Exploring the Role of Free Tissue Transfers in the Preservation of Bone Length and Knee Joint Function after Lower Limb Trauma: A Retrospective Analysis
Abstract
:1. Introduction
2. Patients and Methods
2.1. Inclusion Criteria
2.2. Injury Assessment and Diagnostic Imaging Modality
2.3. Clinical Data Analysis
2.4. Multi-Disciplinary Approach to Patient Care
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Clinical Implications
4.2. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghali, S.; Harris, P.A.; Khan, U.; Pearse, M.; Nanchahal, J. Leg Length Preservation with Pedicled Fillet of Foot Flaps after Traumatic Amputations. Plast. Reconstr. Surg. 2005, 115, 498. [Google Scholar] [CrossRef]
- Kasabian, A.K.; Colen, S.R.; Shaw, W.W.; Pachter, H.L. The role of microvascular free flaps in salvaging below-knee amputation stumps: A review of 22 cases. J. Trauma. 1991, 31, 495–500. [Google Scholar] [CrossRef]
- Küntscher, M.V.; Erdmann, D.; Homann, H.H.; Steinau, H.-U.M.; Levin, S.L.M.; Germann, G.M. The concept of fillet flaps: Classification, indications, and analysis of their clinical value. Plast. Reconstr. Surg. 2001, 15, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Penn-Barwell, J.G. Outcomes in lower limb amputation following trauma: A systematic review and meta-analysis. Injury 2011, 42, 1474–1479. [Google Scholar] [CrossRef]
- Ladlow, P.; Phillip, R.; Coppack, R.; Etherington, J.; Bilzon, J.; McGuigan, M.P.; Bennett, A.N. Influence of Immediate Delayed Lower-Limb Amputation Compared with Lower-Limb Salvage on Functional Mental Health Outcomes Post-Rehabilitation in the, U.K. Military. J. Bone Jt. Surg. Am. 2016, 98, 1996–2005. [Google Scholar] [CrossRef] [PubMed]
- Gallico, G.G.; Ehrlichman, R.J.; Jupiter, J.; May, J.W., Jr. Free flaps to preserve below knee amputation stumps: Long term evaluation. Plast. Reconstr. Surg. 1987, 79, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Kasabian, A.K.; Glat, P.M.; Eidelman, Y.; Colen, S.; Longaker, M.T.; Attinger, C.; Shaw, W. Salvage of traumatic below-knee amputation stumps utilizing the filet of foot free flap: Critical evaluation of six cases. Plast. Reconstr. Surg. 1995, 96, 1145–1153. [Google Scholar] [CrossRef]
- Tukiainen, E.J.; Saray, A.; Kuokkanen, H.O.; Asko-Seljavaara, S.L. Salvage of major amputation stumps of the lower extremity with latissimus dorsi free flaps. Scand. J. Plast. Reconstr. Surg. Hand Surg. 2002, 36, 85–90. [Google Scholar] [CrossRef]
- Lu, S.; Wang, C.; Zhong, W.; Chen, P.; Chai, Y. Amputation Stump Revision Using a Free Sural Neurocutaneous Perforator Flap. Ann. Plast. Surg. 2016, 76, 83–87. [Google Scholar] [CrossRef]
- Kim, S.W.; Jeon, S.B.; Hwang, K.T.; Kim, Y.H. Coverage of Amputation Stumps Using a Latissimus Dorsi Flap with a Serratus Anterior Muscle Flap: A Comparative Study. Ann. Plast. Surg. 2016, 76, 88–93. [Google Scholar] [CrossRef]
- Tos, P.; Antonini, A.; Pugliese, P.; Panero, B.; Ciclamini, D.; Battiston, B. Below Knee Stump Reconstruction with a Foot Fillet Flap. J. Reconstr. Microsurg. 2017, 33, S20–S26. [Google Scholar]
- Wu, F.; Wen, G.; Chai, Y.; Han, P. The Microsurgical Calcaneus Osteocutaneous Fillet Flap After Traumatic Amputation in Lower Extremities: Flap Design and Harvest Technique. Ann. Plast. Surg. 2019, 83, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Fortin, A.J.; Skoracki, R.J. Thoracodorsal artery perforator (TAP) flap reconstruction of a soft-tissue defect of the knee following below-knee amputation. J. Reconstr. Microsurg. 2004, 20, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Cavadore, N.; Lancien, U.; Crenn, V.; Verdier, J.; Perrot, P. Knee Joint Rescue in a Traumatic Amputation with Coverage by a Fillet-Free Flap From the Amputated Leg. Cureus 2023, 15, e42917. [Google Scholar] [CrossRef]
- Tosun, B.; Selek, O.; Gok, U.; Tosun, O. Medial gastrocnemius muscle flap for the reconstruction of unhealed amputation stumps. J. Wound Care. 2017, 26, 504–507. [Google Scholar] [CrossRef]
- Wamalwa, A.O.; Khainga, S.O. VRAM flap for an above knee amputation stump. JPRAS Open 2019, 13, 11–18. [Google Scholar] [CrossRef]
- Garcia-Vilariño, E.; Perez-Garcia, A.; Salmeron-Gonzalez, E.; Sanchez-Garcia, A.; Bas, J.L.; Simon-Sanz, E. Avoiding Above-the-Knee Amputation with a Free Tibiofibular-Talocalcaneal Fillet Flap and Free Latissimus Dorsi Flap. Indian J. Plast. Surg. 2020, 53, 135–139. [Google Scholar] [CrossRef]
- Yeh, H.K.; Fang, F.; Lin, Y.T.; Lin, C.-H.; Lin, C.-H.; Hsu, C.-C. The effect of systemic injury score on the decision making of mangled lower extremities. Injury 2016, 47, 2127–2130. [Google Scholar] [CrossRef]
- Court-Brown, C.M.; Heckman, J.D.; McQueen, M.M.; Ricci, W.M.; Tornetta, P.; McKee, M.D. Rockwood and Green’s Fractures in Adults, 8th ed.; Wolters Kluwer Health: Philadelphia, PA, USA, 2015. [Google Scholar]
- Alnaif, N.; Lee, J.; Azzi, A.J.; Aldekhayel, S.; Zadeh, T. Preservation of lower extremity spare parts using the University of Wisconsin solution. SAGE Open Med. Case Rep. 2019, 7, 2050313X18823438. [Google Scholar] [CrossRef]
- Dadaci, M.; Yildirim, M.E.C.; Uyar, I.; Ince, B. Reconstruction of Below Knee Stump with Free Plantar Fillet Flap: A Case Report. World J. Plast. Surg. 2020, 9, 339–342. [Google Scholar] [CrossRef]
- Valerio, I.L.; Larsen, M.; Eberlin, K.R. Application of Spare Parts in Combination with Targeted Muscle Reinnervation Surgery. Plast. Reconstr. Surg. 2021, 147, 279e–283e. [Google Scholar] [CrossRef]
- Moritz, W.R.; Ha, A.Y.; Giatsidis, G.; Tatman, L.M.; Berkes, M.; McAndrew, C.; Christensen, J.M.; Pet, M.A. Spare-parts free flap reconstruction in polytrauma with limb amputation: Pearls, pitfalls, and an illustrative case report. Orthoplastic. Surg. 2022, 10, 47–56. [Google Scholar] [CrossRef]
- Burton, H.; Iliadis, A.D.; Jones, N.; Saini, A.; Bystrzonowski, N.; Vris, A.; Pafitanis, G. Osteocutaneous Turn-Up Fillet Flaps: A Spare-Parts Orthoplastic Surgery Option for a Functional Posttraumatic Below-Knee Amputation. Arch. Plast. Surg. 2023, 24, 501–506. [Google Scholar] [CrossRef]
- Trung, V.T.; Nha, T.M.; Bay, H.V. Reconstruction of Chopart’s Amputation Stump with the Osteomusculocutaneous Latissimus Dorsi-Rib Flap. Plast. Reconstr. Surg. Glob. Open. 2022, 10, e4422. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.H.; Stranix, J.T.; Rafkin, W.J.; Anzai, L.; Ceradini, D.J.; Thanik, V.; Saadeh, P.B.; Levine, J.P. Timing of microsurgical reconstruction in lower extremity trauma: An update of the Godina Paradygm. Plast. Reconstr. Surg. 2019, 144, 759. [Google Scholar] [CrossRef] [PubMed]
- Tintle, S.M.; LeBrun, C.; Ficke, J.R.; Potter, B.K. What Is New in Trauma-Related Amputations. J. Orthop. Trauma. 2016, 30 (Suppl. S3), S16–S20. [Google Scholar] [CrossRef]
- O’Toole, R.V.; Castillo, R.C.; Pollak, A.N.; MacKenzie, E.J.; Bosse, M.J. EAP Study Group. Determinants of patient satisfaction after severe lower-extremity injuries. J. Bone Joint Surg. Am. 2008, 90, 1206–1211. [Google Scholar] [CrossRef]
- Czerniecki, J.M.; Morgenroth, D.C. Metabolic energy expenditure of ambulation in lower extremity amputees: What have we learned and what are the next steps? Disabil. Rehabil. 2017, 39, 143–151. [Google Scholar] [CrossRef]
- Mutlu, A.; Kharooty, M.D.; Yakut, Y. The effect of segmental weight of prosthesis on hemodynamic responses and energy expenditure of lower extremity amputees. J. Phys. Ther. Sci. 2017, 29, 629–634. [Google Scholar] [CrossRef]
- Azoury, S.C.; Stranix, J.T.; Kovach, S.J.; Levin, L.S. Principles of Orthoplastic Surgery for Lower Extremity Reconstruction: Why Is This Important? J. Reconstr. Microsurg. 2021, 37, 42–50. [Google Scholar] [CrossRef]
- Steinberger, Z.; Therattil, P.J.; Levin, L.S. Orthoplastic Approach to Lower Extremity Reconstruction: An Update. Clin. Plast. Surg. 2021, 48, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.; Lee, B.H.; Park, J.A.; Kim, Y.H. Reconstruction of soft tissue defect around knee with thoracodorsal artery perforator flap and muscle-sparing latissimus dorsi flap. Microsurgery 2023, 43, 665–675. [Google Scholar] [CrossRef] [PubMed]
Gallico 1987 [6] | Kasabian 1991 [2] | Kasabian 1995 [7] | Küntscher 2001 [3] | Tukiainen 2002 [8] | Ghali 2005 [1] | Lu 2016 [9] | Kim 2016 [10] | Tos 2017 [11] | Current Study | |
---|---|---|---|---|---|---|---|---|---|---|
Flap number | ||||||||||
Total | 5 | 24 | 6 | 25 | 10 | 6 | 11 | 31 | 8 | 7 |
BKA | 5 | 24 | 6 | 12 | 9 | 3 | 11 | 15 | 8 | 4 |
AKA | 0 | 0 | 0 | 4 | 1 | 3 | 0 | 2 | 0 | 2 |
Sacral | 0 | 0 | 0 | 9 | 0 | 0 | 0 | Foot 14 | 0 | 1 |
Etiology | Trauma | Trauma | Trauma | Trauma, Tumor, Pressure | Trauma | Trauma | Trauma | Trauma DM | Trauma | Trauma |
Flap Type | Mixed, Free | Mixed, Free/Pedicle | Foot fillet flaps | Fillet flap, Free/Pedicle | Free, Latissimus Dorsi | Fillet flap, Pedicle | Free Sural Neurocutaneous Perforator Flap | Free mLD +/− mSA | Fillet flap, Pedicle | Mixed, Free/ Pedicle |
Time of Reconstruction | Immediate–3 Y | 1 D–3 M | 1–69 D | n/a | Immediate–22 Y | Delayed | Immediate | Immediate/ Delayed | Immediate/ Delayed | 1 D–3 Y |
Length of Hospitalization | 3–8 W | 51 D | 24–118 D | n/a | 17–36 D | 28–76 D | n/a | n/a | n/a | 54.9 D |
Number of Operations | n/a | 4–9 | 4–5 | n/a | 1–3 | 3–9 | n/a | n/a | n/a | 7 |
Flap Failure | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
Complications | ||||||||||
Early Anastomosis Revision | 1 | 3 | ||||||||
Partial Necrosis | 5 | 1 | 1 | 1 | 3 | 1 | ||||
Neuroma | 3 | |||||||||
Hematoma | 2 | 1 | ||||||||
Thrombosis | 1 | |||||||||
Need Surgical Revision | 4 | 5 | 2 | 1 | Need bone reunion | |||||
Minimal Wound | 2 | 2 | 6 | 2 | ||||||
Need Second flap | 1 | |||||||||
Secondary Debulking | 3 | 1 | ||||||||
Stump Revision | 5 | 5 | ||||||||
Follow-up | 3–8 Y | 12–116 M | 13–116 M | 14.5 M | 3–42 M | 9–32 M | 15.2 M | 14.3–17.8 M | 3 Y | 3.88 Y |
Parameters | Reconstructive Surgery (RS) (n = 12) | Non-Reconstructed (NR) (n = 98) | p-Value |
---|---|---|---|
Age (years) | 35.25 ± 20.1 | 55.52 ± 21.4 | 0.03 * |
Sex (M/F) | 6/6 | 72/26 | 0.04 * |
BMI | 25.1 | 27.4 | 0.9 |
Both legs injured and one leg amputated | 2 (16.6%) | 18 (18.3%) | ns |
One leg amputated Both legs amputated | 9 (75%) 3 (25%) | 92 (93.8%) 6 (6.1%) | 0.36 |
Early/Delayed amputation ratio: | 1:2 | 2:1 | 0.04 * |
MESS | 8.15 ± 2.19 | 8.36 ± 2.65 | 0.73 |
MESS—age | 1.43 ± 0.77 | 1.06 ± 0.87 | 0.03 * |
MESS—energy | 3.57 ± 0.93 | 3.41 ± 1 | 0.70 |
MESS—ischemia | 0.25 ± 0.44 | 0.16 ± 0.37 | 0.62 |
MESS—hemodynamic | 2.14 ± 0.77 | 2.13 ± 0.95 | 0.61 |
Trauma Type: | |||
Traffic accident | 8 (66.6%) | 71 (72.4%) | 0.67 |
Crash injury | 3 (25.7%) | 20 (20.4%) | 1.0 |
Fall down | 0 | 4 (4.08%) | 1.0 |
Infection | 0 | 3 (3.06%) | 1.0 |
Burn | 1 (8.33%) | 0 | 1.0 |
Mechanism of injury (some patients have more than one injury): | |||
Tibia fracture: | 5 (41.6%) | 49 (50%) | 0.68 |
IIIA | 0 | 2 (2.04%) | 1.0 |
IIIB | 0 | 13 (13.26%) | 1.0 |
IIIC | 5 (41.6%) | 34 (34.69%) | 0.68 |
Traumatic amputation | 2 (16.66%) | 37 (37.75%) | 1.0 |
Degloving | 1 (8.34%) | 11 (11.22%) | 0.55 |
Femur fracture | 1 (8.34%) | 18 (18.36%) | 0.59 |
Fasciitis necroticans | 0 | 1 (1.02%) | 1.0 |
Pelvis fracture | 1(8.34%) | 4 (4.08%) | 0.78 |
Foot fracture | 1 (8.34%) | 35 (35.71%) | 1.0 |
Knee dislocation | 1 (8.34%) | 0 | 1.0 |
Ischemia | 0 | 2 (2.04%) | 1.0 |
Limb salvage | 9 (75%) | 28 (28.5%) | 0.03 * |
Number of operations | 7.01 ± 4.1 | 3.19 ± 2.81 | 0.001 * |
Hospital stay | 52.6 ± 27 | 29.7 ± 27 | 0.002 * |
Died | 0 | 10 (10.2%) | 0.2 |
Mean of Fracture Level (cm) | Mean of Amputation Level (cm) | Ratio (Amputation Level/Fracture Level) | The Length of Removed Bone (cm) | |
---|---|---|---|---|
Whole group | 19.5 ± 9.3 | 14.2 ± 5.2 | 0.73 | 5.3 |
Group without reconstruction | 19.7 ± 9.8 | 14.4 ± 8.8 | 0.74 | 5.3 |
Group with reconstruction | 15 ± 11.4 | 11.8 ± 4.5 | 0.79 | 3.2 |
Level of the Fracture | Length of the Stump (cm) | Bone Reduction (cm) | Preservation | |
---|---|---|---|---|
Fillet sole flap | Double level 15 and 6 cm | 6 | 0 | Knee joint |
Plantar fillet flap | 26 cm | 17 | 9 | Bone length |
Split ALT (RL) | 14 cm | 9.4 | 4.6 | Knee joint |
Split ALT/TLF (LL) | 25 cm | 8.5 | 16.5 | Knee joint |
ALT | Foot injury with degloving | 16.7 | 0 | Bone length |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krześniak, N.E.; Hsu, C.-C.; Chen, S.-H.; Lin, Y.-T.; Lin, C.-H.; Lo, Y.-H.; Anggelia, M.R.; Lin, C.-H. Exploring the Role of Free Tissue Transfers in the Preservation of Bone Length and Knee Joint Function after Lower Limb Trauma: A Retrospective Analysis. J. Pers. Med. 2024, 14, 160. https://doi.org/10.3390/jpm14020160
Krześniak NE, Hsu C-C, Chen S-H, Lin Y-T, Lin C-H, Lo Y-H, Anggelia MR, Lin C-H. Exploring the Role of Free Tissue Transfers in the Preservation of Bone Length and Knee Joint Function after Lower Limb Trauma: A Retrospective Analysis. Journal of Personalized Medicine. 2024; 14(2):160. https://doi.org/10.3390/jpm14020160
Chicago/Turabian StyleKrześniak, Natalia Ewa, Chung-Chen Hsu, Shih-Heng Chen, Yu-Te Lin, Chih-Hung Lin, Youh-Hua Lo, Madonna Rica Anggelia, and Cheng-Hung Lin. 2024. "Exploring the Role of Free Tissue Transfers in the Preservation of Bone Length and Knee Joint Function after Lower Limb Trauma: A Retrospective Analysis" Journal of Personalized Medicine 14, no. 2: 160. https://doi.org/10.3390/jpm14020160
APA StyleKrześniak, N. E., Hsu, C. -C., Chen, S. -H., Lin, Y. -T., Lin, C. -H., Lo, Y. -H., Anggelia, M. R., & Lin, C. -H. (2024). Exploring the Role of Free Tissue Transfers in the Preservation of Bone Length and Knee Joint Function after Lower Limb Trauma: A Retrospective Analysis. Journal of Personalized Medicine, 14(2), 160. https://doi.org/10.3390/jpm14020160