Two-Year Results of 0.01% Atropine Eye Drops and 0.1% Loading Dose for Myopia Progression Reduction in Danish Children: A Placebo-Controlled, Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Trial Registration and Ethics Approval
2.3. Interventions
2.4. Outcomes
2.5. Power Calculation, Sample Size and Randomization Procedure
2.6. Examinations
2.7. Statistical Analysis
3. Results
3.1. Axial Length and Spherical Equivalent Refraction Changes after Two Years
3.2. Anterior Chamber Depth, Corneal Thickness and Sub-Foveal Choroidal Thickness Changes after Two Years
3.3. Side Effects after Two Years
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dolgin, E. The Myopia Boom. Nature 2015, 519, 276–278. [Google Scholar] [CrossRef]
- Hansen, M.H.; Hvid-Hansen, A.; Jacobsen, N.; Kessel, L. Myopia Prevalence in Denmark—A Review of 140 Years of Myopia Research. Acta Ophthalmol. 2021, 99, 118–127. [Google Scholar] [CrossRef]
- Lundberg, K.; Suhr Thykjaer, A.; Søgaard Hansen, R.; Vestergaard, A.H.; Jacobsen, N.; Goldschmidt, E.; Lima, R.A.; Peto, T.; Wedderkopp, N.; Grauslund, J. Physical Activity and Myopia in Danish Children—The CHAMPS Eye Study. Acta Ophthalmol. 2018, 96, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Ohno-Matsui, K.; Lai, T.Y.Y.; Lai, C.C.; Cheung, C.M.G. Updates of Pathologic Myopia. Prog. Retin. Eye Res. 2016, 52, 156–187. [Google Scholar] [CrossRef]
- Scheiman, M.; Zhang, Q.; Gwiazda, J.; Hyman, L.; Harb, E.; Weissberg, E.; Weise, K.K.; Dias, L. Visual Activity and Its Association with Myopia Stabilisation. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. 2014, 34, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.-C.; Tsai, C.-L.; Wu, H.-L.; Yang, Y.-H.; Kuo, H.-K. Outdoor Activity during Class Recess Reduces Myopia Onset and Progression in School Children. Ophthalmology 2013, 120, 1080–1085. [Google Scholar] [CrossRef]
- Lam, C.S.Y.; Tang, W.C.; Tse, D.Y.Y.; Lee, R.P.K.; Chun, R.K.M.; Hasegawa, K.; Qi, H.; Hatanaka, T.; To, C.H. Defocus Incorporated Multiple Segments (DIMS) Spectacle Lenses Slow Myopia Progression: A 2-Year Randomised Clinical Trial. Br. J. Ophthalmol. 2020, 104, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, P.; Peixoto-De-Matos, S.C.; Logan, N.S.; Ngo, C.; Jones, D.; Young, G. A 3-Year Randomized Clinical Trial of MiSight Lenses for Myopia Control. Optom. Vis. Sci. 2019, 96, 556–567. [Google Scholar] [CrossRef]
- Jakobsen, T.M.; Møller, F. Control of Myopia Using Orthokeratology Lenses in Scandinavian Children Aged 6 to 12 Years. Eighteen-Month Data from the Danish Randomized Study: Clinical Study Of Near-Sightedness; Treatment with Orthokeratology Lenses (CONTROL Study). Acta Ophthalmol. 2022, 100, 175–182. [Google Scholar] [CrossRef]
- Chua, W.-H.; Balakrishnan, V.; Chan, Y.-H.; Tong, L.; Ling, Y.; Quah, B.L.; Tan, D. Atropine for the Treatment of Childhood Myopia. Ophthalmology 2006, 113, 2285–2291. [Google Scholar] [CrossRef]
- Chia, A.; Chua, W.H.; Cheung, Y.B.; Wong, W.L.; Lingham, A.; Fong, A.; Tan, D. Atropine for the Treatment of Childhood Myopia: Safety and Efficacy of 0.5%, 0.1%, and 0.01% Doses (Atropine for the Treatment of Myopia 2). Ophthalmology 2012, 119, 347–354. [Google Scholar] [CrossRef]
- Siatkowski, R.M.; Cotter, S.A.; Crockett, R.S.; Miller, J.M.; Novack, G.D.; Zadnik, K. Two-Year Multicenter, Randomized, Double-Masked, Placebo-Controlled, Parallel Safety and Efficacy Study of 2% Pirenzepine Ophthalmic Gel in Children with Myopia. J. AAPOS 2008, 12, 332–339. [Google Scholar] [CrossRef]
- Yam, J.C.; Zhang, X.J.; Zhang, Y.; Wang, Y.M.; Tang, S.M.; Li, F.F.; Kam, K.W.; Ko, S.T.; Yip, B.H.K.; Young, A.L.; et al. Three-Year Clinical Trial of Low-Concentration Atropine for Myopia Progression (LAMP) Study: Continued Versus Washout: Phase 3 Report. Ophthalmology 2022, 129, 308–321. [Google Scholar] [CrossRef]
- Bullimore, M.A.; Sinnott, L.T.; Jones-Jordan, L.A. The Risk of Microbial Keratitis with Overnight Corneal Reshaping Lenses. Optom. Vis. Sci. 2013, 90, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B.; Ang, M.; Cho, P.; Guggenheim, J.A.; He, M.G.; Jong, M.; Logan, N.S.; Liu, M.; Morgan, I.; Ohno-Matsui, K.; et al. IMI Prevention of Myopia and Its Progression. Investig. Ophthalmol. Vis. Sci. 2021, 62, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Hieda, O.; Hiraoka, T.; Fujikado, T.; Ishiko, S.; Hasebe, S.; Torii, H.; Takahashi, H.; Nakamura, Y.; Sotozono, C.; Oshika, T.; et al. Efficacy and Safety of 0.01% Atropine for Prevention of Childhood Myopia in a 2-Year Randomized Placebo-Controlled Study. Jpn. J. Ophthalmol. 2021, 65, 315–325. [Google Scholar] [CrossRef]
- Yam, J.C.; Jiang, Y.; Tang, S.M.; Law, A.K.P.; Chan, J.J.; Wong, E.; Ko, S.T.; Young, A.L.; Tham, C.C.; Chen, L.J.; et al. Low-Concentration Atropine for Myopia Progression (LAMP) Study: A Randomized, Double-Blinded, Placebo-Controlled Trial of 0.05%, 0.025%, and 0.01% Atropine Eye Drops in Myopia Control. Ophthalmology 2019, 126, 113–124. [Google Scholar] [CrossRef]
- Chia, A.; Lu, Q.S.; Tan, D. Five-Year Clinical Trial on Atropine for the Treatment of Myopia 2 Myopia Control with Atropine 0.01% Eyedrops. Ophthalmology 2016, 123, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Li, S.M.; An, W.; Du, J.; Liang, X.; Sun, Y.; Zhang, D.; Tian, J.; Wang, N. Safety and Efficacy of Low-Dose Atropine Eyedrops for the Treatment of Myopia Progression in Chinese Children a Randomized Clinical Trial. JAMA Ophthalmol. 2020, 138, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Yam, J.C.; Zhang, X.J.; Zhang, Y.; Yip, B.H.K.; Tang, F.; Wong, E.S.; Bui, C.H.T.; Kam, K.W.; Ng, M.P.H.; Ko, S.T.; et al. Effect of Low-Concentration Atropine Eyedrops vs Placebo on Myopia Incidence in Children: The LAMP2 Randomized Clinical Trial. JAMA 2023, 329, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Joachimsen, L.; Farassat, N.; Bleul, T.; Böhringer, D.; Lagrèze, W.A.; Reich, M. Side Effects of Topical Atropine 0.05% Compared to 0.01% for Myopia Control in German School Children: A Pilot Study. Int. Ophthalmol. 2021, 41, 2001–2008. [Google Scholar] [CrossRef]
- Luong, T.Q.; Shu, Y.H.; Modjtahedi, B.S.; Fong, D.S.; Choudry, N.; Tanaka, Y.; Nau, C.L. Racial and Ethnic Differences in Myopia Progression in a Large, Diverse Cohort of Pediatric Patients. Investig. Ophthalmol. Vis. Sci. 2020, 61, 20. [Google Scholar] [CrossRef]
- Hvid-Hansen, A.; Jacobsen, N.; Møller, F.; Bek, T.; Ozenne, B.; Kessel, L. Myopia Control with Low-Dose Atropine in European Children: Six-Month Results from a Randomized, Double-Masked, Placebo-Controlled, Multicenter Study. J. Pers. Med. 2023, 13, 325. [Google Scholar] [CrossRef]
- Hansen, N.C.; Hvid-Hansen, A.; Møller, F.; Bek, T.; Larsen, D.A.; Jacobsen, N.; Kessel, L. Safety and Efficacy of 0.01% and 0.1% Low-Dose Atropine Eye Drop Regimens for Reduction of Myopia Progression in Danish Children: A Randomized Clinical Trial Examining One-Year Effect and Safety. BMC Ophthalmol. 2023, 23, 438. [Google Scholar] [CrossRef] [PubMed]
- Loughman, J.; Kobia-Acquah, E.; Lingham, G.; Butler, J.; Loskutova, E.; Mackey, D.A.; Lee, S.S.Y.; Flitcroft, D.I. Myopia Outcome Study of Atropine in Children: Two-Year Result of Daily 0.01% Atropine in a European Population. Acta Ophthalmol. 2023. early view. [Google Scholar] [CrossRef] [PubMed]
- Repka, M.X.; Weise, K.K.; Chandler, D.L.; Wu, R.; Melia, B.M.; Manny, R.E.; Kehler, L.A.F.; Jordan, C.O.; Raghuram, A.; Summers, A.I.; et al. Low-Dose 0.01% Atropine Eye Drops vs Placebo for Myopia Control: A Randomized Clinical Trial. JAMA Ophthalmol. 2023, 141, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Zadnik, K.; Schulman, E.; Flitcroft, I.; Fogt, J.S.; Blumenfeld, L.C.; Fong, T.M.; Lang, E.; Hemmati, H.D.; Chandler, S.P. Efficacy and Safety of 0.01% and 0.02% Atropine for the Treatment of Pediatric Myopia Progression over 3 Years: A Randomized Clinical Trial. JAMA Ophthalmol. 2023, 141, 990. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.Y.; Lingham, G.; Blaszkowska, M.; Sanfilippo, P.G.; Koay, A.; Franchina, M.; Chia, A.; Loughman, J.; Flitcroft, D.I.; Hammond, C.J.; et al. Low-Concentration Atropine Eyedrops for Myopia Control in a Multi-Racial Cohort of Australian Children: A Randomised Clinical Trial. Clin. Exp. Ophthalmol. 2022, 50, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.Y.; Mackey, D.A.; Lingham, G.; Crewe, J.M.; Richards, M.D.; Chen, F.K.; Charng, J.; Ng, F.; Flitcroft, I.; Loughman, J.J.; et al. Western Australia Atropine for the Treatment of Myopia (WA-ATOM) Study: Rationale, Methodology and Participant Baseline Characteristics. Clin. Exp. Ophthalmol. 2020, 48, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Yam, J.C.; Li, F.F.; Zhang, X.; Tang, S.M.; Yip, B.H.K.; Kam, K.W.; Ko, S.T.; Young, A.L.; Tham, C.C.; Chen, L.J.; et al. Two-Year Clinical Trial of the Low-Concentration Atropine for Myopia Progression (LAMP) Study: Phase 2 Report. Ophthalmology 2020, 127, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Jensen, H. Myopia Progression in Young School Children. A Prospective Study of Myopia Progression and the Effect of a Trial with Bifocal Lenses and Beta Blocker Eye Drops. Acta Ophthalmol. Suppl. 1991, 200, 1–79. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Ozenne, B.; Forman, J. LMMstar: Repeated Measurement Models for Discrete Times, R Package Version 0.3.2; GitHub: San Francisco, CA, USA, 2021. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Ho, M.-C.; Hsieh, Y.-T.; Shen, E.P.; Hsu, W.-C.; Cheng, H.-C. Short-Term Refractive and Ocular Parameter Changes after Topical Atropine. Taiwan J. Ophthalmol. 2020, 10, 111–115. [Google Scholar] [CrossRef]
- Chia, A.; Chua, W.-H.; Wen, L.; Fong, A.; Goon, Y.Y.; Tan, D. Atropine for the Treatment of Childhood Myopia: Changes after Stopping Atropine 0.01%, 0.1% and 0.5%. Am. J. Ophthalmol. 2014, 157, 451–457.e1. [Google Scholar] [CrossRef]
- German, E.J.; Wood, D.; Hurst, M.A. Ocular Effects of Antimuscarinic Compounds: Is Clinical Effect Determined by Binding Affinity for Muscarinic Receptors or Melanin Pigment? J. Ocul. Pharmacol. Ther. 1999, 15, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lv, H.; Jiang, X.; Hu, X.; Zhang, M.; Li, X. Intraocular Pressure Changes during Accommodation in Progressing Myopes, Stable Myopes and Emmetropes. PLoS ONE 2015, 10, e0141839. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Gao, T.Y.; Fan, S.J.; Peng, Y.; Li, L.; Lin, Z.; Han, W.; Lin, H.S.; Wang, N.L.; Liang, Y.B. Intraocular Pressure, Age, and Central Corneal Thickness in a Healthy Chinese Children Population: The Handan Offspring Myopia Study. Ophthalmic Epidemiol. 2022, 29, 499–506. [Google Scholar] [CrossRef]
- Sakalar, Y.B.; Keklikci, U.; Unlu, K.; Alakus, M.F.; Yildirim, M.; Dag, U. Distribution of Central Corneal Thickness and Intraocular Pressure in a Large Population of Turkish School Children. Ophthalmic Epidemiol. 2012, 19, 83–88. [Google Scholar] [CrossRef]
- Dusek, W.A.; Pierscionek, B.K.; McClelland, J.F. Age Variations in Intraocular Pressure in a Cohort of Healthy Austrian School Children. Eye 2012, 26, 841–845. [Google Scholar] [CrossRef]
Study | Published Year | Dose and Intervention Period | Age at Baseline, Mean (SD) | Axial Length at Baseline, Mean (SD) | % White Ethnicity | AL Change in mm Compared to Placebo | p-Value |
---|---|---|---|---|---|---|---|
Repka et al. [26] | 2023 | 0.01% for 24 months | All *: 10.1 years (1.8) | All *: 24.4 mm (0.8) | 46% | −0.002 (95% CI: −0.11; 0.10) | Not reported |
Zadnik et al. [27] (CHAMP-study) | 2023 | 0.01% for 24 months | Placebo: 8.8 years (1.8) 0.01%: 9.0 years (2.1) | Placebo: 24.33 mm (0.84) 0.01%: 24.37 mm (0.81) | 56.4% | −0.12 (95% CI: −0.06; −0.18) | <0.01 |
Loughman et al. [25] (MOSAIC-study) | 2023 | 0.01% for 24 months | Placebo: 11.78 years (2.17) 0.01%: 11.84 years (2.47) | Placebo: 24.93 mm (1.09) 0.01%: 24.85 mm (1.02) | 80.8% | −0.07 (95% CI: −0.01; −0.13) | 0.009 |
Lee et al. [28] (WA-ATOM-study) | 2022 | 0.01% for 24 months | Placebo: 12.2 years (SD: 2.5) 0.01%: 11.2 years (SD: 2.7) | Placebo: 24.7 mm (IQR): 24.4–25.4 0.01%: 24.6 mm (IQR: 24.2–25.2) | 50% | −0.05 (95% CI: 0.01; −0.11) | 0.1 |
Hansen et al. [24] (APP-study) | 2023 | 0.01% for 12 months | All *: 9.4 years (1.7) | All *: 24.60 mm (0.84) | 85% | −0.07 (95% CI: 0.00; −0.15) | 0.16 (FDR adjusted) |
Group | Placebo | 0.1% Loading Dose a | 0.01% b | |
---|---|---|---|---|
Time Point | ||||
AL, mm | ||||
Baseline | 24.60 (24.42; 24.78) | |||
18 mo | 25.08 (24.87; 25.28) | −0.09 (−0.17; −0.02) | −0.09 (−0.17; −0.01) | |
24 mo | 25.17 (24.97; 25.38) | −0.08 (−0.17; 0.01) | −0.10 (−0.19; −0.01) | |
24 mo p-value | 0.08 | 0.02 * | ||
SER, diopters | ||||
Baseline | −2.99 (−3.26; −2.71) | |||
18 mo | −3.92 (−4.26; −3.57) | 0.20 (0.01; 0.39) | 0.20 (0.01; 0.40) | |
24 mo | −4.17 (−4.52; −3.81) | 0.12 (−0.10; 0.33) | 0.26 (0.04; 0.48) | |
24 mo p-value | 0.30 | 0.02 * | ||
IOP, mmHg | ||||
Baseline | 15.8 (15.1; 16.5) | |||
18 mo | 17.7 (16.9; 18.6) | 0.3 (−0.7; 1.3) | 0.09 (−0.9; 1.1) | |
24 mo | 17.7 (16.7; 18.6) | 0.2 (−0.9; 1.3) | −0.7 (−1.8; 0.5) | |
24 mo adjusted-p | 0.87 | 0.67 | ||
Distance BCVA, LogMAR | ||||
Baseline | −0.10 (−0.12; −0.09) | |||
18 mo | −0.13 (−0.15; −0.11) | 0.00 (−0.02; 0.02) | 0.01 (−0.01; 0.04) | |
24 mo | −0.12 (−0.14; −0.10) | 0.00 (−0.02; 0.02) | 0.00 (−0.02; 0.02) | |
24 mo adjusted-p | 0.87 | 0.97 | ||
Near BCVA, LogMAR | ||||
Baseline | −0.07 (−0.09; −0.05) | |||
18 mo | −0.09 (−0.11; −0.06) | 0.00 (−0.02; 0.03) | 0.01 (−0.02; 0.04) | |
24 mo | −0.08 (−0.11; −0.06) | 0.00 (−0.02; 0.03) | 0.01 (−0.02; 0.04) | |
24 mo adjusted-p | 0.82 | 0.84 | ||
Accommodation amplitude, diopters | ||||
Baseline | 16.4 (15.6; 17.2) | |||
18 mo | 16.7 (15.8; 17.7) | −0.4 (−1.5; 0.6) | 0.2 (−0.9; 1.3) | |
24 mo | 16.8 (15.8; 17.8) | −0.5 (−1.5; 0.6) | −0.8 (−1.8; 0.3) | |
24 mo adjusted-p | 0.76 | 0.57 | ||
Mesopic pupil diameter, mm | ||||
Baseline | 4.28 (4.08; 4.49) | |||
18 mo | 4.33 (4.07; 4.60) | 0.12 (−0.18; 0.42) | −0.03 (−0.33; 0.27) | |
24 mo | 4.35 (4.10; 4.60) | −0.04 (−0.32; 0.23) | 0.09 (−0.18; 0.37) | |
24 mo adjusted-p | 0.87 | 0.80 | ||
Photopic pupil diameter, mm | ||||
Baseline | 2.80 (2.67; 2.94) | |||
18 mo | 2.74 (2.49; 2.99) | 0.06 (−0.14; 0.26) | −0.06 (−0.26; 0.13) | |
24 mo | 2.77 (2.62; 2.91) | 0.03 (−0.14; 0.19) | 0.06 (−0.10; 0.23) | |
24 mo adjusted-p | 0.87 | 0.77 |
Group | Event | 12 mo | 18 mo | 24 mo |
---|---|---|---|---|
0.1% loading dose | Total events, N/total N (%) | 2/33 (6%) | 2/32 (6%) | 5/32 (16%) |
Eye redness/irritation, N/total N (%) | 1/33 (3%) | 0/32 (0%) | 1/32 (3%) | |
Photophobia, N/total N (%) | 0/33 (0%) | 0/32 (0%) | 1/32 (3%) | |
Blurred near vision, N/total N (%) | 0/33 (0%) | 0/32 (0%) | 1/32 (3%) | |
Blurred distance vision, N/total N (%) | 0/33 (0%) | 0/32 (0%) | 0/32 (0%) | |
Other, N/total N (%) | 1/33 (3%) | 2/32 (6%) | 2/32 (6%) | |
Dilated pupils, N/total N (%) | 0/33 (0%) | 0/32 (0%) | 0/32 (0%) | |
0.01% | Total events, N/total N (%) | 1/32 (3%) | 4/32 (13%) | 1/32 (3%) |
Eye redness/irritation, N/total N (%) | 0/32 (0%) | 2/32 (6%) | 0/32 (0%) | |
Photophobia, N/total N (%) | 0/32 (0%) | 1/32 (3%) | 0/32 (0%) | |
Blurred near vision, N/total N (%) | 0/32 (0%) | 0/32 (0%) | 0/32 (0%) | |
Blurred distance vision, N/total N (%) | 0/32 (0%) | 0/32 (0%) | 0/32 (0%) | |
Other, N/total N (%) | 1/32 (3%) | 1/32 (3%) | 1/32 (3%) | |
Dilated pupils, N/total N (%) | 0/32 (0%) | 0/32 (0%) | 0/32 (0%) | |
Placebo | Total events, N/total N (%) | 2/29 (6%) | 2/29 (7%) | 3/28 (11%) |
Eye redness/irritation, N/total N (%) | 0/29 (0%) | 1/29 (3%) | 1/28 (4%) | |
Photophobia, N/total N (%) | 0/29 (0%) | 0/29 (0%) | 1/28 (4%) | |
Blurred near vision, N/total N (%) | 1/29 (3%) | 0/29 (0%) | 0/28 (0%) | |
Blurred distance vision, N/total N (%) | 0/29 (0%) | 0/29 (0%) | 0/28 (0%) | |
Other, N/total N (%) | 1/29 (3%) | 1/29 (3%) | 1/28 (4%) | |
Dilated pupils, N/total N (%) | 0/29 (0%) | 0/29 (0%) | 0/28 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, N.C.; Hvid-Hansen, A.; Møller, F.; Bek, T.; Larsen, D.A.; Jacobsen, N.; Kessel, L. Two-Year Results of 0.01% Atropine Eye Drops and 0.1% Loading Dose for Myopia Progression Reduction in Danish Children: A Placebo-Controlled, Randomized Clinical Trial. J. Pers. Med. 2024, 14, 175. https://doi.org/10.3390/jpm14020175
Hansen NC, Hvid-Hansen A, Møller F, Bek T, Larsen DA, Jacobsen N, Kessel L. Two-Year Results of 0.01% Atropine Eye Drops and 0.1% Loading Dose for Myopia Progression Reduction in Danish Children: A Placebo-Controlled, Randomized Clinical Trial. Journal of Personalized Medicine. 2024; 14(2):175. https://doi.org/10.3390/jpm14020175
Chicago/Turabian StyleHansen, Niklas Cyril, Anders Hvid-Hansen, Flemming Møller, Toke Bek, Dorte Ancher Larsen, Nina Jacobsen, and Line Kessel. 2024. "Two-Year Results of 0.01% Atropine Eye Drops and 0.1% Loading Dose for Myopia Progression Reduction in Danish Children: A Placebo-Controlled, Randomized Clinical Trial" Journal of Personalized Medicine 14, no. 2: 175. https://doi.org/10.3390/jpm14020175
APA StyleHansen, N. C., Hvid-Hansen, A., Møller, F., Bek, T., Larsen, D. A., Jacobsen, N., & Kessel, L. (2024). Two-Year Results of 0.01% Atropine Eye Drops and 0.1% Loading Dose for Myopia Progression Reduction in Danish Children: A Placebo-Controlled, Randomized Clinical Trial. Journal of Personalized Medicine, 14(2), 175. https://doi.org/10.3390/jpm14020175