Individualized Perioperative Hemodynamic Management Using Hypotension Prediction Index Software and the Dynamics of Troponin and NTproBNP Concentration Changes in Patients Undergoing Oncological Abdominal Surgery
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Clinical Definitions
- The number of hypotension episodes.
- Total duration of hypotension episodes (unit: min).
- Average duration of each hypotension episode (unit: min).
- The proportion of time spent in hypotension (MAP < 65 mmHg) relative to the total monitoring duration (unit: %).
- Area Under the Threshold (AUT) (unit: mmHg × min).
- Time-weighted average (TWA) of MAP < 65 mmHg, calculated as the area under the curve of MAP below 65 mmHg divided by the total monitoring time (unit: mmHg).
- Number of hypotension episodes with MAP < 50 mmHg.
- Number of episodes with an increase in the HPI value above 85.
2.3. Perioperative Management
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Perioperative Dynamics of NTproBNP
3.3. Perioperative Dynamics of Troponin
3.4. Perioperative Dynamics of NtproBNP and Acute Kidney Injury
3.5. Perioperative Biomarkers’ Dynamic in Laparoscopic vs. Open Surgery
4. Discussion
5. Conclusions and Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NCS | Noncardiac Surgery |
MACE | Major Cardiovascular Event |
PMI | Perioperative Myocardial Injury |
ESC | European Society of Cardiology |
AHA | American Heart Association |
NTproBNP | N-terminal pro B-type Natriuretic Peptide |
HF | Heart Failure |
AKI | Acute Kidney Injury |
IOH | Intraoperative Hypotension |
HPI | The AcumeTM Hypotension Prediction Index Software (Edwards Lifesciences, Irvine, CA, USA) |
MAP | Mean Arterial Pressure |
ASA | American Society of Anesthesiologists Physical Status Classification System (ASA) |
KDIGO | Kidney Disease: Improving Global Outcomes Clinical Practice Guideline for Acute Kidney Injury |
AUT | Area Under the Threshold |
TWA | Time-Weighted Average |
IQR | Interquartile Range |
References
- Weiser, T.G.; Haynes, A.B.; Molina, G.; Lipsitz, S.R.; Esquivel, M.M.; Uribe-Leitz, T.; Fu, R.; Azad, T.; Chao, T.E.; Berry, W.R.; et al. Estimate of the global volume of surgery in 2012: An assessment supporting improved health outcomes. Lancet 2015, 385 (Suppl. S2), S11. [Google Scholar] [CrossRef]
- Eurostat. EU Population in 2020: Almost 448 Million. Available online: https://ec.europa.eu/eurostat/documents/2995521/11081093/3-10072020-AP-EN.pdf/d2f799bf-4412-05cc-a357-7b49b93615f1 (accessed on 31 March 2022).
- Sazgary, L.; Puelacher, C.; Lurati Buse, G.; Glarner, N.; Lampart, A.; Bolliger, D.; Steiner, L.; Gürke, L.; Wolff, T.; Mujagic, E.; et al. Incidence of major adverse cardiac events following non-cardiac surgery. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 550–558. [Google Scholar] [CrossRef]
- Sellers, D.; Srinivas, C.; Djaiani, G. Cardiovascular complications after non-cardiac surgery. Anaesthesia 2018, 73 (Suppl. S1), 34–42. [Google Scholar] [CrossRef]
- Nolde, J.M.; Schlaich, M.P.; Sessler, D.I.; Mian, A.; Corcoran, T.B.; Chow, C.K.; Chan, M.T.V.; Borges, F.K.; McGillion, M.H.; Myles, P.S.; et al. Machine learning to predict myocardial injury and death after non-cardiac surgery. Anaesthesia 2023, 78, 853–860. [Google Scholar] [CrossRef]
- Spence, J.; LeManach, Y.; Chan, M.T.V.; Wang, C.; Sigamani, A.; Xavier, D.; Pearse, R.; Alonso-Coello, P.; Garutti, I.; Srinathan, S.K.; et al. Vascular Events in Noncardiac Surgery Patients Cohort Evaluation (VISION) Study Investigators. Association between complications and death within 30 days after noncardiac surgery. Can. Med. Assoc. J. 2019, 191, E830–E837. [Google Scholar] [CrossRef]
- Weber, M.; Luchner, A.; Seeberger, M.; Mueller, C.; Liebetrau, C.; Schlitt, A.; Apostolovic, S.; Jankovic, R.; Bankovic, D.; Jovic, M.; et al. Incremental value of high-sensitive troponin T in addition to the revised cardiac index for peri-operative risk stratification in non-cardiac surgery. Eur. Heart J. 2013, 34, 853–862. [Google Scholar] [CrossRef]
- Fleisher, L.A.; Fleischmann, K.E.; Auerbach, A.D.; Barnason, S.A.; Beckman, J.A.; Bozkurt, B.; Davila-Roman, V.G.; Gerhard-Herman, M.D.; Holly, T.A.; Kane, G.C.; et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 130, 2215–2245. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, S.; Mehilli, J.; Cassese, S.; Hall, T.S.; Abdelhamid, M.; Barbato, E.; De Hert, S.; de Laval, I.; Geisler, T.; Hinterbuchner, L.; et al. 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery. Eur. Heart J. 2022, 43, 3826–3924. [Google Scholar] [CrossRef] [PubMed]
- Puelacher, C.; Lurati Buse, G.; Seeberger, D.; Sazgary, L.; Marbot, S.; Lampart, A.; Espinola, J.; Kindler, C.; Hammerer, A.; Seeberger, E.; et al. Perioperative myocardial injury after noncardiac surgery: Incidence, mortality, and characterization. Circulation 2018, 137, 1221–1232. [Google Scholar] [CrossRef] [PubMed]
- Kinnunen, P.; Vuolteenaho, O.; Ruskoaho, H. Mechanisms of atrial and brain natriuretic peptide release from rat ventricular myocardium: Effect of stretching. Endocrinology 1993, 132, 1961–1970. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, Y.; Nishi, I.; Furuichi, S.; Noguchi, T.; Sase, K.; Kihara, Y.; Goto, Y.; Nonogi, H. B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: Comparison between systolic and diastolic heart failure. J. Am. Coll. Cardiol. 2006, 47, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Dernellis, J.; Panaretou, M. Assessment of cardiac risk before non-cardiac surgery: Brain natriuretic peptide in 1590 patients. Heart 2006, 92, 1645–1650. [Google Scholar] [CrossRef] [PubMed]
- Duceppe, E.; Patel, A.; Chan, M.T.V.; Berwanger, O.; Ackland, G.; Kavsak, P.A.; Rodseth, R.; Biccard, B.; Chow, C.K.; Borges, F.K.; et al. Preoperative N-terminal pro-B-type natriuretic peptide and cardiovascular events after noncardiac surgery: A cohort study. Ann. Intern. Med. 2020, 172, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Rodseth, R.N.; Biccard, B.M.; Le Manach, Y.; Sessler, D.I.; Buse, G.A.L.; Thabane, L.; Schutt, R.C.; Bolliger, D.; Cagini, L.; Cardinale, D.; et al. The prognostic value of pre-operative and post-operative B-type natriuretic peptides in patients undergoing noncardiac surgery: B-type natriuretic peptide and N-terminal fragment of pro-B-type natriuretic peptide: A systematic review and individual patient data meta-analysis. J. Am. Coll. Cardiol. 2014, 63, 170–180. [Google Scholar] [CrossRef]
- Jozwiak, M.; Monnet, X.; Teboul, J.L. Pressure Waveform Analysis. Anesth. Analg. 2018, 126, 1930–1933. [Google Scholar] [CrossRef]
- Vos, J.J.; Scheeren, T.W.L. Intraoperative hypotension and its prediction. Indian. J. Anaesth. 2019, 63, 877–885. [Google Scholar] [CrossRef]
- Sidiropoulou, T.; Tsoumpa, M.; Griva, P.; Galarioti, V.; Matsota, P. Prediction and Prevention of Intraoperative Hypotension with the Hypotension Prediction Index: A Narrative Review. J. Clin. Med. 2022, 11, 5551. [Google Scholar] [CrossRef]
- Hatib, F.; Jian, Z.; Buddi, S.; Lee, C.; Settels, J.; Sibert, K.; Rinehart, J.; Cannesson, M. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology 2018, 129, 663–674. [Google Scholar] [CrossRef]
- Wijnberge, M.; Geerts, B.F.; Hol, L.; Lemmers, N.; Mulder, M.P.; Berge, P.; Schenk, J.; Terwindt, L.E.; Hollmann, M.W.; Vlaar, A.P.; et al. Effect of a Machine Learning-Derived Early Warning System for Intraoperative Hypotension vs Standard Care on Depth and Duration of Intraoperative Hypotension During Elective Noncardiac Surgery: The HYPE Randomized Clinical Trial. JAMA 2020, 323, 1052–1060. [Google Scholar] [CrossRef]
- Šribar, A.; Jurinjak, I.S.; Almahariq, H.; Bandić, I.; Matošević, J.; Pejić, J.; Peršec, J. Hypotension prediction index guided versus conventional goal directed therapy to reduce intraoperative hypotension during thoracic surgery: A randomized trial. BMC Anesthesiol. 2023, 23, 101. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Maeda, M.; Kunigo, T.; Sato, T.; Takahashi, K.; Ohno, S.; Hirahata, T.; Yamakage, M. Effect of using hypotension prediction index versus conventional goal-directed haemodynamic management to reduce intraoperative hypotension in non-cardiac surgery: A randomised controlled trial. J. Clin. Anesth. 2024, 93, 111348. [Google Scholar] [CrossRef] [PubMed]
- Kouz, K.; Monge García, M.I.; Cerutti, E.; Lisanti, I.; Draisci, G.; Frassanito, L.; Sander, M.; Akbari, A.A.; Frey, U.H.; Grundmann, C.D.; et al. Intraoperative hypotension when using hypotension prediction index software during major noncardiac surgery: A European multicentre prospective observational registry (EU HYPROTECT). BJA Open 2023, 6, 100140. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.S.; Davis, N.A. Cardiac Physiology. In Miller’s Anesthesia, 9th ed.; Gropper, M.A., Cohen, N.H., Eriksson, L.I., Fleisher, L.A., Leslie, K., Wiener-Kronish, J.P., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2020. [Google Scholar]
- Kellum, J.A.; Lameire, N.; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef] [PubMed]
- Smilowitz, N.R.; Gupta, N.; Guo, Y.; Beckman, J.A.; Bangalore, S.; Berger, J.S. Trends in cardiovascular risk factor and disease prevalence in patients undergoing noncardiac surgery. Heart 2018, 104, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Mohammad Shehata, I.; Elhassan, A.; Alejandro Munoz, D.; Okereke, B.; Cornett, E.M.; Varrassi, G.; Imani, F.; Kaye, A.D.; Sehat-Kashani, S.; Urits, I.; et al. Intraoperative Hypotension Increased Risk in the Oncological Patient. Anesth. Pain. Med. 2021, 11, e112830. [Google Scholar] [CrossRef] [PubMed]
- Niraula, S.; Seruga, B.; Ocana, A.; Shao, T.; Goldstein, R.; Tannock, I.F.; Amir, E. The price we pay for progress A meta-analysis of harms of newly approved anticancer drugs. J. Clin. Oncol. 2012, 30, 3012–3019. [Google Scholar] [CrossRef] [PubMed]
- Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol. 2019, 54, 407–419. [Google Scholar] [CrossRef]
- Sessler, D.I.; Bloomstone, J.A.; Aronson, S.; Berry, C.; Gan, T.J.; Kellum, J.A.; Plumb, J.; Mythen, M.G.; Grocott, M.P.; Edwards, M.R.; et al. Perioperative Quality Initiative consensus statement on intraoperative blood pressure, risk and outcomes for elective surgery. Br. J. Anaesth. 2019, 122, 563–574. [Google Scholar] [CrossRef]
- D’Amico, F.; Fominskiy, E.V.; Turi, S.; Pruna, A.; Fresilli, S.; Triulzi, M.; Zangrillo, A.; Landoni, G. Intraoperative hypotension and postoperative outcomes: A meta-analysis of randomised trials. Br. J. Anaesth. 2023, 131, 823–831. [Google Scholar] [CrossRef]
- Kamenetsky, E.; Hogue, C.W. Is a Mean Arterial Pressure Less Than 65 mm Hg an Appropriate Indicator of the Quality of Anesthesia Care? Anesth. Analg. 2021, 132, 942–945. [Google Scholar] [CrossRef]
- de Keijzer, I.N.; Vos, J.J.; Scheeren, T.W.L. Hypotension Prediction Index: From proof-of-concept to proof-of-feasibility. J. Clin. Monit. Comput. 2020, 34, 1135–1138. [Google Scholar] [CrossRef]
- Gregory, A.; Stapelfeldt, W.H.; Khanna, A.K.; Smischney, N.J.; Boero, I.J.; Chen, Q.; Stevens, M.; Shaw, A.D. Intraoperative Hypotension Is Associated with Adverse Clinical Outcomes After Noncardiac Surgery. Anesth. Analg. 2021, 132, 1654–1665. [Google Scholar] [CrossRef]
- Ahuja, S.; Mascha, E.J.; Yang, D.; Maheshwari, K.; Cohen, B.; Khanna, A.K.; Ruetzler, K.; Turan, A.; Sessler, D.I. Associations of Intraoperative Radial Arterial Systolic, Diastolic, Mean, and Pulse Pressures with Myocardial and Acute Kidney Injury after Noncardiac Surgery: A Retrospective Cohort Analysis. Anesthesiology 2020, 132, 291–306. [Google Scholar] [CrossRef]
- Li, W.; Hu, Z.; Yuan, Y.; Liu, J.; Li, K. Effect of hypotension prediction index in the prevention of intraoperative hypotension during noncardiac surgery: A systematic review. J. Clin. Anesth. 2022, 83, 110981. [Google Scholar] [CrossRef]
- Weinberg, L.; Li, S.Y.; Louis, M.; Karp, J.; Poci, N.; Carp, B.S.; Miles, L.F.; Tully, P.; Hahn, R.; Karalapillai, D.; et al. Reported definitions of intraoperative hypotension in adults undergoing non-cardiac surgery under general anaesthesia: A review. BMC Anesthesiol. 2022, 22, 69. [Google Scholar] [CrossRef]
- Sessler, D.I.; Khan, M.Z.; Maheshwari, K.; Liu, L.; Adegboye, J.; Saugel, B.; Mascha, E.J. Blood Pressure Management by Anesthesia Professionals: Evaluating Clinician Skill from Electronic Medical Records. Anesth. Analg. 2021, 132, 946–956. [Google Scholar] [CrossRef]
- Vernooij, L.M.; van Klei, W.A.; Moons, K.G.; Takada, T.; van Waes, J.; Damen, J.A. The comparative and added prognostic value of biomarkers to the Revised Cardiac Risk Index for preoperative prediction of major adverse cardiac events and all-cause mortality in patients who undergo noncardiac surgery. Cochrane Database Syst. Rev. 2021, 12, CD013139. [Google Scholar] [PubMed]
- Duma, A.; Maleczek, M.; Wagner, C.; Haslacher, H.; Szekeres, T.; Jaffe, A.S.; Nagele, P. NT-proBNP in young healthy adults undergoing non-cardiac surgery. Clin. Biochem. 2021, 96, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L. Fluid Volume Homeostasis in Heart Failure: A Tale of 2 Circulations. J. Am. Heart Assoc. 2022, 11, e026668. [Google Scholar] [CrossRef] [PubMed]
- Strandgaard, S.; Paulson, O.B. Cerebral blood flow and its pathophysiology in hypertension. Am. J. Hypertens. 1989, 2 Pt 1, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.; Pabbidi, M.R.; Farley, J.; Roman, R.J. Molecular mechanisms of renal blood flow autoregulation. Curr. Vasc. Pharmacol. 2014, 12, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Goodwill, A.G.; Dick, G.M.; Kiel, A.M.; Tune, J.D. Regulation of Coronary Blood Flow. Compr. Physiol. 2017, 7, 321–382. [Google Scholar] [CrossRef] [PubMed]
Variable | Result |
---|---|
Gender | |
Female, n (%) | 14 (30.4%) |
Male, n (%) | 32 (69.6%) |
Age, Years, Mean (SD), (Min–Max) | 69.83 (11.61), (36–86) |
Chronic Diseases | |
Hypertension, n (%) | 32 (69.6%) |
Coronary Heart Disease, n (%) | 16 (34.8%) |
Chronic Obstructive Pulmonary Disease, n (%) | 1 (2.2%) |
Asthma, n (%) | 3 (6.5%) |
Diabetes, n (%) | 15 (32.6%) |
Atherosclerosis, n (%) | 19 (41.3%) |
Obesity, n (%) | 15 (32.6%) |
Chronic Heart Failure, n (%) | 21 (45.7%) |
Chronic Kidney Disease, n (%) | 10 (21.7%) |
ASA Score | |
3, n (%) | 30 (65.2%) |
4, n (%) | 16 (34.8%) |
Preoperative Oncological Treatment | |
Chemotherapy, n (%) | 25 (54.3%) |
Radiotherapy, n (%) | 6 (13.0%) |
Surgery Type | |
Right Hemicolectomy, n (%) | 9 (19.6%) |
Left Hemicolectomy, n (%) | 3 (6.5%) |
Anterior Resection of Rectum, n (%) | 7 (15.2%) |
Gastrectomy, n (%) | 20 (43.5%) |
Whipple Operation, n (%) | 6 (13.0%) |
Cardia Resection, n (%) | 1 (2.2%) |
Surgery Duration, Minutes, Mean (SD), (Min−Max) | 241.93 (97.10), (55–485) |
Surgery Duration Interval | |
<2 h, n (%) | 4 (8.7%) |
2–4 h, n (%) | 19 (41.3%) |
>4 h, n (%) | 23 (50.0%) |
Type | |
Open, n (%) | 29 (63.0%) |
Laparoscopic, n (%) | 17 (37.0%) |
POSSUM Score | |
Physiological Risk, Mean (SD), (Min−Max) | 26.76 (8.55), (14–54) |
Surgical Risk, Mean (SD), (Min−Max) | 17.17 (5.55), (8–33) |
Morbidity, %, Mean (SD), (Min−Max) | 75.66 (21.79), (23.33–99.69) |
Mortality, %, Mean (SD), (Min−Max) | 34.58 (23.78), (4.07–92.69) |
Total Hospitalization Time, Days, Mean (SD), (Min−Max) | 18.74 (11.48), (6–58) |
Postoperative Hospitalization Time, Days, Mean (SD), (Min−Max) | 12.96 (9.02), (4–51) |
Intraoperative Use of Inotropes or Vasopressors | |
Noradrenaline, n (%) | 45 (97.8%) |
Dobutamine, n (%) | 17 (37.0%) |
Combined use of | |
Noradrenaline and Dobutamine, n (%) | 17 (37.0%) |
Baseline NTproBNP Level, pg/mL, Mean (SD), (Min−Max) | 641.33 (1994.89), (12.3–13,350.4) |
Baseline Troponin Level, μg/L, Mean (SD), (Min−Max) | 0.0158 (0.01), (0.003–0.052) |
Baseline Creatinine Level, mg/dl, Mean (SD), (Min−Max) | 1.05 (0.57), (0.61–4.49) |
All Patients (n = 46) | Patients without Hypotension Episodes (n = 8) | Patients with Minimum of One Hypotension Episode (n = 38) | |||||
---|---|---|---|---|---|---|---|
Variable | Median | IQR | Median | IQR | Median | IQR | p-Value |
Total duration of monitoring (min) | 262.5 | 147.8 | 225 | 164.5 | 271.5 | 123.8 | 0.434 |
Number of episodes with HPI > 85 | 9.5 | 11 | 8 | 3.25 | 11 | 12 | 0.12 |
The number of hypotension episodes | 2 | 2.25 | 0 | 0 | 2 | 3.25 | <0.001 |
Total duration of hypotension episodes, minutes | 3 | 6.5 | 0 | 0 | 5 | 9.03 | <0.001 |
The proportion of time spent in hypotension, % | 1.31 | 3.18 | 0 | 0 | 1.67 | 3.66 | <0.001 |
Average duration of each hypotension episode, min | 1.95 | 1.87 | 0 | 0 | 2 | 1.44 | <0.001 |
Mean MAP if < 65 mmHg | 60.07 | 3.09 | 0 | 0 | 60.07 | 3.09 | <0.001 |
AUT < 65 mmHg | 23.67 | 53.92 | 0 | 0 | 30.17 | 53.25 | <0.001 |
TWA MAP < 65 mmHg | 0.0850 | 0.183 | 0 | 0 | 0.12 | 0.25 | <0.001 |
Number of episodes with MAP < 50 mmHg | 0 | 0 | 0 | 0 | 0 | 0 | 0.194 |
Preoperative | Postoperative | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HF | AKI | PMI | |||||||||||||
No (n = 25) | Yes (n = 21) | No (n = 35) | Yes (n = 11) | No (n = 41) | Yes (n = 5) | ||||||||||
Variable | Mdn | IQR | Mdn | IQR | p-Value | Mdn | IQR | Mdn | IQR | p-Value | Mdn | IQR | Mdn | IQR | p-Value |
Min 1 episode of hypotension, n (%) | 18 (72%) | 20 (95%) | 0.055 | 28 (80%) | 10 (91%) | 0.658 | 35 (85%) | 3 (60%) | 0.203 | ||||||
Total duration of monitoring (min) | 279 | 120.17 | 250 | 177.5 | 0.225 | 279 | 137 | 230 | 134 | 0.067 | 259 | 126.5 | 357 | 169.5 | 0.298 |
Number of episodes with HPI > 85 | 9 | 9 | 11 | 12 | 0.347 | 10 | 9 | 6 | 14 | 0.409 | 10 | 11.5 | 8 | 10 | 0.873 |
The number of hypotension episodes | 2 | 4 | 2 | 2 | 0.374 | 2 | 2 | 1 | 6 | 0.844 | 2 | 2.5 | 2 | 7 | 0.914 |
Total duration of hypotension episodes, min | 3 | 9.85 | 3 | 4.5 | 0.564 | 3 | 6 | 2 | 12 | 0.806 | 3 | 6.5 | 3 | 35.35 | 0.696 |
The proportion of time spent in hypotension, % | 1.03 | 3.11 | 1.4 | 3.5 | 0.32 | 1.21 | 3.2 | 1.4 | 5.53 | 0.353 | 1.35 | 3.12 | 0.84 | 10.01 | 0.764 |
Average duration of each hypotension episode, min | 2 | 2.92 | 1.89 | 1.92 | 0.642 | 1.89 | 1.83 | 2 | 3.35 | 0.332 | 2 | 1.83 | 1.5 | 3.9 | 0.376 |
Mean MAP if < 65 mmHg | 60.07 | 4.07 | 60.32 | 2.88 | 0.483 | 60.19 | 2.28 | 58.62 | 6.24 | 0.233 | 60.14 | 2.95 | 59.04 | −56.03 | 0.607 |
AUT < 65 mmHg | 22.67 | 61.84 | 24.67 | 68.34 | 0.674 | 21.67 | 44.67 | 28 | 102.34 | 0.366 | 24.67 | 55.17 | 11.33 | 323.17 | 0.559 |
TWA MAP < 65 mmHg | 0.07 | 0.2 | 0.1 | 0.29 | 0.426 | 0.07 | 0.17 | 0.11 | 0.75 | 0.25 | 0.09 | 0.17 | 0.03 | 0.91 | 0.645 |
Number of episodes with MAP < 50 mmHg | 0 | 0 | 0 | 0 | 0.916 | 0 | 0 | 0 | 1 | 0.027 | 0 | 0 | 0 | 1.5 | 0.672 |
All Patients | Heart Failure | No Heart Failure | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N = 21 | N = 25 | ||||||||||
Mdn | IQR | Min. | Max. | Mdn | IQR | Mdn | IQR | Z | p-Value | r | |
NT-pro-BNP–baseline | 183.9 | 428.1 | 12.3 | 13,350.4 | 435.9 | 711.15 | 87 | 232.2 | −3.34 | <0.001 | 0.49 |
NT-pro-BNP–24 h | 285.8 | 679.8 | 39.0 | 10,558.5 | 482.3 | 1067.6 | 201.4 | 268.1 | −3.08 | 0.002 | 0.45 |
NT-pro-BNP–48 h | 276.7 | 609.4 | 19.2 | 17,067.9 | 346 | 1180.2 | 157.6 | 377.05 | −2.72 | 0.006 | 0.4 |
Δ NT-pro-BNP–1-0 | 91.2 | 177.4 | −2791.9 | 1959.7 | 104.6 | 292.7 | 70.9 | 150.4 | −0.69 | 0.487 | 0.1 |
Δ NT-pro-BNP–2-0 | 64.6 | 241.0 | −4743.6 | 14,793.8 | 90.1 | 290.35 | 37 | 192.6 | −0.45 | 0.651 | 0.07 |
Δ NT-pro-BNP–2-1 | −31.3 | 160.1 | −1951.7 | 13,034.8 | −60.6 | 325.55 | −19.8 | 110.3 | −0.69 | 0.487 | 0.1 |
%Δ NT-pro-BNP–1-0 | 177.6 | 171.8 | 64.1 | 658.8 | 146.28 | 117 | 225.17 | 267.82 | −2.15 | 0.032 | 0.32 |
%Δ NT-pro-BNP–2-0 | 166.0 | 190.7 | 28.5 | 793.2 | 153.1 | 145.86 | 226.99 | 269.58 | −1.16 | 0.247 | 0.17 |
%Δ NT-pro-BNP–2-1 | 82.7 | 52.6 | 17.5 | 658.5 | 81.52 | 80.74 | 83.85 | 56.66 | −0.39 | 0.7 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cylwik, J.; Celińska-Spodar, M.; Dudzic, M. Individualized Perioperative Hemodynamic Management Using Hypotension Prediction Index Software and the Dynamics of Troponin and NTproBNP Concentration Changes in Patients Undergoing Oncological Abdominal Surgery. J. Pers. Med. 2024, 14, 211. https://doi.org/10.3390/jpm14020211
Cylwik J, Celińska-Spodar M, Dudzic M. Individualized Perioperative Hemodynamic Management Using Hypotension Prediction Index Software and the Dynamics of Troponin and NTproBNP Concentration Changes in Patients Undergoing Oncological Abdominal Surgery. Journal of Personalized Medicine. 2024; 14(2):211. https://doi.org/10.3390/jpm14020211
Chicago/Turabian StyleCylwik, Jolanta, Małgorzata Celińska-Spodar, and Mariusz Dudzic. 2024. "Individualized Perioperative Hemodynamic Management Using Hypotension Prediction Index Software and the Dynamics of Troponin and NTproBNP Concentration Changes in Patients Undergoing Oncological Abdominal Surgery" Journal of Personalized Medicine 14, no. 2: 211. https://doi.org/10.3390/jpm14020211
APA StyleCylwik, J., Celińska-Spodar, M., & Dudzic, M. (2024). Individualized Perioperative Hemodynamic Management Using Hypotension Prediction Index Software and the Dynamics of Troponin and NTproBNP Concentration Changes in Patients Undergoing Oncological Abdominal Surgery. Journal of Personalized Medicine, 14(2), 211. https://doi.org/10.3390/jpm14020211