764303927 | C>G | C52S | Disease | 9 | Disease | 3 |
rs765009836 | C>T | E181K | Disease | 6 | Disease | 3 |
rs765615096 | C>T | R202H | Disease | 5 | Disease | 3 |
rs771507239 | C>A | D366Y | Disease | 8 | Disease | 4 |
rs776800957 | A>C | C52G | Disease | 9 | Disease | 5 |
rs779186064 | A>G | W64R | Disease | 9 | Disease | 1 |
rs781710022 | A>T | I178N | Disease | 6 | Disease | 3 |
rs940691487 | T>C | Y368C | Disease | 8 | Disease | 5 |
rs991881188 | C>G | R223P | Disease | 8 | Disease | 6 |
rs1184535377 | T>C | D372G | Disease | 4 | Disease | 2 |
rs1192368347 | A>T | L257H | Disease | 1 | Disease | 1 |
rs1193366124 | T>C | D461G | Disease | 2 | Disease | 1 |
rs1228428456 | G>A | R179C | Disease | 7 | Disease | 3 |
rs1233264153 | G>A | R215C | Disease | 8 | Disease | 5 |
rs1236502126 | A>T | L266Q | Disease | 5 | Disease | 3 |
rs1254633566 | C>A | V124F | Disease | 4 | Disease | 3 |
rs1312478601 | T>A | D351V | Disease | 2 | Disease | 1 |
rs1321784132 | C>T | G302S | Disease | 6 | Disease | 2 |
rs1329852497 | A>G | C107R | Disease | 9 | Disease | 4 |
rs1331043902 | C>T | C107Y | Disease | 7 | Disease | 4 |
rs1335771561 | A>G | C62R | Disease | 9 | Disease | 6 |
rs1368251390 | A>G | L455P | Disease | 7 | Disease | 3 |
rs1393553623 | A>C | Y216D | Disease | 8 | Disease | 3 |
rs1453095403 | G>A | R221C | Disease | 8 | Disease | 4 |
rs1471802731 | G>T | P484H | Disease | 3 | Disease | 0 |
rs1968305256 | T>C | Y489C | Disease | 5 | Disease | 2 |
rs1968305306 | A>T | Y489N | Disease | 5 | Disease | 0 |
rs1968306772 | C>T | G471E | Disease | 4 | Disease | 2 |
rs1968306993 | T>C | Y468C | Disease | 4 | Disease | 2 |
rs1968310587 | T>A | D398V | Disease | 4 | Disease | 2 |
rs1968315618 | A>G | C314R | Disease | 9 | Disease | 6 |
rs1968317423 | T>A | N303Y | Disease | 6 | Disease | 2 |
rs1968345368 | G>A | R275C | Disease | 6 | Disease | 4 |
rs1968350306 | G>A | R223C | Disease | 7 | Disease | 5 |
rs1968351370 | T>A | N209I | Disease | 6 | Disease | 3 |
rs1968364624 | C>A | G160V | Disease | 2 | Disease | 4 |
Accession No. | Substitution | Amino Acid Change | I mutant | MuPro | ||
---|---|---|---|---|---|---|
Prediction | R1 | Prediction | ΔΔG | |||
rs750657898 | A>G | L199P | Decrease | 5 | Decrease stability | −1.583 |
rs773564773 | A>C | W233G | Decrease | 9 | Decrease stability | −0.995 |
rs192441411 | A>C | L376R | Decrease | 2 | Decrease stability | −1.345 |
A>T | L376Q | Decrease | 7 | Decrease stability | −1.30 | |
rs533014098 | A>G | L207P | Decrease | 4 | Decrease stability | −1.57 |
rs542643797 | G>A | P239L | Decrease | 5 | Decrease stability | −0.04 |
G>C | P239R | Decrease | 6 | Decrease stability | −0.69 | |
rs751506215 | G>A | R45W | Decrease | 4 | Decrease stability | −1.20 |
G>C | R45G | Decrease | 8 | Decrease stability | −1.73 | |
rs751621912 | A>G | L93P | Decrease | 6 | Decrease stability | −2.22 |
rs752527298 | T>A | D430V | Decrease | 0 | Decrease stability | −0.20 |
rs754199429 | G>A | R100C | Decrease | 5 | Decrease stability | −0.47 |
rs760437132 | A>C | L429R | Decrease | 7 | Decrease stability | −1.75 |
rs764303927 | C>G | C52S | Decrease | 7 | Decrease stability | −1.92 |
rs765009836 | C>T | E181K | Decrease | 7 | Decrease stability | −1.35 |
rs765615096 | C>T | R202H | Decrease | 7 | Decrease stability | −0.89 |
rs776800957 | A>C | C52G | Decrease | 8 | Decrease stability | −2.16 |
rs779186064 | A>G | W64R | Decrease | 7 | Decrease stability | −0.60 |
rs781710022 | A>T | I178N | Decrease | 4 | Decrease stability | −1.56 |
rs940691487 | T>C | Y368C | Decrease | 1 | Decrease stability | −1.26 |
rs991881188 | C>A | R223L | Decrease | 3 | Decrease stability | −0.49 |
C>G | R223P | Decrease | 3 | Decrease stability | −1.62 | |
rs1184535377 | T>C | D372G | Decrease | 3 | Decrease stability | −1.80 |
rs1192368347 | A>T | L257H | Decrease | 3 | Decrease stability | −2.04 |
rs1193366124 | T>C | D461G | Decrease | 8 | Decrease stability | −1.27 |
rs1233264153 | G>A | R215C | Decrease | 5 | Decrease stability | −0.48 |
rs1236502126 | A>T | L266Q | Decrease | 4 | Decrease stability | −1.91 |
rs1254633566 | C>A | V124F | Decrease | 9 | Decrease stability | −0.75 |
rs1321784132 | C>T | G302S | Decrease | 5 | Decrease stability | −0.39 |
rs1329852497 | A>G | C107R | Decrease | 2 | Decrease stability | −0.97 |
rs1331043902 | C>T | C107Y | Decrease | 1 | Decrease stability | −0.76 |
rs1368251390 | A>G | L455P | Decrease | 1 | Decrease stability | −2.20 |
rs1393553623 | A>C | Y216D | Decrease | 3 | Decrease stability | −1.17 |
rs1453095403 | G>A | R221C | Decrease | 1 | Decrease stability | −0.01 |
rs1471802731 | G>T | P484H | Decrease | 8 | Decrease stability | −1.16 |
rs1968305256 | T>C | Y489C | Decrease | 0 | Decrease stability | −0.89 |
rs1968305306 | A>T | Y489N | Decrease | 8 | Decrease stability | −1.20 |
rs1968364624 | C>A | G160V | Decrease | 4 | Decrease stability | −0.60 |
Accession No. | Substitution | Amino Acid Change | MutPred | p Value | |
---|---|---|---|---|---|
Score | Molecular Mechanism with p-Values ≤ 0.05 | ||||
rs750657898 | A>G | L199P | 0.606 | Gain of strand | 0.02 |
Gain of ADP-ribosylation at R202 | 0.04 | ||||
Altered stability | 0.04 | ||||
rs533014098 | A>G | L207P | 0.864 | Gain of strand | 0.02 |
rs542643797 | G>A | P239L | 0.501 | Altered transmembrane protein | 0.04 |
G>C | P239R | 0.558 | Altered transmembrane protein | 0.02 | |
rs751621912 | A>G | L93P | 0.825 | Loss of disulfide linkage at C91 | 0.04 |
Gain of strand | 0.03 | ||||
Altered stability | 0.01 | ||||
rs764303927 | C>G | C52S | 0.929 | Altered ordered interface | 0.02 |
rs779186064 | A>G | W64R | 0.955 | Loss of strand | 0.03 |
Loss of disulfide linkage at C62 | 0.01 | ||||
rs781710022 | A>T | I178N | 0.639 | Loss of strand | 0.04 |
rs991881188 | C>G | R223P | 0.841 | Loss of strand | 0.04 |
rs1192368347 | A>T | L257H | 0.713 | Altered transmembrane protein | 0.03 |
rs1193366124 | T>C | D461G | 0.732 | Gain of O-linked glycosylation at S462 | 0.03 |
rs1321784132 | C>T | G302S | 0.672 | Loss of pyrrolidone carboxylic acid at Q305 | 0.05 |
Gain of loop | 0.04 | ||||
rs1329852497 | A>G | C107R | 0.902 | Loss of disulfide linkage at C107 | 0.01 |
Altered disordered interface | 0.04 | ||||
Altered transmembrane protein | 0.04 | ||||
rs1331043902 | C>T | C107Y | 0.870 | Loss of disulfide linkage at C107 | 0.01 |
Gain of loop | 0.04 | ||||
Altered transmembrane protein | 0.03 | ||||
rs1368251390 | A>G | L455P | 0.624 | Gain of intrinsic disorder | 0.02 |
Altered disordered interface | 0.04 | ||||
rs1393553623 | A>C | Y216D | Altered stability | 0.03 | |
rs1968305256 | T>C | Y489C | 0.522 | Loss of phosphorylation at Y485 | 0.02 |
Loss of sulfation at Y489 | 0.02 | ||||
rs1968305306 | A>T | Y489N | 0.696 | Loss of phosphorylation at Y485 | 0.03 |
Loss of sulfation at Y489 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, E.W.; Adam, K.M.; Elangeeb, M.E.; Ahmed, E.M.; Abuagla, H.A.; MohamedAhmed, A.A.E.; Edris, A.M.; Eltieb, E.I.; Osman, H.M.A.; Idris, E.S. Exploring the Structural and Functional Consequences of Deleterious Missense Nonsynonymous SNPs in the EPOR Gene: A Computational Approach. J. Pers. Med. 2024, 14, 1111. https://doi.org/10.3390/jpm14111111
Ali EW, Adam KM, Elangeeb ME, Ahmed EM, Abuagla HA, MohamedAhmed AAE, Edris AM, Eltieb EI, Osman HMA, Idris ES. Exploring the Structural and Functional Consequences of Deleterious Missense Nonsynonymous SNPs in the EPOR Gene: A Computational Approach. Journal of Personalized Medicine. 2024; 14(11):1111. https://doi.org/10.3390/jpm14111111
Chicago/Turabian StyleAli, Elshazali Widaa, Khalid Mohamed Adam, Mohamed E. Elangeeb, Elsadig Mohamed Ahmed, Hytham Ahmed Abuagla, Abubakr Ali Elamin MohamedAhmed, Ali M. Edris, Elmoiz Idris Eltieb, Hiba Mahgoub Ali Osman, and Ebtehal Saleh Idris. 2024. "Exploring the Structural and Functional Consequences of Deleterious Missense Nonsynonymous SNPs in the EPOR Gene: A Computational Approach" Journal of Personalized Medicine 14, no. 11: 1111. https://doi.org/10.3390/jpm14111111
APA StyleAli, E. W., Adam, K. M., Elangeeb, M. E., Ahmed, E. M., Abuagla, H. A., MohamedAhmed, A. A. E., Edris, A. M., Eltieb, E. I., Osman, H. M. A., & Idris, E. S. (2024). Exploring the Structural and Functional Consequences of Deleterious Missense Nonsynonymous SNPs in the EPOR Gene: A Computational Approach. Journal of Personalized Medicine, 14(11), 1111. https://doi.org/10.3390/jpm14111111