The Prognostic Role of Global Longitudinal Strain and NT-proBNP in Heart Failure Patients Receiving Cardiac Resynchronization Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Echocardiography
2.3. Statistical Analysis
3. Results
3.1. Groups at Baseline
3.2. Prognostic Value of GLS and NT-proBNP at Baseline
3.3. Prediction of CRT Response by GLS and NT-proBNP
3.4. Changes in GLS and NT-proBNP with CRT and Their Prognostic Value
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glikson, M.; Nielsen, J.C.; Kronborg, M.B.; Michowitz, Y.; Auricchio, A.; Barbash, I.M.; Barrabés, J.A.; Boriani, G.; Braunschweig, F.; Brignole, M.; et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur. Heart J. 2021, 42, 3427–3520. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, Y.; Zhang, J. Cardiac resynchronization therapy in heart failure patients: Tough road but clear future. Heart Fail. Rev. 2021, 26, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Bazoukis, G.; Thomopoulos, C.; Tse, G.; Tsioufis, K.; Nihoyannopoulos, P. Global longitudinal strain predicts responders after cardiac resynchronization therapy-a systematic review and meta-analysis. Heart Fail. Rev. 2021, 27, 827–836. [Google Scholar] [CrossRef]
- Zhu, H.; Zou, T.; Zhong, Y.; Yang, C.; Ren, Y.; Wang, F. Prevention of non-response to cardiac resynchronization therapy: Points to remember. Heart Fail. Rev. 2020, 25, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.; António, N.; Donato, H.; Oliveiros, B. Predictors of echocardiographic response to cardiac resynchronization therapy: A systematic review with Meta-Analysis. Int. J. Cardiol. Heart Vasc. 2022, 39, 100979. [Google Scholar] [CrossRef] [PubMed]
- Mele, D.; Luisi, G.A.; Malagù, M.; Laterza, A.; Ferrari, R.; Bertini, M. Echocardiographic evaluation of cardiac dyssynchrony: Does it still matter? Echocardiography 2018, 35, 707–715. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H.; Hassea, S.R.A.; Qian, Z.; Wang, Y.; Zhang, X.; Hou, X.; Zou, J. Comparative efficacy of image-guided techniques in cardiac resynchronization therapy: A meta-analysis. BMC Cardiovasc. Disord. 2021, 21, 255. [Google Scholar] [CrossRef]
- Bazoukis, G.; Naka, K.K.; Alsheikh-Ali, A.; Tse, G.; Letsas, K.P.; Korantzopoulos, P.; Liu, T.; Yeung, C.; Efremidis, M.; Tsioufis, K.; et al. Association of QRS narrowing with response to cardiac resynchronization therapy-a systematic review and meta-analysis of observational studies. Heart Fail. Rev. 2020, 25, 745–756. [Google Scholar] [CrossRef]
- Dal Ferro, M.; De Paris, V.; Collia, D.; Stolfo, D.; Caiffa, T.; Barbati, G.; Korcova, R.; Pinamonti, B.; Zovatto, L.; Zecchin, M.; et al. Left Ventricular Response to Cardiac Resynchronization Therapy: Insights From Hemodynamic Forces Computed by Speckle Tracking. Front. Cardiovasc. Med. 2019, 6, 59. [Google Scholar] [CrossRef]
- van der Bijl, P.; Kostyukevich, M.V.; Khidir, M.; Ajmone Marsan, N.; Delgado, V.; Bax, J.J. Left ventricular remodelling and change in left ventricular global longitudinal strain after cardiac resynchronization therapy: Prognostic implications. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 1112–1119. [Google Scholar] [CrossRef]
- Menet, A.; Guyomar, Y.; Ennezat, P.V.; Graux, P.; Castel, A.L.; Delelis, F.; Heuls, S.; Cuvelier, E.; Gevaert, C.; Le Goffic, C.; et al. Prognostic value of left ventricular reverse remodeling and performance improvement after cardiac resynchronization therapy: A prospective study. Int. J. Cardiol. 2016, 204, 6–11. [Google Scholar] [CrossRef]
- Vazquez-Montes, M.D.L.A.; Debray, T.P.A.; Taylor, K.S.; Speich, B.; Jones, N.; Collins, G.S.; Hobbs, F.D.R.R.; Magriplis, E.; Maruri-Aguilar, H.; Moons, K.G.M.; et al. UMBRELLA protocol: Systematic reviews of multivariable biomarker prognostic models developed to predict clinical outcomes in patients with heart failure. Diagn. Progn. Res. 2020, 4, 13. [Google Scholar] [CrossRef]
- Asgardoon, M.H.; Vasheghani-Farahani, A.; Sherafati, A. Usefulness of Biomarkers for Predicting Response to Cardiac Resynchronization Therapy. Curr. Cardiol. Rev. 2020, 16, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Debska-Kozlowska, A.; Ksiazczyk, M.; Warchol, I.; Lubinski, A. Clinical Usefulness of N-terminal Prohormone of Brain Natriuretic Peptide and High Sensitivity Troponin T in Patients with Heart Failure Undergoing Cardiac Resynchronization Therapy. Curr. Pharm. Des. 2019, 25, 1671–1678. [Google Scholar] [CrossRef] [PubMed]
- McAloon, C.J.; Barwari, T.; Hu, J.; Hamborg, T.; Nevill, A.; Hyndman, S.; Ansell, V.; Musa, A.; Jones, J.; Goodby, J.; et al. Characterisation of circulating biomarkers before and after cardiac resynchronisation therapy and their role in predicting CRT response: The COVERT-HF study. Open Heart 2018, 5, e000899. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar]
- Kato, T.; Harada, T.; Kagami, K.; Obokata, M. The roles of global longitudinal strain imaging in contemporary clinical cardiology. J. Med. Ultrason. 2022, 49, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Bakos, Z.; Chatterjee, N.C.; Reitan, C.; Singh, J.P.; Borgquist, R. Prediction of clinical outcome in patients treated with cardiac resynchronization therapy-the role of NT-ProBNP and a combined response score. BMC Cardiovasc. Disord. 2018, 18, 70. [Google Scholar] [CrossRef]
- European Society of Cardiology (ESC); European Heart Rhythm Association (EHRA); Brignole, M.; Auricchio, A.; Baron-Esquivias, G.; Bordachar, P.; Boriani, G.; Breithardt, O.A.; Cleland, J.; Deharo, J.C.; et al. 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy: The task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Europace 2013, 15, 1070–1118. [Google Scholar]
- Mele, D.; Trevisan, F.; Fiorencis, A.; Smarrazzo, V.; Bertini, M.; Ferrari, R. Current Role of Echocardiography in Cardiac Resynchronization Therapy: From Cardiac Mechanics to Flow Dynamics Analysis. Curr. Heart Fail. Rep. 2020, 17, 384–396. [Google Scholar] [CrossRef]
- Stătescu, C.; Ureche, C.; Enachi, Ș.; Radu, R.; Sascău, R.A. Cardiac Resynchronization Therapy in Non-Ischemic Cardiomyopathy: Role of Multimodality Imaging. Diagnostics 2021, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Rijks, J.; Ghossein, M.A.; Wouters, P.C.; Dural, M.; Maass, A.H.; Meine, M.; Kloosterman, M.; Luermans, J.; Prinzen, F.W.; Vernooy, K.; et al. Comparison of the relation of the ESC 2021 and ESC 2013 definitions of left bundle branch block with clinical and echocardiographic outcome in cardiac resynchronization therapy. J. Cardiovasc. Electrophysiol. 2023, 34, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Chen, H.; Fulati, Z.; Liu, Y.; Su, Y.; Shu, X. Left ventricular global longitudinal strain and mechanical dispersion predict response to multipoint pacing for cardiac resynchronization therapy. J. Clin. Ultrasound 2019, 47, 356–365. [Google Scholar] [CrossRef]
- Khidir, M.J.H.; Abou, R.; Yilmaz, D.; Ajmone Marsan, N.; Delgado, V.; Bax, J.J. Prognostic value of global longitudinal strain in heart failure patients treated with cardiac resynchronization therapy. Heart Rhythm 2018, 15, 1533–1539. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Montero, A.; Tayal, B.; Goda, A.; Ryo, K.; Marek, J.J.; Sugahara, M.; Qi, Z.; Althouse, A.D.; Saba, S.; Schwartzman, D.; et al. Additive Prognostic Value of Echocardiographic Global Longitudinal and Global Circumferential Strain to Electrocardiographic Criteria in Patients With Heart Failure Undergoing Cardiac Resynchronization Therapy. Circ. Cardiovasc. Imaging 2016, 9, e004241. [Google Scholar] [CrossRef] [PubMed]
- Haugaa, K.H.; Edvardsen, T. Global longitudinal strain: The best biomarker for predicting prognosis in heart failure? Eur. J Heart Fail. 2016, 18, 1340–1341. [Google Scholar] [CrossRef]
- Bax, J.J.; Delgado, V.; Sogaard, P.; Singh, J.P.; Abraham, W.T.; Borer, J.S.; Dickstein, K.; Gras, D.; Brugada, J.; Robertson, M.; et al. Prognostic implications of left ventricular global longitudinal strain in heart failure patients with narrow QRS complex treated with cardiac resynchronization therapy: A subanalysis of the randomized EchoCRT trial. Eur. Heart J. 2017, 38, 720–726. [Google Scholar] [CrossRef]
- Richardson, M.; Freemantle, N.; Calvert, M.J.; Cleland, J.G.; Tavazzi, L.; CARE-HF Study Steering Committee and Investigators. Predictors and treatment response with cardiac resynchronization therapy in patients with heart failure characterized by dyssynchrony: A pre-defined analysis from the CARE-HF trial. Eur. Heart J. 2007, 28, 1827–1834. [Google Scholar] [CrossRef]
- Cleland, J.; Freemantle, N.; Ghio, S.; Fruhwald, F.; Shankar, A.; Marijanowski, M.; Verboven, Y.; Tavazzi, L. Predicting the long-term effects of cardiac resynchronization therapy on mortality from baseline variables and the early response a report from the CARE-HF (Cardiac Resynchronization in Heart Failure) Trial. J. Am. Coll. Cardiol. 2008, 52, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Kadoglou, N.P.E.; Parissis, J.; Karavidas, A.; Kanonidis, I.; Trivella, M. Assessment of acute heart failure prognosis: The promising role of prognostic models and biomarkers. Heart Fail. Rev. 2022, 27, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Pitzalis, M.V.; Iacoviello, M.; Di Serio, F.; Romito, R.; Guida, P.; De Tommasi, E.; Luzzi, G.; Anaclerio, M.; Varraso, L.; Forleo, C.; et al. Prognostic value of brain natriuretic peptide in the management of patients receiving cardiac resynchronization therapy. Eur. J. Heart Fail. 2006, 8, 509–514. [Google Scholar] [CrossRef] [PubMed]
No Events (n = 58) | Primary Endpoint (n = 84) | p | |
---|---|---|---|
Age, years | 71 ± 10 | 73 ± 9 | 0.578 |
Males, n | 43 (73%) | 60 (71%) | 0.789 |
LVEF (%) | 29 ± 9 | 26 ± 10 | 0.777 |
LVESV (mL) | 142 ± 61 | 156 ± 54 | 0.403 |
LAVI (mL/m2) | 34 ± 8 | 38 ± 8 | 0.122 |
GLS (%) | −8.8 ± 2 | −6.1 ± 2.2 | <0.001 |
QRS duration (ms) | 157 ± 25 | 155 ± 21 | 0.061 |
NYHA II | 18 (31%) | 21 (25%) | 0.411 |
NYHA III | 40 (69%) | 63 (75%) | 0.173 |
Diabetes, n | 12 (20.7%) | 23 (27.4%) | 0.025 |
Atrial fibrillation | 9 (15.5%) | 19 (22.6%) | 0.101 |
CKD (stage IV–V), n | 2 (3.4%) | 4 (4.8%) | 0.535 |
NT-proBNP (pg/mL) | 1449 ± 288 | 2210 ± 420 | <0.001 |
Diuretics, n | 56 | 82 | 0.923 |
ACEIs/ARBs, n | 50 | 64 | 0.875 |
MRA, n | 44 | 62 | 0.813 |
β-blockers, n | 53 | 78 | 0.819 |
Variable | Univariate | Multivariate | ||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
Age (years) | 1.04 (1–1.08) | 0.891 | ||
Male gender | 0.93 (0.77–1.13) | 0.770 | ||
NYHA | 1.04 (0.95–1.18) | 0.441 | ||
QRS (ms) | 1.15 (1.01–1.29) | 0.126 | ||
Diabetes mellitus | 1.52 (1.28–2.05) | <0.001 | 1.27 (1.12–1.98) | 0.003 |
Chronic kidney disease (eGFR < 45 mL/min/1.73 m2) | 1.88 (1.39–2.74) | 0.009 | 1.29 (1.10–2.12) | 0.068 |
CRT response | 1.30 (1.03–1.85) | 0.033 | 1.12 (0.98–1.43) | 0.394 |
GLS (absolute value %) | 0.48 (0.32–2.1) | <0.001 | 0.77 (0.51–1.91) | 0.002 |
NT-proBNP | 1.78 (1.59–245) | <0.001 | 1.55 (1.43–2.01) | 0.002 |
Variable | Univariate | Multivariate | ||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
Age (years) | 1.01 (0.99–1.03) | 0.932 | ||
Male gender | 1.05 (0.91–1.19) | 0.690 | ||
NYHA | 1.11 (1.01–1.25) | 0.702 | ||
QRS (ms) | 1.15 (1.01–1.29) | 0.126 | ||
Diabetes mellitus | 1.28 (1.10–1.88) | 0.008 | 1.27 (1.12–1.98) | 0.087 |
Atrial fibrillation | 1.89 (1.51–2.67) | <0.001 | 1.66 (1.31–2.22) | <0.001 |
Chronic kidney disease (eGFR < 45 mL/min/1.73 m2) | 1.66 (1.33–2.55) | 0.006 | 1.41 (1.17–1.98) | <0.001 |
CRT response | 1.91 (1.23–3.05) | 0.012 | 1.22 (1.15–2.43) | 0.132 |
GLS (absolute value %) | 0.67 (0.56–1.05) | 0.015 | 0.96 (0.81–1.11) | 0.091 |
NT-proBNP | 1.64 (1.23–2.22) | <0.001 | 1.23 (1.01–1.69) | <0.001 |
CRT Responders (n = 104) | CRT Non-Responders (n = 39) | p | |
---|---|---|---|
Age, years | 70 ± 11 | 74 ± 7 | 0.423 |
Males, n | 74 (71.2%) | 29 (74.4%) | 0.831 |
LVEF (%) | 28 ± 6 | 26 ± 8 | 0.891 |
LVESV (mL) | 148 ± 55 | 153 ± 52 | 0.790 |
LAVI (mL/m2) | 37 ± 7 | 33 ± 5 | 0.029 |
GLS (%) | −8.2 ± 2.4 | −6.2 ± 1.8 | <0.001 |
QRS duration (ms) | 167 ± 29 | 151 ± 22 | 0.061 |
NYHA II | 31 (30%) | 15 (38.5%) | 0.309 |
NYHA III | 73 (70.2%) | 24 (61.5%) | 0.298 |
Diabetes, n | 25 (24%) | 10 (25.6%) | 0.925 |
Atrial fibrillation | 21 (20.2%) | 7 (17.9%) | 0.881 |
CKD (stage IV–V), n | 4 (7.7%) | 2 (5.1%) | 0.123 |
NT-proBNP (pg/mL) | 1589 ± 232 | 1998 ± 308 | <0.001 |
Diuretics, n | 101 | 37 | 0.955 |
ACEIs/ARBs, n | 88 | 32 | 0.906 |
MRA, n | 74 | 32 | 0.881 |
β-blockers, n | 95 | 36 | 0.984 |
Primary endpoint, n | 52 (50%) | 32 (82%) | <0.001 |
Secondary endpoint, n | 35 (33.6%) | 18 (46.2%) | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadoglou, N.P.E.; Bouwmeester, S.; de Lepper, A.G.W.; de Kleijn, M.C.; Herold, I.H.F.; Bouwman, A.R.A.; Korakianitis, I.; Simmers, T.; Bracke, F.A.L.E.; Houthuizen, P. The Prognostic Role of Global Longitudinal Strain and NT-proBNP in Heart Failure Patients Receiving Cardiac Resynchronization Therapy. J. Pers. Med. 2024, 14, 188. https://doi.org/10.3390/jpm14020188
Kadoglou NPE, Bouwmeester S, de Lepper AGW, de Kleijn MC, Herold IHF, Bouwman ARA, Korakianitis I, Simmers T, Bracke FALE, Houthuizen P. The Prognostic Role of Global Longitudinal Strain and NT-proBNP in Heart Failure Patients Receiving Cardiac Resynchronization Therapy. Journal of Personalized Medicine. 2024; 14(2):188. https://doi.org/10.3390/jpm14020188
Chicago/Turabian StyleKadoglou, Nikolaos P. E., Sjoerd Bouwmeester, Anouk G. W. de Lepper, Marloes C. de Kleijn, Ingeborg H. F. Herold, Arthur R. A. Bouwman, Ioannis Korakianitis, Tim Simmers, Franke A. L. E. Bracke, and Patrick Houthuizen. 2024. "The Prognostic Role of Global Longitudinal Strain and NT-proBNP in Heart Failure Patients Receiving Cardiac Resynchronization Therapy" Journal of Personalized Medicine 14, no. 2: 188. https://doi.org/10.3390/jpm14020188
APA StyleKadoglou, N. P. E., Bouwmeester, S., de Lepper, A. G. W., de Kleijn, M. C., Herold, I. H. F., Bouwman, A. R. A., Korakianitis, I., Simmers, T., Bracke, F. A. L. E., & Houthuizen, P. (2024). The Prognostic Role of Global Longitudinal Strain and NT-proBNP in Heart Failure Patients Receiving Cardiac Resynchronization Therapy. Journal of Personalized Medicine, 14(2), 188. https://doi.org/10.3390/jpm14020188