Association between Bell’s Palsy and Cardiometabolic Risks: An Age- and Sex-Matched Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population, Design, Setting, and Sample Size
2.2. Terms and Definitions
2.3. Data Collection
2.4. Statistical Analyses
2.5. Ethical Considerations
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peitersen, E. Bell’s palsy: The spontaneous course of 2,500 peripheral facial nerve palsies of different etiologies. Acta Otolaryngol. Suppl. 2002, 549, 4–30. [Google Scholar] [CrossRef]
- Bosco, D.; Plastino, M.; Bosco, F.; Consoli, A.; Labate, A.; Pirritano, D.; Consoli, D.; Fava, A. Bell’s palsy: A manifestation of prediabetes? Acta Neurol. Scand. 2011, 123, 68–72. [Google Scholar] [CrossRef]
- Johnson, J.L.; Duick, D.S.; Chui, M.A.; Aldasouqi, S.A. Identifying prediabetes using fasting insulin levels. Endocr. Pract. 2010, 16, 47–52. [Google Scholar] [CrossRef]
- Sazak Kundi, F.C.; Paksoy, Z.B. Association of plasma atherogenic index with the severity and prognosis of Bell’s palsy. Acta Otolaryngol. 2023, 143, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Psillas, G.; Dimas, G.G.; Sarafidou, A.; Didangelos, T.; Perifanis, V.; Kaiafa, G.; Mirkopoulou, D.; Tegos, T.; Savopoulos, C.; Constantinidis, J. Evaluation of Effects of Diabetes Mellitus, Hypercholesterolemia and Hypertension on Bell’s Palsy. J. Clin. Med. 2021, 10, 2357. [Google Scholar] [CrossRef] [PubMed]
- Yanagihara, N.; Hyodo, M. Association of diabetes mellitus and hypertension with Bell’s palsy and Ramsay Hunt syndrome. Ann. Otol. Rhinol. Laryngol. Suppl. 1988, 97, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, X.; Tang, Y.D.; Zhu, J.; Wang, X.H.; Li, S.T. Bell’s Palsy: Clinical Analysis of 372 Cases and Review of Related Literature. Eur. Neurol. 2017, 77, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Sathirapanya, P. Bell’s palsy: A survey study of five-year hospital service. Chulalongkorn Med. J. 1995, 39, 563–570. [Google Scholar] [CrossRef]
- Sathirapanya, P.; Limapichat, K.; Setthawatcharawanich, S.; Prabpal, K.; Sathirapanya, C. Clinical characteristics of Bell’s palsy: A retrospective study of 978 cases in Songklanagarind Hospital. Songklanagarind Med. J. 2003, 21, 121–128. [Google Scholar]
- Kim, M.H.; Park, S.Y. Population-based study and a scoping review for the epidemiology and seasonality in and effect of weather on Bell’s palsy. Sci. Rep. 2021, 11, 16941. [Google Scholar] [CrossRef]
- Stamatiou, I.; Papachristou, S.; Papanas, N. Diabetes Mellitus and Bell’s Palsy. Curr. Diabetes Rev. 2023, 19, 46–49. [Google Scholar] [CrossRef]
- Eviston, T.J.; Croxson, G.R.; Kennedy, P.G.; Hadlock, T.; Krishnan, A.V. Bell’s palsy: Aetiology, clinical features and multidisciplinarycare. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1356–1361. [Google Scholar] [CrossRef]
- R Foundation for Statistical Computing. The R Project for Statistical Computing. R: A Language and Environment for Statistical Computing. Available online: https://cran.r-project.org/bin/windows/base/old/4.1.1/ (accessed on 12 June 2022).
- Heinrich-Heine University. Free Download G*Power. 2020, Version 3.1.9.7. Available online: https://g-power.apponic.com/download/ (accessed on 4 January 2024).
- Zhu, L.; Spence, C.; Yang, J.W.; Ma, G.X. The IDF Definition Is. Better. Suited for Screening Metabolic Syndrome and Estimating Risks of Diabetes in Asian American Adults: Evidence from NHANES 2011–2016. J. Clin. Med. 2020, 9, 3871. [Google Scholar] [CrossRef]
- Yousefzadeh, G.; Sayyadi, A.; Najafipour, H.; Sabaghnejad, V.; Pezeshki, S. Comparing the association of two metabolic syndrome definitions, NCEP ATP III and IDF, with the risk of developing atherosclerotic cardiovascular disease: An analytical cross-sectional study. Endocrinol. Diabetes Metab. 2024, 7, e468. [Google Scholar] [CrossRef] [PubMed]
- Sathirapanya, P.; Sathirapanya, C. Clinical prognostic factors for treatment outcome in Bell’s palsy: A prospective study. J. Med. Assoc. Thai. 2008, 91, 1182–1188. [Google Scholar]
- Amouzegar, A.; Honarvar, M.; Masoumi, S.; Khalili, D.; Azizi, F.; Mehran, L. Trajectory patterns of metabolic syndrome severity score and risk of type 2 diabetes. J. Transl. Med. 2023, 21, 750. [Google Scholar] [CrossRef] [PubMed]
- Ishigaki, Y.; Hirase, T.; Pathadka, S.; Cai, Z.; Sato, M.; Takemura, R.; Ishida, N. Prevalence of Metabolic Syndrome in Patients with Type 2 Diabetes in Japan: A Retrospective Cross-Sectional Study. Diabetes Ther. 2023; Epub ahead of print. [Google Scholar] [CrossRef]
- Choi, D.D.; Han, K.; Park, K.A.; Oh, S.Y. Association of Obesity and Incidence of Third, Fourth, and Sixth Cranial Nerve Palsies. Am. J. Ophthalmol. 2022, 235, 258–270. [Google Scholar] [CrossRef]
- Choi, D.D.; Park, K.A.; Han, K.; Oh, S.Y. Dynamic Changes in Metabolic Status Are Associated with Risk of Ocular Motor Cranial Nerve Palsies. J. Neuroophthalmol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Han, K.; Yoo, J.; Park, K.A.; Oh, S.Y. Liver enzymes and risk of ocular motor cranial nerve palsy: A nationwide population based study. Neurol. Sci. 2022, 43, 3395–3405. [Google Scholar] [CrossRef]
- Jeong, J.; Yoon, S.R.; Lim, H.; Oh, J.; Choi, H.S. Risk factors for Bell’s palsy based on the Korean National Health Insurance Service National Sample Cohort data. Sci. Rep. 2021, 11, 23387. [Google Scholar] [CrossRef]
- Kim, S.Y.; Oh, D.J.; Park, B.; Choi, H.G. Bell’s palsy and obesity, alcohol consumption and smoking: A nested case-control study using a national health screening cohort. Sci. Rep. 2020, 10, 4248. [Google Scholar] [CrossRef]
- Amalanathan, S.; Colbert, K.R.; Kumar, C.S.; Mathyalagen, P. Clinical Prognostic Indicators in Predicting the Outcome in Patients with Bell’s Palsy: A Descriptive, longitudinal Study from Puducherry, South India. Indian. J. Otolaryngol. Head Neck Surg. 2022, 74 (Suppl. S3), 4270–4275. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lim, J.S.; Oh, D.J.; Park, B.; Park, I.S.; Choi, H.G. Increased risk of ischemic stroke in patients with Bell’s palsy: A longitudinal follow-up study using a national sample cohort. Auris Nasus Larynx 2021, 48, 194–200. [Google Scholar] [CrossRef]
- Kafle, D.R.; Thakur, S.K. Evaluation of prognostic factors in patients with Bell’s palsy. Brain Behav. 2021, 11, e2385. [Google Scholar] [CrossRef]
- Jung, S.Y.; Jung, J.; Byun, J.Y.; Park, M.S.; Kim, S.H.; Yeo, S.G. The effect of metabolic syndrome on Bell’s palsy recovery rate. Acta Otolaryngol. 2018, 138, 670–674. [Google Scholar] [CrossRef]
- İnan, S.; Jafarov, S. Prognostic role of neutrophil lymphocyte ratio and mean platelet volume in Bell’s palsy: Comparison of diabetic and non-diabetic patients. Braz. J. Otorhinolaryngol. 2023, 89, 98–103. [Google Scholar] [CrossRef]
- Choi, G.W.; Yon, D.K.; Choi, Y.S.; Lee, J.; Park, K.H.; Lee, Y.J.; Park, D.C.; Kim, S.H.; Byun, J.Y.; Yeo, S.G. Comparing the Clinical Manifestations of Bell’s Palsy between Pre-COVID-19 Pandemic and COVID-19 Pandemic Periods. J. Clin. Med. 2023, 12, 1700. [Google Scholar] [CrossRef]
- Ziv, O.; Hazout, C.; Goldberg, N.; Tavdi, A.; Zholkovsky, A.; Kordeluk, S.; El-Saied, S.; Dinur, A.B.; Ben-Zion, J.; Muhanna, N.; et al. The Significance of Bell’s Palsy That Presents as Monocranial Versus Polycranial Neuropathy: A Case Series and Systematic Literature Review. Otol. Neurotol. 2023, 44, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Paolino, E.; Granieri, E.; Tola, M.R.; Panarelli, M.A.; Carreras, M. Predisposing factors in Bell’s palsy: A case-control study. J. Neurol. 1985, 232, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yu, Z.; Zhou, W.; Cai, H.; Jin, F.; Hu, J.; Yu, E.; Xuan, L. Effect of temperature and air pressure on the incidence of Bell’s palsy in Hangzhou: A distributed lag non-linear analysis. Sci. Rep. 2023, 13, 20424. [Google Scholar] [CrossRef] [PubMed]
- Zaccarelli-Marino, M.A.; Fonseca, F.L.A.; Gascón, T.M.; Filipini, R. Profile of Overweight and Obesity in Children and Adolescents and Frequency of Type 2 Diabetes Mellitus and Glucose Intolerance: A Study in Public School in Brazil. Diabetes Metab. Syndr. Obes. 2020, 13, 1733–1741. [Google Scholar] [CrossRef]
- Urban, P.P.; Forst, T.; Lenfers, M.; Koehler, J.; Connemann, B.J.; Beyer, J. Incidence of subclinical trigeminal and facial nerve involvement in diabetes mellitus. Electromyogr. Clin. Neurophysiol. 1999, 39, 267–272. [Google Scholar] [PubMed]
- Stamboulis, E.; Vassilopoulos, D.; Kalfakis, N. Symptomatic focal mononeuropathies in diabetic patients: Increased or not? J. Neurol. 2005, 252, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Turgman, J.; Sarova-Pinhas, I.; Goldhammer, J.; Braham, J. Prevalence of glucose intolerance in patients with Bell’s palsy. Isr. J. Med. Sci. 1973, 9, 1054–1056. [Google Scholar] [PubMed]
- Dillon, B.R.; Ang, L.; Pop-Busui, R. Spectrum of Diabetic Neuropathy: New Insights in Diagnosis and Treatment. Annu. Rev. Med. 2024, 75, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sun, Q.; Bi, W.; Mu, X.; Li, Y.; Hu, M. Genetic association of hypertension and several other metabolic disorders with Bell’s palsy. Front. Genet. 2023, 14, 1077438. [Google Scholar] [CrossRef]
- Karagöz, T.; Bayir, Ö.; Çadalli Tatar, E.; Çakal, E.; Özdek, A.; Keseroğlu, K.; Şahin, M.; Korkmaz, M.H. Prognostic role of homeostasis model assessment and oral glucose tolerance test in nondiabetic patients with Bell’s palsy. Turk. J. Med. Sci. 2020, 50, 405–410. [Google Scholar] [CrossRef]
Case | Control | Total | Test Stat. | p-Value | |
---|---|---|---|---|---|
Total | 140 | 280 | 420 | ||
Sex | Chisq. (1 df) = 0 | 1 | |||
Female | 88 (62.9) | 176 (62.9) | 264 (62.9) | ||
Male | 52 (37.1) | 104 (37.1) | 156 (37.1) | ||
Age (years) median (IQR) | Rank-sum test | 0.929 | |||
52 (42, 62.2) | 53 (43, 61.2) | 53 (42.8, 62) | |||
Age group (years) | Chisq. (11 df) = 0 | 1 | |||
(19,24) | 3 (2.1) | 6 (2.1) | 9 (2.1) | ||
(24,29) | 3 (2.1) | 6 (2.1) | 9 (2.1) | ||
(29,34) | 7 (5) | 14 (5) | 21 (5) | ||
(34,39) | 11 (7.9) | 22 (7.9) | 33 (7.9) | ||
(39,44) | 18 (12.9) | 36 (12.9) | 54 (12.9) | ||
(44,49) | 13 (9.3) | 26 (9.3) | 39 (9.3) | ||
(49,54) | 23 (16.4) | 46 (16.4) | 69 (16.4) | ||
(54,59) | 19 (13.6) | 38 (13.6) | 57 (13.6) | ||
(59,64) | 18 (12.9) | 36 (12.9) | 54 (12.9) | ||
(64,69) | 19 (13.6) | 38 (13.6) | 57 (13.6) | ||
(69,74) | 5 (3.6) | 10 (3.6) | 15 (3.6) | ||
(74,79) | 1 (0.7) | 2 (0.7) | 3 (0.7) | ||
SBP (mmHg) | Rank-sum test | <0.001 * | |||
median (IQR) | 136.5 (123, 150) | 122 (111, 132) | 126.5 (114, 140) | ||
DBP (mmHg) | Rank-sum test | <0.001 * | |||
median (IQR) | 80 (72, 85) | 73 (65, 83) | 76 (67.8, 83) | ||
Body weight (kg) | Rank-sum test | <0.001 * | |||
median (IQR) | 63 (55.1, 71) | 57.7 (52.2, 66) | 59 (53, 68) | ||
Height (m) | Rank-sum test | 0.807 | |||
median (IQR) | 1.6 (1.5, 1.6) | 1.6 (1.5, 1.6) | 1.6 (1.5, 1.6) | ||
BMI | Rank-sum test | <0.001 * | |||
median (IQR) | 25.2 (22.9, 27.7) | 23.3 (21.5, 25.8) | 23.9 (21.8, 26.3) | ||
WC (cm) | Rank-sum test | <0.001 * | |||
median (IQR) | 85 (79, 93.5) | 80 (74, 86) | 81.5 (76, 89) | ||
FBS (mg/dL) median (IQR) | Rank-sum test | <0.001 * | |||
99 (92, 111) | 92 (87, 99) | 94 (88, 102) | |||
TC (mg/dL) | t-test | 0.051 | |||
mean (SD) | 213.3 (43.5) | 222.2 (43.3) | 219.2 (43.5) | (404 df) = 1.96 | |
TG (mg/dL) | 0.047 * | ||||
median (IQR) | 116.5 (85, 167.2) | 105 (73, 147) | 109.5 (77, 151) | Rank-sum test | |
HDL-C (mg/dL) | Rank-sum test | 0.001 * | |||
median (IQR) | 50 (43.8,60) | 55.2 (45.9,65.5) | 53.3 (44.7,63.4) | ||
LDL-C (mg/dL) | t-test | <0.001 * | |||
mean (SD) | 133.8 (41.8) | 151.9 (41.6) | 145.8 (42.5) | (402 df) = 4.13 |
Variables | OR (95% CI) | p-Value | Adj. OR (95% CI) | p-Value |
---|---|---|---|---|
BMI ≥ 23 vs. <23 | 2.31 (1.48, 3.59) | <0.001 * | 1.41 (0.72, 2.75) | 0.32 |
WC (cm) a Central obesity vs. normal | 2.87 (1.86, 4.44) | <0.001 * | 1.92 (1.02, 3.61) | 0.04 * |
SBP ≥ 130 vs. <130 mmHg a | 4.03 (2.53, 6.41) | <0.001 * | 3.62 (2.04, 6.44) | <0.001 * |
DBP ≥ 85 vs. <85 mmHg a | 1.32 (0.82, 2.11) | 0.257 | ||
FBS ≥ 100 vs. <100 mg/dL a | 4.72 (2.78, 8.01) | <0.001 * | 4.68 (2.43, 8.99) | <0.001 * |
TG ≥ 150 vs. <150 mg/dL a | 1.59 (0.98, 2.57), | 0.058 | ||
HDL-C, mg/dL a Low b vs. Normal | 1.63 (1.02, 2.61) | 0.041 * | 1.25 (0.67, 2.32) | 0.486 |
TC (cont. var.), mg/dL | 0.9948 (0.9898, 0.9998) | 0.039 * | 0.9914 (0.9836, 0.9993) | 0.03 * |
LDL-C ≥ 100 vs. <100 mg/dL | 0.47 (0.26, 0.86) | 0.013 * | 0.6 (0.23, 1.51) | 0.273 |
Variables | Case, n (%) | Control, n (%) | p-Value |
---|---|---|---|
FBS 100–125 mg/dL | 44 (38.9) | 48 (18.6) | <0.001 * |
FBS < 100 mg/dL | 69 (61.1) | 210 (81.4) | |
FBS ≥ 126 mg/dL | 22 (16.3) | 9 (3.4) | <0.001 * |
FBS < 126 mg/dL | 113 (83.7) | 258 (96.6) | |
SBP ≥ 130 mmHg | 93 (66.4) | 96 (34.3) | <0.001 * |
SBP <130 mmHg | 47 (33.6) | 184 (65.7) | |
DBP ≥ 85 mmHg | 36 (25.7) | 58 (20.7) | 0.301 |
DBP < 85 mmHg | 104 (74.3) | 222 (79.3) | |
SBP ≥ 130 and DBP ≥ 85 mmHg | 34 (43.0) | 47 (21.4) | <0.001 * |
SBP < 130 and DBP < 85 mmHg | 45 (57.0) | 173 (78.6) |
Age Intervals (Years) | <35 | 35–44 | 45–54 | 55–64 | >=65 | Total | Test Stat. | p Value |
---|---|---|---|---|---|---|---|---|
Total (n) | 13 | 29 | 36 | 37 | 25 | 140 | ||
Sex | Chisq. (4 df) = 5.17 | 0.27 | ||||||
female | 9 (69.2) | 20 (69) | 25 (69.4) | 23 (62.2) | 11 (44) | 88 (62.9) | ||
male | 4 (30.8) | 9 (31) | 11 (30.6) | 14 (37.8) | 14 (56) | 52 (37.1) | ||
SBP (mmHg) | ANOVA F-test (4, 135 df) = 2.07 | 0.089 | ||||||
mean (SD) | 123.6 (18.6) | 133.8 (14.4) | 138.1 (17.5) | 138.1 (20.1) | 136.1 (13.2) | 135.5 (17.3) | ||
DBP (mmHg) | ANOVA F-test (4, 135 df) = 2.21 | 0.071 | ||||||
mean (SD) | 74.8 (10) | 79 (10.2) | 83.2 (11.3) | 78.5 (9.8) | 77.2 (10.1) | 79.2 (10.5) | ||
Weight (kg) | Kruskal–Wallis test | 0.275 | ||||||
median (IQR) | 64.1 (54, 68) | 64 (58, 73) | 64 (56.1, 72.9) | 63.1 (56.4, 69.7) | 58 (54, 63) | 63 (55.1, 71) | ||
Height (m) | ANOVA F-test (4, 133 df) = 1.33 | 0.264 | ||||||
mean (SD) | 1.6 (0.1) | 1.6 (0.1) | 1.6 (0.1) | 1.6 (0.1) | 1.6 (0.1) | 1.6 (0.1) | ||
BMI | Kruskal–Wallis test | 0.435 | ||||||
median (IQR) | 23.9 (21.8, 28.6) | 25.2 (22.6, 27.7) | 25.7 (24, 28.2) | 25.4 (23, 27.7) | 24.7 (21.3, 26) | 25.2 (22.9, 27.7) | ||
WC (cm) | ANOVA F-test (4, 132 df) = 2.25 | 0.067 | ||||||
mean (SD) | 79.7 (12.7) | 83.6 (11.8) | 87.7 (10.2) | 89 (11.8) | 87.2 (9.9) | 86.4 (11.4) | ||
FBS (mg/dL) | Kruskal–Wallis test | <0.001 * | ||||||
median (IQR) | 88 (84, 92) | 94 (88, 97.5) | 102 (94, 115) | 106 (98, 133) | 106 (95, 113) | 99 (92, 111) | ||
TC (mg/dL) | ANOVA F-test (4, 131 df) = 0.83 | 0.506 | ||||||
mean (SD) | 209.2 (36.9) | 217.6 (46.9) | 218 (49.5) | 215.9 (37.3) | 199.2 (42.8) | 213.3 (43.5) | ||
TG (mg/dL) | Kruskal–Wallis test | 0.141 | ||||||
median (IQR) | 81 (63, 120) | 92.5 (81.8, 150) | 132 (87, 187) | 126 (102, 148) | 117 (91, 169.5) | 116.5 (85, 167.2) | ||
HDL-C (mg/dL) | Kruskal–Wallis test | 0.707 | ||||||
median (IQR) | 47 (42.8, 52) | 50.3 (46.2, 56.1) | 51.1 (46, 63.5) | 50 (42.8, 60) | 49 (42, 56.9) | 50 (43.8, 60) | ||
LDL-C (mg/dL) | ANOVA F-test (4, 131 df) = 0.88 | 0.477 | ||||||
mean (SD) | 137 (34.3) | 139.6 (44.5) | 130.1 (50.3) | 139.4 (36.4) | 121.6 (36) | 133.8 (41.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mueanchoo, P.; Tepparak, N.; Chongphattararot, P.; Pruphetkaew, N.; Setthawatcharawanich, S.; Korathanakhun, P.; Amornpojnimman, T.; Sathirapanya, C.; Sathirapanya, P. Association between Bell’s Palsy and Cardiometabolic Risks: An Age- and Sex-Matched Case–Control Study. J. Pers. Med. 2024, 14, 197. https://doi.org/10.3390/jpm14020197
Mueanchoo P, Tepparak N, Chongphattararot P, Pruphetkaew N, Setthawatcharawanich S, Korathanakhun P, Amornpojnimman T, Sathirapanya C, Sathirapanya P. Association between Bell’s Palsy and Cardiometabolic Risks: An Age- and Sex-Matched Case–Control Study. Journal of Personalized Medicine. 2024; 14(2):197. https://doi.org/10.3390/jpm14020197
Chicago/Turabian StyleMueanchoo, Panitta, Nualsakol Tepparak, Pensri Chongphattararot, Nannapat Pruphetkaew, Suwanna Setthawatcharawanich, Pat Korathanakhun, Thanyalak Amornpojnimman, Chutarat Sathirapanya, and Pornchai Sathirapanya. 2024. "Association between Bell’s Palsy and Cardiometabolic Risks: An Age- and Sex-Matched Case–Control Study" Journal of Personalized Medicine 14, no. 2: 197. https://doi.org/10.3390/jpm14020197
APA StyleMueanchoo, P., Tepparak, N., Chongphattararot, P., Pruphetkaew, N., Setthawatcharawanich, S., Korathanakhun, P., Amornpojnimman, T., Sathirapanya, C., & Sathirapanya, P. (2024). Association between Bell’s Palsy and Cardiometabolic Risks: An Age- and Sex-Matched Case–Control Study. Journal of Personalized Medicine, 14(2), 197. https://doi.org/10.3390/jpm14020197