Spinopelvic Motion Evaluation in Patients Undergoing Total Hip Arthroplasty and Patient-Specific Target for Acetabular Cup Placement
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galvain, T.; Mantel, J.; Kakade, O.; Board, T.N. Treatment patterns and clinical and economic burden of hip dislocation following primary total hip arthroplasty in England. Bone Jt. J. 2022, 104, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Rowan, F.E.; Benjamin, B.; Pietrak, J.R.; Haddad, F.S. Prevention of dislocation after total hip arthroplasty. J. Arthroplast. 2018, 33, 1316–1324. [Google Scholar] [CrossRef] [PubMed]
- Eftekhary, N.; Shimmin, A.; Lazennec, J.Y.; Buckland, A.; Schwarzkopf, R.; Dorr, L.D.; Mayman, D.; Padgett, D.; Vigdorchik, J. A systematic approach to the hip-spine relationship and its applications to total hip arthroplasty. Bone Jt. J. 2019, 101, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Lazennec, J.Y.; Brusson, A.; Rousseau, M.A. Hip-spine relations and sagittal balance clinical consequences. Eur. Spine J. 2011, 20 (Suppl. 5), 686–698. [Google Scholar] [CrossRef] [PubMed]
- Kanawade, V.; Dorr, L.D.; Wan, Z. Predictability of acetabular component angular change with postural shift from standing to sitting position. J. Bone Jt. Surg. Am. 2014, 96, 978–986. [Google Scholar] [CrossRef]
- Di Martino, A.; Geraci, G.; Brunello, M.; D’Agostino, C.; Davico, G.; Curreli, C.; Traina, F.; Faldini, C. Hip-spine relationship: Clinical evidence and biomechanical issues. Arch. Orthop. Trauma. Surg. 2024, 144, 1821–1833. [Google Scholar] [CrossRef] [PubMed]
- Lewinnek, G.E.; Lewis, J.L.; Tarr, R.; Compere, C.L.; Zimmerman, J.R. Dislocations after total hip-replacement arthroplasties. J. Bone Jt. Surg. Am. 1978, 60, 217–220. [Google Scholar] [CrossRef]
- Grammatopoulos, G.; Falsetto, A.; Sanders, E.; Weishorn, J.; Gill, H.S.; Beaulé, P.E.; Innmann, M.M.; Merle, C. Integrating the Combined Sagittal Index reduces the risk of dislocation following total hip replacement. J. Bone Jt. Surg. Am. 2022, 104, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Vigdorchik, J.M.; Sharma, A.K.; Buckland, A.J.; Elbuluk, A.M.; Eftekhary, N.; Mayman, D.J.; Carroll, K.M.; Jerabek, S.A. 2021 Otto Aufranc Award: A simple Hip-Spine Classification for total hip arthroplasty: Validation and a large multicentre series. Bone Jt. J. 2021, 103 (Supple. B), 17–24. [Google Scholar] [CrossRef] [PubMed]
- Wiznia, D.H.; Buchalter, D.B.; Kirby, D.J.; Buckland, A.J.; Long, W.J.; Schwarzkopf, R. Applying the hip-spine relationship in total hip arthroplasty. Hip Int. 2021, 31, 144–153. [Google Scholar] [CrossRef]
- Hartofilakidis, G.; Stamos, K.; Ioannidis, T.T. Low friction arthroplasty for old untreated congenital dislocation of the hip. J. Bone Jt. Surg. Br. 1988, 70, 182–186. [Google Scholar] [CrossRef]
- Legaye, J.; Duval-Beaupère, G.; Hecquet, J.; Marty, C. Pelvic incidence: A fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur. Spine J. 1998, 7, 99–103. [Google Scholar] [CrossRef]
- Grammatopoulos, G.; Thomas, G.E.; Pandit, H.; Beard, D.J.; Gill, H.S.; Murray, D.W. The effect of orientation of the acetabular component on outcome following total hip arthroplasty with small diameter hard-on-soft bearings. Bone Jt. J. 2015, 97, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Babisch, J.W.; Layher, F.; Amiot, L.P. The rationale for tilt-adjusted acetabular cup navigation. J. Bone Jt. Surg. Am. 2008, 90, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Lembeck, B.; Mueller, O.; Reize, P.; Wuelker, N. Pelvic tilt makes acetabular cup navigation inaccurate. Acta Orthop. 2005, 76, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Lazennec, J.Y.; Rousseau, M.A.; Rangel, A.; Gorin, M.; Belicourt, C.; Brusson, A.; Catonné, Y. Pelvis and total hip arthroplasty acetabular component orientations in sitting and standing positions: Measurements reproductibility with EOS imaging system versus conventional radiographies. Orthop. Traumatol. Surg. Res. 2011, 97, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Anwar, A.; Zhang, Y.; Zhang, Z.; Li, J. Artificial intelligence technology improves the ac-curacy of preoperative planning in primary total hip arthroplasty. Asian J. Surg. 2024, 47, 2999–3006. [Google Scholar] [CrossRef]
- Pernaa, K.; Seppänen, M.; Mäkelä, K.; Saltychev, M. Reliability of sagittal spinopelvic alignment measurements after total hip arthroplasty. Clin. Spine Surg. 2017, 30, E909–E914. [Google Scholar] [CrossRef]
- McIntosh, E.I.; Sarpong, N.O.; Steele, J.R.; Davis, E.; Muir, J.M.; Canoles, H.G.; Vigdorchik, J.M. The Hip-spine assessment of a novel surgical planning software provides acetabular component targets that are reliable and in agreement with current clinical recommendations. Arthroplast. Today 2024, 25, 101288. [Google Scholar] [CrossRef]
- Kleeman-Forsthuber, L.T.; Elkins, J.M.; Miner, T.M.; Yang, C.C.; Jennings, J.M.; Dennis, D.A. Reliability of spinopelvic measurements that may influence the cup position in total hip arthroplasty. J. Arthroplast. 2020, 35, 3758–3764. [Google Scholar] [CrossRef]
- Chung, N.S.; Jeon, C.H.; Lee, H.D.; Won, S.H. Measurement of spinopelvic parameters on standing lateral lumbar radiographs: Validity and reliability. Clin. Spine Surg. 2017, 30, E119–E123. [Google Scholar] [CrossRef]
- Vila-Casademunt, A.; Pellisé, F.; Acaroglu, E.; Pérez-Grueso, F.J.; Martín-Buitrago, M.P.; Sanli, T.; Yakici, S.; de Frutos, A.G.; Matamalas, A.; Sánchez-Márquez, J.M.; et al. The reliability of sagittal pelvic parameters: The effect of lumbosacral instrumentation and measurement experience. Spine 2015, 40, E253–E258. [Google Scholar] [CrossRef]
- Nishihara, S.; Sugano, N.; Nishii, T.; Ohzono, K.; Yoshikawa, H. Measurements of pelvic flexion angle using three-dimensional computed tomography. Clin. Orthop. Relat. Res. 2003, 411, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.J.; Bendich, I.; Ha, A.S.; Keeney, B.J.; Moschetti, W.E.; Tomek, I.M. A comparison of radiographic outcomes after total hip arthroplasty between the posterior approach and direct anterior approach with intraoperative fluoroscopy. J. Arthroplast. 2017, 32, 616–623. [Google Scholar] [CrossRef]
- Suhardi, V.J.; Chiu, Y.F.; Sculco, P.K.; Gonzalez Della Valle, A. Accuracy of acetabular cup placement positively correlates with level of training. Int. Orthop. 2021, 45, 2797–2804. [Google Scholar] [CrossRef] [PubMed]
- Kunze, K.N.; Huddleston, H.P.; Romero, J.; Chiu, Y.F.; Jerabek, S.A.; McLawhorn, A.S. Accuracy and precision of acetabular component position does not differ between the anterior and posterior approaches to total hip arthroplasty with robotic assistance: A matched-pair analysis. Arthroplast. Today 2022, 18, 68–75. [Google Scholar] [CrossRef]
- Foissey, C.; Batailler, C.; Coulomb, R.; Giebaly, D.E.; Coulin, B.; Lustig, S.; Kouyoumdjian, P. Image-based robotic-assisted total hip arthroplasty through direct anterior approach allows a better orientation of the acetabular cup and a better restitution of the centre of rotation than a conventional procedure. Int. Orthop. 2023, 47, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Bodner, R.J. The functional mechanics of the acetabular component in total hip arthroplasty. J. Arthroplast. 2022, 37, 2199–2207.e1. [Google Scholar] [CrossRef]
- Heckmann, N.; McKnight, B.; Stefl, M.; Trasolini, N.A.; Ike, H.; Dorr, L.D. Late dislocation following total hip arthroplasty: Spinopelvic imbalance as a causative factor. J. Bone Jt. Surg. Am. 2018, 100, 1845–1853. [Google Scholar] [CrossRef]
- Sharma, A.K.; Cizmic, Z.; Dennis, D.A.; Kreuzer, S.W.; Miranda, M.A.; Vigdorchik, J.M. Low dislocation rates with the use of patient specific “Safe zones” in total hip arthroplasty. J. Orthop. 2021, 27, 41–48. [Google Scholar] [CrossRef] [PubMed]
Mean | SD | |
---|---|---|
PI | 51.0 | 13.1 |
SS | 35.0 | 10.3 |
PT | 16.0 | 13.3 |
APPtstand | −3.4 | 12.0 |
APPtsit | −30.7 | 15.3 |
ΔAPPt (APPtstand − APPtsit) | 27.3 | 13.4 |
LL | 39.5 | 11.3 |
PI | SS | PT | APPtstand | APPtsit | LL | |
---|---|---|---|---|---|---|
Rater 1 (consultant) (ICC value) | 0.91 | 0.83 | 0.98 | 0.99 | 0.82 | 0.94 |
Rater 1 (consultant) 95% CI | 0.82–0.96 | 0.67–0.92 | 0.95–0.99 | 0.97–0.99 | 0.63–0.92 | 0.89–0.97 |
Rater 2 (resident) (ICC value) | 0.96 | 0.95 | 0.98 | 0.82 | 0.93 | 0.91 |
Rater 2 (resident) 95% CI | 0.93–0.98 | 0.90–0.97 | 0.95–0.99 | 0.65–0.92 | 0.85–0.97 | 0.80–0.92 |
PI | SS | PT | APPtstand | APPtsit | LL | |
---|---|---|---|---|---|---|
ICC value | 0.91 | 0.83 | 0.98 | 0.99 | 0.82 | 0.94 |
95% CI | 0.82–0.96 | 0.67–0.92 | 0.95–0.99 | 0.97–0.99 | 0.63–0.92 | 0.89–0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koutalos, A.A.; Gkekas, N.K.; Akrivos, V.; Stefanou, N.; Karachalios, T. Spinopelvic Motion Evaluation in Patients Undergoing Total Hip Arthroplasty and Patient-Specific Target for Acetabular Cup Placement. J. Pers. Med. 2024, 14, 1161. https://doi.org/10.3390/jpm14121161
Koutalos AA, Gkekas NK, Akrivos V, Stefanou N, Karachalios T. Spinopelvic Motion Evaluation in Patients Undergoing Total Hip Arthroplasty and Patient-Specific Target for Acetabular Cup Placement. Journal of Personalized Medicine. 2024; 14(12):1161. https://doi.org/10.3390/jpm14121161
Chicago/Turabian StyleKoutalos, Antonios A., Nifon K. Gkekas, Vasileios Akrivos, Nikolaos Stefanou, and Theofilos Karachalios. 2024. "Spinopelvic Motion Evaluation in Patients Undergoing Total Hip Arthroplasty and Patient-Specific Target for Acetabular Cup Placement" Journal of Personalized Medicine 14, no. 12: 1161. https://doi.org/10.3390/jpm14121161
APA StyleKoutalos, A. A., Gkekas, N. K., Akrivos, V., Stefanou, N., & Karachalios, T. (2024). Spinopelvic Motion Evaluation in Patients Undergoing Total Hip Arthroplasty and Patient-Specific Target for Acetabular Cup Placement. Journal of Personalized Medicine, 14(12), 1161. https://doi.org/10.3390/jpm14121161