Exploring Biomarkers for Excess Extracellular Fluid in the Context of Physical Function in Chronic Kidney Disease Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinical Variables
2.3. Body Composition Measurement
2.4. Grip Strength and Physical Performance
2.5. Laboratory Measurements
2.6. Statistical Analysis
3. Results
Clinical and Laboratory Characteristics of Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loutradis, C.; Sarafidis, P.A.; Ferro, C.J.; Zoccali, C. Volume overload in hemodialysis: Diagnosis, cardiovascular consequences, and management. Nephrol. Dial. Transplant. 2021, 36, 2182–2193. [Google Scholar] [CrossRef] [PubMed]
- Baki, A.H.; Kamel, C.R.; Mansour, H. Are there any further modalities for prediction of subclinical volume overload in advanced stages of chronic kidney disease? Kidney Res. Clin. Pract. 2021, 40, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.C.; Chiu, Y.W.; Tsai, J.C.; Kuo, H.T.; Hung, C.C.; Hwang, S.J.; Chen, T.H.; Kuo, M.C.; Chen, H.C. Association of fluid overload with cardiovascular morbidity and all-cause mortality in stages 4 and 5 CKD. Clin. J. Am. Soc. Nephrol. 2015, 10, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Perez-Morales, R.; Donate-Correa, J.; Martin-Nunez, E.; Perez-Delgado, N.; Ferri, C.; Lopez-Montes, A.; Jimenez-Sosa, A.; Navarro-Gonzalez, J.F. Extracellular water/total body water ratio as predictor of mortality in hemodialysis patients. Ren. Fail. 2021, 43, 821–829. [Google Scholar] [CrossRef]
- Davies, S.J.; Davenport, A. The role of bioimpedance and biomarkers in helping to aid clinical decision-making of volume assessments in dialysis patients. Kidney Int. 2014, 86, 489–496. [Google Scholar] [CrossRef]
- Schotman, J.; Rolleman, N.; van Borren, M.; Wetzels, J.; Kloke, H.; Reichert, L.; de Boer, H. Accuracy of Bioimpedance Spectroscopy in the Detection of Hydration Changes in Patients on Hemodialysis. J. Ren. Nutr. 2023, 33, 193–200. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Manuel Gomez, J.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis-part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Broers, N.J.H.; Canaud, B.; Dekker, M.J.E.; van der Sande, F.M.; Stuard, S.; Wabel, P.; Kooman, J.P. Three compartment bioimpedance spectroscopy in the nutritional assessment and the outcome of patients with advanced or end stage kidney disease: What have we learned so far? Hemodial. Int. 2020, 24, 148–161. [Google Scholar] [CrossRef]
- Hanna, R.M.; Ghobry, L.; Wassef, O.; Rhee, C.M.; Kalantar-Zadeh, K. A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease. Blood Purif. 2020, 49, 202–211. [Google Scholar] [CrossRef]
- Ekramzadeh, M.; Santoro, D.; Kopple, J.D. The Effect of Nutrition and Exercise on Body Composition, Exercise Capacity, and Physical Functioning in Advanced CKD Patients. Nutrients 2022, 14, 2129. [Google Scholar] [CrossRef]
- Hsiao, S.M.; Tsai, Y.C.; Chen, H.M.; Lin, M.Y.; Chiu, Y.W.; Chen, T.H.; Wang, S.L.; Hsiao, P.N.; Kung, L.F.; Hwang, S.J.; et al. Association of Fluid Status and Body Composition with Physical Function in Patients with Chronic Kidney Disease. PLoS ONE 2016, 11, e0165400. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Brobst, D.; Chan, W.S.; Tse, M.C.L.; Herlea-Pana, O.; Ahuja, P.; Bi, X.; Zaw, A.M.; Kwong, Z.S.W.; Jia, W.H.; et al. Muscle-generated BDNF is a sexually dimorphic myokine that controls metabolic flexibility. Sci. Signal. 2019, 12. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.; Muhammad, T.; Qaisar, R. Prediction of Sarcopenia Using Multiple Biomarkers of Neuromuscular Junction Degeneration in Chronic Obstructive Pulmonary Disease. J. Pers. Med. 2021, 11, 919. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, S.; Iino, N.; Koda, R.; Narita, I.; Kaneko, Y. Brain-derived neurotrophic factor is associated with sarcopenia and frailty in Japanese hemodialysis patients. Geriatr. Gerontol. Int. 2021, 21, 27–33. [Google Scholar] [CrossRef]
- National Kidney, F. K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am J Kidney Dis 2002, 39, S1–S266. [Google Scholar]
- Ohara, K.; Masuda, T.; Morinari, M.; Okada, M.; Miki, A.; Nakagawa, S.; Murakami, T.; Oka, K.; Asakura, M.; Miyazawa, Y.; et al. The extracellular volume status predicts body fluid response to SGLT2 inhibitor dapagliflozin in diabetic kidney disease. Diabetol. Metab. Syndr. 2020, 12, 37. [Google Scholar] [CrossRef]
- Nishikawa, H.; Yoh, K.; Enomoto, H.; Ishii, N.; Iwata, Y.; Nakano, C.; Takata, R.; Nishimura, T.; Aizawa, N.; Sakai, Y.; et al. Extracellular Water to Total Body Water Ratio in Viral Liver Diseases: A Study Using Bioimpedance Analysis. Nutrients 2018, 10, 1072. [Google Scholar] [CrossRef]
- Chen, L.K.; Liu, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Bahyah, K.S.; Chou, M.Y.; Chen, L.Y.; Hsu, P.S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Cleary, M.A.; Sitler, M.R.; Kendrick, Z.V. Dehydration and symptoms of delayed-onset muscle soreness in normothermic men. J. Athl. Train. 2006, 41, 36–45. [Google Scholar]
- Serra-Prat, M.; Lorenzo, I.; Palomera, E.; Ramirez, S.; Yebenes, J.C. Total Body Water and Intracellular Water Relationships with Muscle Strength, Frailty and Functional Performance in an Elderly Population. J. Nutr. Health Aging 2019, 23, 96–101. [Google Scholar] [CrossRef]
- Yoshida, T.; Yamada, Y.; Tanaka, F.; Yamagishi, T.; Shibata, S.; Kawakami, Y. Intracellular-to-total water ratio explains the variability of muscle strength dependence on the size of the lower leg in the elderly. Exp. Gerontol. 2018, 113, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Serra-Prat, M.; Lorenzo, I.; Palomera, E.; Yebenes, J.C.; Campins, L.; Cabre, M. Intracellular Water Content in Lean Mass is Associated with Muscle Strength, Functional Capacity, and Frailty in Community-Dwelling Elderly Individuals. A Cross-Sectional Study. Nutrients 2019, 11, 661. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Yoshida, T.; Yokoyama, K.; Watanabe, Y.; Miyake, M.; Yamagata, E.; Yamada, M.; Kimura, M.; Kyoto-Kameoka, S. The Extracellular to Intracellular Water Ratio in Upper Legs is Negatively Associated With Skeletal Muscle Strength and Gait Speed in Older People. J. Gerontol. 2017, 72, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Sukackiene, D.; Laucyte-Cibulskiene, A.; Vickiene, A.; Rimsevicius, L.; Miglinas, M. Risk stratification for patients awaiting kidney transplantation: Role of bioimpedance derived edema index and nutrition status. Clin. Nutr. 2020, 39, 2759–2763. [Google Scholar] [CrossRef] [PubMed]
- Malczyk, E.; Dziegielewska-Gesiak, S.; Fatyga, E.; Ziolko, E.; Kokot, T.; Muc-Wierzgon, M. Body composition in healthy older persons: Role of the ratio of extracellular/total body water. J. Biol. Regul. Homeost. Agents 2016, 30, 767–772. [Google Scholar]
- Ge, Y.Z.; Ruan, G.T.; Zhang, Q.; Dong, W.J.; Zhang, X.; Song, M.M.; Zhang, X.W.; Li, X.R.; Zhang, K.P.; Tang, M.; et al. Extracellular water to total body water ratio predicts survival in cancer patients with sarcopenia: A multi-center cohort study. Nutr. Metab. 2022, 19, 34. [Google Scholar] [CrossRef]
- Umehara, T.; Kaneguchi, A.; Kawakami, W.; Katayama, N.; Kito, N. Association of muscle mass and quality with hand grip strength in elderly patients with heart failure. Heart Vessel. 2022, 37, 1380–1386. [Google Scholar] [CrossRef]
- Yamada, Y.; Ikenaga, M.; Takeda, N.; Morimura, K.; Miyoshi, N.; Kiyonaga, A.; Kimura, M.; Higaki, Y.; Tanaka, H.; Nakagawa, S. Estimation of thigh muscle cross-sectional area by single- and multifrequency segmental bioelectrical impedance analysis in the elderly. J. Appl. Physiol. 2014, 116, 176–182. [Google Scholar] [CrossRef]
- Kim, J.C.; Do, J.Y.; Kang, S.H. Clinical Significance of Volume Status in Body Composition and Physical Performance Measurements in Hemodialysis Patients. Front. Nutr. 2022, 9, 754329. [Google Scholar] [CrossRef]
- Takase, R.; Nakata, T.; Aoki, K.; Okamoto, M.; Fukuda, A.; Fukunaga, N.; Goto, K.; Masaki, T.; Shibata, H. The Relationship Between Edema and Body Functions in Patients With Chronic Kidney Disease: A Preliminary Study. Cureus 2022, 14, e27118. [Google Scholar] [CrossRef]
- Seto, Y.; Kimura, M.; Tomohito, M.; Miyasita, E.; Kanno, Y. Long-term body composition changes in patients undergoing hemodialysis: A single-center retrospective study. Ren. Replace. Ther. 2022, 8, 57–65. [Google Scholar] [CrossRef]
- Hioka, A.; Akazawa, N.; Okawa, N.; Nagahiro, S. Increased total body extracellular-to-intracellular water ratio in community-dwelling elderly women is associated with decreased handgrip strength and gait speed. Nutrition 2021, 86, 111175. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Lee, G.Y.; Seo, Y.M.; Seo, S.H.; Yoo, J.I. The relationship between extracellular water-to-body water ratio and sarcopenia according to the newly revised Asian Working Group for Sarcopenia: 2019 Consensus Update. Aging Clin. Exp. Res. 2021, 33, 2471–2477. [Google Scholar] [CrossRef] [PubMed]
- Malbrain, M.L.; Huygh, J.; Dabrowski, W.; de Waele, J.J.; Staelens, A.; Wauters, J. The use of bio-electrical impedance analysis (BIA) to guide fluid management, resuscitation and deresuscitation in critically ill patients: A bench-to-bedside review. Anaesthesiol. Intensive Ther. 2014, 46, 381–391. [Google Scholar] [CrossRef]
- Casati, M.; Costa, A.S.; Capitanio, D.; Ponzoni, L.; Ferri, E.; Agostini, S.; Lori, E. The Biological Foundations of Sarcopenia: Established and Promising Markers. Front. Med. 2019, 6, 184. [Google Scholar] [CrossRef]
- Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front. Cell. Neurosci. 2019, 13, 363. [Google Scholar] [CrossRef]
- Donovan, M.J.; Lin, M.I.; Wiegn, P.; Ringstedt, T.; Kraemer, R.; Hahn, R.; Wang, S.; Ibanez, C.F.; Rafii, S.; Hempstead, B.L. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 2000, 127, 4531–4540. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Tian, C.J.; Li, N.; Chen, Z.C.; Guo, Y.L.; Cheng, D.J.; Tang, X.Y.; Zhang, X.Y. Brain-derived neurotrophic factor promotes airway smooth muscle cell proliferation in asthma through regulation of transient receptor potential channel-mediated autophagy. Mol. Immunol. 2023, 158, 22–34. [Google Scholar] [CrossRef]
- Bahls, M.; Konemann, S.; Markus, M.R.P.; Wenzel, K.; Friedrich, N.; Nauck, M.; Volzke, H.; Steveling, A.; Janowitz, D.; Grabe, H.J.; et al. Brain-derived neurotrophic factor is related with adverse cardiac remodeling and high NTproBNP. Sci. Rep. 2019, 9, 15421. [Google Scholar] [CrossRef]
- Chacón-Fernández, P.; Säuberli, K.; Colzani, M.; Moreau, T.; Ghevaert, C.; Barde, Y.-A. Brain-derived neurotrophic factor in megakaryocytes. J. Biol. Chem. 2016, 29, 9872–9881. [Google Scholar] [CrossRef]
- Kaess, B.M.; Pries, S.R.; Lieb, W.; Beiser, A.S.; Yang, Q.; Chen, T.C.; Hengstenberg, C.; Erdmann, J.; Schunkert, H.; Seshadri, S.; et al. Circulating brain-derived neurotrophic factor concentrations and the risk of cardiovascular disease in the community. J. Am. Heart Assoc. 2015, 4, e001544. [Google Scholar] [CrossRef]
Low ECW/TBW (n = 136) | High ECW/TBW (n = 15) | p Value | |
---|---|---|---|
Age (year) | 63.9 ± 13.3 | 71.0 ± 9.4 | 0.027 |
Male (n,%) | 91 (66.9) | 11 (73.3) | 0.614 |
Hypertension (n,%) | 105 (77.2) | 12 (80.0) | 0.551 |
Diabetes mellitus (n,%) | 58 (42.6) | 8 (53.3) | 0.428 |
Previous history of CVD (n,%) | 20 (14.7) | 3 (20.0) | 0.588 |
SBP (mmHg) | 132.1 ± 14.6 | 134.3 ± 17.0 | 0.594 |
Hemoblobin (g/dL) | 12.69 ± 3.58 | 11.76 ± 1.31 | 0.321 |
Creatinine (mg/dL) | 2.10 ± 1.63 | 2.78 ± 1.68 | 0.127 |
eGFR (mL/min/1.73 m2) | 43.96 ± 22.30 | 37.25 ± 23.30 | 0.560 |
iPTH (pg/dL) | 50.0 (33.13–88.03) | 69.35 (34.93–133.05) | 0.377 |
Calcium (mg/dL) | 9.03 ± 0.60 | 8.88 ± 0.44 | 0.353 |
Phosphorus (mg/dL) | 3.56 ± 0.63 | 3.36 ± 0.53 | 0.253 |
Albumin (mg/dL) | 4.52 ± 3.46 | 4.24 ± 0.40 | 0.758 |
LDL-cholesterol (mg/dL) | 86.0 ± 36.9 | 84.8 ± 46.6 | 0.909 |
hs-CRP (mg/dL) | 0.07 (0.03–0.15) | 0.05 (0.03–0.12) | 0.508 |
BMI (kg/m2) | 24.30 (21.85–27.60) | 25.65 (23.08–26.15) | 0.457 |
ALM | 23.93 ± 6.06 | 23.80 ± 7.47 | 0.939 |
ALM/Wt (%) | 36.13 ± 6.09 | 35.89 ± 6.01 | 0.884 |
ALM/BMI (m2) | 0.97 ± 0.24 | 1.01 ± 0.30 | 0.529 |
Hand grip (kg) | 21.9 ± 8.7 | 19.0 ± 10.1 | 0.233 |
Walking speed (m/s) | 1.05 ± 0.29 | 0.86 ± 0.52 | 0.192 |
BDNF (pg/mL) | 1670.70 (820.29–3328.72) | 1148.99 (610.36–1740.20) | 0.052 |
Myostatin (pg/mL) | 1449.96 (484.89–2207.14) | 1450.89 (200.29–1784.63) | 0.313 |
Osteocalcin (pg/mL) | 669.93 ± 307.70 | 602.38 ± 291.20 | 0.419 |
MMP-9 (pg/mL) | 68,218.61 ± 51,458.50 | 45,981.41 ± 22,705.84 | 0.101 |
Low BDNF (n = 76) | High BDNF (n = 75) | p Value | |
---|---|---|---|
Age (year) | 67.70 ± 11.56 | 61.76 ± 14.07 | 0.005 |
Male (n,%) | 11 (15.1) | 12 (16.0) | 0.794 |
Hemoblobin (g/dL) | 12.81 ± 4.39 | 12.38 ± 2.04 | 0.446 |
Creatinine (mg/dL) | 2.30 ± 1.94 | 2.03 ± 1.26 | 0.315 |
eGFR (mL/min/1.73 m2) | 38.73 ± 20.46 | 48.26 ± 23.10 | 0.058 |
iPTH (pg/dL) | 55.12 (25.83–88.59) | 47.10 (31.00–112.2) | 0.272 |
Calcium (mg/dL) | 8.99 ± 0.53 | 9.05 ± 0.64 | 0.506 |
Phosphorus (mg/dL) | 3.54 ± 0.69 | 3.54 ± 0.57 | 0.929 |
Albumin (mg/dL) | 4.77 ± 4.65 | 4.23 ± 0.51 | 0.327 |
hs-CRP (mg/dL) | 0.05 (0.03–0.17) | 0.08 (0.03–0.12) | 0.909 |
BMI (kg/m2) | 24.25 (22.00–28.10) | 24.60 (21.90–26.60) | 0.558 |
ALM/Wt (%) | 36.28 ± 5.97 | 35.93 ± 6.19 | 0.731 |
ALM/BMI (m2) | 0.97 ± 0.24 | 0.98 ± 0.26 | 0.692 |
FFM (kg) | 55.00 (49.28–64.35) | 55.30 (45.30–62.60) | 0.844 |
ICW | 24.80 (22.30–29.23) | 24.10 (20.10–27.90) | 24.10 (20.10–27.90) |
ECW | 15.95 (13.95–18.13) | 15.30 (12.80–17.70) | 0.924 |
ECW/TBW | 0.386 ± 0.012 | 0.382 ± 0.012 | 0.048 |
Hand grip (kg) | 20.7 ± 9.4 | 22.6 ± 8.3 | 0.182 |
Walking speed (m/s) | 0.99 ± 0.36 | 1.07 ± 0.27 | 0.147 |
Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|
β (95% CI) | p Value | β (95% CI) | p Value | |
Albumin (mg/dL) | −0.025 (−1.83 × 102, 1.35 × 102) | 0.766 | −0.046 (−2.05 × 102, 1.18 × 102) | 0.596 |
Creatinine (mg/dL) | −0.134 (−5.49 × 102, 0.48 × 102) | 0.100 | −0.106 (−5.19 × 102, 1.27 × 102) | 0.231 |
BMI (kg/m2) | −0.040 (−0.16 × 102, 0.09 × 102) | 0.624 | −0.086 (−0.23 × 102, 9.505) | 0.410 |
ALM/BMI (m2) | 0.052 (−1.34 × 103, 2.62 × 103) | 0.526 | −0.059 (−3.83 × 103, 2.37 × 103) | 0.643 |
Hand grip (kg) | 0.104 (−0.20 × 102, 0.93 × 102) | 0.207 | 0.032 (−0.72 × 102, 0.95 × 102) | 0.791 |
Walking speed (m/s) | 0.061 (−9.96 × 102, 2.19 × 103) | 0.460 | −0.028 (−2.02 × 103, 1.47 × 103) | 0.757 |
ECW/TBW | −0.238 (−9.93 × 104, −2.04 × 104) | 0.003 | −0.222 (−1.07 × 105, −8.61 × 103) | 0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.M.; Baek, J.; Lee, S.-Y.; Lee, Y.H.; Jung, S.H.; Jeong, H.Y. Exploring Biomarkers for Excess Extracellular Fluid in the Context of Physical Function in Chronic Kidney Disease Patients. J. Pers. Med. 2024, 14, 1124. https://doi.org/10.3390/jpm14121124
Lee HM, Baek J, Lee S-Y, Lee YH, Jung SH, Jeong HY. Exploring Biomarkers for Excess Extracellular Fluid in the Context of Physical Function in Chronic Kidney Disease Patients. Journal of Personalized Medicine. 2024; 14(12):1124. https://doi.org/10.3390/jpm14121124
Chicago/Turabian StyleLee, Hyae Min, Jihyun Baek, So-Young Lee, Yu Ho Lee, Sang Hyun Jung, and Hye Yun Jeong. 2024. "Exploring Biomarkers for Excess Extracellular Fluid in the Context of Physical Function in Chronic Kidney Disease Patients" Journal of Personalized Medicine 14, no. 12: 1124. https://doi.org/10.3390/jpm14121124
APA StyleLee, H. M., Baek, J., Lee, S.-Y., Lee, Y. H., Jung, S. H., & Jeong, H. Y. (2024). Exploring Biomarkers for Excess Extracellular Fluid in the Context of Physical Function in Chronic Kidney Disease Patients. Journal of Personalized Medicine, 14(12), 1124. https://doi.org/10.3390/jpm14121124