The Interplay between Dyslipidemia and Neighboring Developments in Coronary Artery Disease Progression: A Personalized Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dependent Variables
2.2. Urbanization Assessment Methodology
2.3. Statistical Analysis
3. Results
3.1. Logistic Regression
3.2. Receiver Operator Curve (ROC)
3.2.1. Three Hundred-Meter Buffer (28.3 Ha Area around Place of Habitation)
3.2.2. Five Hundred-Meter Buffer (78.5 Ha Area around Place of Habitation)
3.2.3. Seven Hundred-Meter Buffer (153.9 Ha Area around Place of Habitation)
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaya, G.E.; Leucker, T.M.; Jones, S.R.; Martin, S.S.; Toth, P.P. Coronary heart disease risk: Low-density lipoprotein and beyond. Trends Cardiovasc. Med. 2022, 32, 181–194. [Google Scholar] [CrossRef]
- Hunter, R.F.; Cleland, C.; Cleary, A.; Droomers, M.; Wheeler, B.W.; Sinnett, D.; Nieuwenhuijsen, M.J.; Braubach, M. Environmental, health, wellbeing, social and equity effects of urban green space interventions: A meta-narrative evidence synthesis. Environ. Int. 2019, 130, 104923. [Google Scholar] [CrossRef]
- Hughes, B.B.; Kuhn, R.; Peterson, C.M.; Rothman, D.S.; Solórzano, J.R.; Mathers, C.D.; Dickson, J.R. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model. Bull. World Health Organ. 2011, 89, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Nemery, B.; Hoet, P.H.; Nemmar, A. The Meuse Valley fog of 1930: An air pollution disaster. Lancet 2001, 357, 704–708. [Google Scholar] [CrossRef] [PubMed]
- Cobelo, I.; Castelhano, F.J.; Borge, R.; Roig, H.L.; Adams, M.; Amini, H.; Koutrakis, P.; Réquia, W.J. The impact of wildfires on air pollution and health across land use categories in Brazil over a 16-year period. Environ. Res. 2023, 224, 115522. [Google Scholar] [CrossRef] [PubMed]
- Nance, E. Monitoring Air Pollution Variability during Disasters. Atmosphere 2021, 12, 420. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.N.; Balde, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [PubMed]
- Daiber, A.; Münzel, T. Special Issue “Impact of environmental pollution and stress on redox signaling and oxidative stress pathways”. Redox Biol. 2020, 37, 101621. [Google Scholar] [CrossRef]
- Ige, J.; Pilkington, P.; Orme, J.; Williams, B.; Prestwood, E.; Black, D.; Carmichael, L.; Scally, G. The relationship between buildings and health: A systematic review. J. Public Health 2019, 41, e121–e132. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.Y.; Pandit, S.; Guha, S.; Jadhav, U.; Rao, M.S.; Gaurav, K.; Mane, A.; Dubey, A.; Bhagwatkar, H.; Venkataswamy, K.; et al. Demographic profile, clinical characteristics and medical management patterns of Indian coronary artery disease patients: A nationwide urban-based, real-world, retrospective, observational electronic medical record study- report of baseline data. Expert. Rev. Cardiovasc. Ther. 2021, 19, 769–775. [Google Scholar] [CrossRef]
- Urbanowicz, T.; Skotak, K.; Filipiak, K.J.; Olasińska-Wiśniewska, A.; Szczepański, K.; Wyrwa, M.; Sikora, J.; Tykarski, A.; Jemielity, M. Long-Term Exposure of Nitrogen Oxides Air Pollution (NO2) Impact for Coronary Artery Lesion Progression-Pilot Study. J. Pers. Med. 2023, 13, 1376. [Google Scholar] [CrossRef]
- Guo, L.H.; Zeeshan, M.; Huang, G.F.; Chen, D.H.; Xie, M.; Liu, J.; Dong, G.H. Influence of Air Pollution Exposures on Cardiometabolic Risk Factors: A Review. Curr. Environ. Health Rep. 2023. epub ahead of print. [Google Scholar] [CrossRef]
- Zaman, M.; Muslim, M.; Jehangir, A. Environmental noise-induced cardiovascular, metabolic and mental health disorders: A brief review. Environ. Sci. Pollut. Res. Int. 2022, 29, 76485–76500. [Google Scholar] [CrossRef] [PubMed]
- Gostimirovic, M.; Novakovic, R.; Rajkovic, J.; Djokic, V.; Terzic, D.; Putnik, S.; Gojkovic-Bukarica, L. The influence of climate change on human cardiovascular function. Arch. Environ. Occup. Health 2020, 75, 406–414. [Google Scholar] [CrossRef]
- Lei, R.; Zhang, L.; Liu, X.; Liu, C.; Xiao, Y.; Xue, B.; Wang, Z.; Hu, J.; Ren, Z.; Luo, B. Residential greenspace and blood lipids in an essential hypertension population: Mediation through PM2.5 and chemical constituents. Environ. Res. 2024, 240, 117418. [Google Scholar] [CrossRef] [PubMed]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef]
- Rampidis, G.P.; Benetos, G.; Benz, D.C.; Giannopoulos, A.A.; Buechel, R.R. A guide for Gensini Score calculation. Atherosclerosis 2019, 287, 181–183. [Google Scholar] [CrossRef]
- ISAP—Internetowy SystemAktów Prawnych. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20230001752 (accessed on 1 January 2018).
- Sęp, M.; Sikora, A. The validity of the BDOT10K database on the example of the town of Tarnobrzeg. J. Civil. Eng. Environ. Archit. 2018, 65, 141–150. [Google Scholar]
- Olszewski, R.; Gotlib, D. Rola Bazy Danych Obiektów Topograficznych w Tworzeniu Infrastruktury Informacji Przestrzennej w Polsce; Główny Urząd Geodezji i Kartografii: Warsaw, Poland, 2013. [Google Scholar]
- Karsten, G.; Benjamin, R.; Gotthard, M.; Hendrik, H.; Ralf-Uwe, S. Proposal of indicators regarding the provision and accessibility of green spaces for assessing the ecosystem service “recreation in the city” in Germany. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 26–39. [Google Scholar]
- Rojas-Rueda, D.; Morales-Zamora, E.; Alsufyani, W.A.; Herbst, C.H.; AlBalawi, S.M.; Alsukait, R.; Alomran, M. Environmental Risk Factors and Health: An Umbrella Review of Meta-Analyses. Int. J. Environ. Res. Public. Health 2021, 18, 704. [Google Scholar] [CrossRef]
- Bayo Jimenez, M.T.; Hahad, O.; Kuntic, M.; Daiber, A.; Münzel, T. Noise, Air, and Heavy Metal Pollution as Risk Factors for Endothelial Dysfunction. Eur. Cardiol. 2022, 18, e09. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Jiang, R.; Zhang, X.Y.; Zha, L.; Liu, D.Y.; Jin, E.Z. Role of low-density lipoprotein in mediating the effect of air pollution on coronary heart disease: A two-step multivariate Mendelian randomization study. Eur. Rev. Med. Pharmacol. Sci. 2024, 28, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Urbanowicz, T.; Skotak, K.; Olasińska-Wiśniewska, A.; Filipiak, K.J.; Bratkowski, J.; Wyrwa, M.; Sikora, J.; Tyburski, P.; Krasińska, B.; Krasiński, Z.; et al. Long-Term Exposure to PM10 Air Pollution Exaggerates Progression of Coronary Artery Disease. Atmosphere 2024, 15, 216. [Google Scholar] [CrossRef]
- Rinaldi, R.; Russo, M.; Bonanni, A.; Camilli, M.; Caffè, A.; Basile, M.; Salzillo, C.; Animati, F.M.; Trani, C.; Niccoli, G.; et al. Short-term air pollution exposure and mechanisms of plaque instability in acute coronary syndromes: An optical coherence tomography study. Atherosclerosis 2023, 2023, 117393. [Google Scholar] [CrossRef] [PubMed]
- Surit, P.; Wongtanasarasin, W.; Boonnag, C.; Wittayachamnankul, B. Association between air quality index and effects on emergency department visits for acute respiratory and cardiovascular diseases. PLoS ONE 2023, 18, e0294107. [Google Scholar] [CrossRef] [PubMed]
- Olbrich, H.G.; Röösli, M.; Herrmann, E.; Maschke, C.; Schadow, K.; Hähnel, T.; Rupprecht, H.J.; Kaltenbach, M. Aircraft noise exposure and risk for recurrent cardiovascular events after acute coronary syndrome: A prospective patient cohort study. Environ. Res. 2023, 238, 117108. [Google Scholar] [CrossRef]
- Münzel, T.; Sørensen, M.; Daiber, A. Transportation noise pollution and cardiovascular disease. Nat. Rev. Cardiol. 2021, 18, 619–636. [Google Scholar] [CrossRef]
- Daiber, A.; Steven, S.; Weber, A.; Shuvaev, V.V.; Muzykantov, V.R.; Laher, I.; Li, H.; Lamas, S.; Münzel, T. Targeting vascular (endothelial) dysfunction. Br. J. Pharmacol. 2017, 174, 1591–1619. [Google Scholar] [CrossRef]
- Schulz, E.; Jansen, T.; Wenzel, P.; Daiber, A.; Münzel, T. Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension. Antioxid. Redox Signal. 2008, 10, 1115–1126. [Google Scholar] [CrossRef]
- Gimbrone, M.A., Jr.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef]
- Weaver, A.M.; McGuinn, L.; Neas, L.; Devlin, R.; Dhingra, R.; Ward-Caviness, C.K.; Cascio, W.E.; Kraus, W.; Hauser, E.; Diaz-Sanchez, D. Associations between neighborhood socioeconomic cluster and hypertension, diabetes, myocardial infarction, and coronary artery disease within a cohort of cardiac catheterization patients. Am. Heart J. 2022, 243, 201–209. [Google Scholar] [CrossRef]
- Lechner, K.; von Schacky, C.; McKenzie, A.L.; Worm, N.; Nixdorff, U.; Lechner, B.; Kränkel, N.; Halle, M.; Krauss, R.M.; Scherr, J. Lifestyle factors and high-risk atherosclerosis: Pathways and mechanisms beyond traditional risk factors. Eur. J. Prev. Cardiol. 2020, 27, 394–406. [Google Scholar] [CrossRef]
- Münzel, T.; Hahad, O.; Sørensen, M.; Lelieveld, J.; Duerr, G.D.; Nieuwenhuijsen, M.; Daiber, A. Environmental risk factors and cardiovascular diseases: A comprehensive expert review. Cardiovasc. Res. 2022, 118, 2880–2902. [Google Scholar] [CrossRef]
- Münzel, T.; Steven, S.; Frenis, K.; Lelieveld, J.; Hahad, O.; Daiber, A. Environmental Factors Such as Noise and Air Pollution and Vascular Disease. Antioxid. Redox Signal. 2020, 33, 581–601. [Google Scholar] [CrossRef]
- Wilker, E.H.; Wu, C.D.; McNeely, E.; Mostofsky, E.; Spengler, J.; Wellenius, G.A.; Mittleman, M.A. Green space and mortality following ischemic stroke. Environ. Res. 2014, 133, 42–48. [Google Scholar] [CrossRef]
- Zijlema, W.L.; Stasinska, A.; Blake, D.; Dirgawati, M.; Flicker, L.; Yeap, B.B.; Golledge, J.; Hankey, G.J.; Nieuwenhuijsen, M.; Heyworth, J. The longitudinal association between natural outdoor environments and mortality in 9218 older men from Perth, Western Australia. Environ. Int. 2019, 125, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Bernabe-Ortiz, A.; Carrillo-Larco, R.M. Urbanization, Altitude and Cardiovascular Risk. Glob. Heart 2022, 17, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.R.; Muhammad, N.; Zakaria, R.; Bukhari, S.A.C. Modifiable risk factors and overall cardiovascular mortality: Moderation of urbanization. J. Public. Health Res. 2020, 9, 410–416. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, N.; Zhou, M.; Ma, G. Association between neighborhood food environment and dietary diversity score among older people in Beijing, China: A cross-sectional study. Front. Nutr. 2022, 9, 903214. [Google Scholar] [CrossRef]
- Ranta, A.; Ozturk, S.; Wasay, M.; Giroud, M.; Béjot, Y.; Reis, J. Environmental factors and stroke: Risk and prevention. J. Neurol. Sci. 2023, 454, 120860. [Google Scholar] [CrossRef]
- Chandy, M.; Obal, D.; Wu, J.C. Elucidating effects of environmental exposure using human-induced pluripotent stem cell disease modeling. EMBO Mol. Med. 2022, 14, e13260. [Google Scholar] [CrossRef]
- D’Alessandro, D.; Appolloni, L. Housing and health: An overview. Ann. Ig. 2020, 32, 17–26. [Google Scholar]
- Bryant-Stephens, T.C.; Strane, D.; Robinson, E.K.; Bhambhani, S.; Kenyon, C.C. Housing and asthma disparities. J. Allergy Clin. Immunol. 2021, 148, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.W. The built environment and mental health. J. Urban. Health 2003, 80, 536–555. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Rueda, D.; Nieuwenhuijsen, M.J.; Gascon, M.; Perez-Leon, D.; Mudu, P. Green spaces and mortality: A systematic review and meta-analysis of cohort studies. Lancet Planet. Health 2019, 3, e469–e477. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Liu, J.; Lu, Z.; Yue, H.; Zhang, J.; Jiang, Y. Influence of residential greenness on adverse pregnancy outcomes: A systematic review and dose-response meta-analysis. Sci. Total Environ. 2020, 718, 137420. [Google Scholar] [CrossRef]
- Zhao, Z.; Lin, F.; Wang, B.; Cao, Y.; Hou, X.; Wang, Y. Residential Proximity to Major Roadways and Risk of Type 2 Diabetes Mellitus: A Meta-Analysis. Int. J. Environ. Res. Public Health 2016, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Bayramlar, O.F.; Caglayan, C. Ultrafine Particles and Air Pollution, 1st ed.; Onal, A.E., Caglayan, C., Camur, D., Yavuz, M., Acimis, N.M., Eds.; Palme Publishing House: Ankara, Türkiye, 2022; pp. 53–66. ISBN 9786052829547. [Google Scholar]
Parameters | Group 1 (No Progression) n = 32 | Group 2 (Progression) n = 44 | p |
---|---|---|---|
Demographic: | |||
Sex (M (%)/F (%)) | 21 (66)/11 (34) | 29 (66)/15 (34) | 0.985 |
Age (years) (median (Q1–Q3)) | 71 (62–75) | 69 (60–73) | 0.188 |
Weight (kg) (median (Q1–Q3)) | 76 (69–95) | 85 (71–95) | 0.632 |
Height (cm) (median (Q1–Q3)) | 167 (160–175) | 163 (156–174) | 0.389 |
BMI (median (Q1–Q3)) | 23 (21–28) | 25 (20–32) | 0.215 |
Clinical: | |||
HA (n (%)) | 18 (56) | 26 (59) | 0.810 |
Dyslipidemia (n (%)) | 14 (44) | 28 (64) | 0.088 |
DM (n (%)) | 7 (22) | 12 (27) | 0.599 |
Thyroid (n (%)) | 1 (3) | 5 (11) | 0.195 |
Kidney (n (%)) | 3 (9) | 4 (9) | 0.975 |
CV disease (n (%)) | 4 (12) | 9 (21) | 0.490 |
COPD (n (%)) | 1 (3) | 3 (7) | 0.488 |
Coronary angiograms: | |||
Normal angiograms (n (%)) | 10 (31) | 9 (21) | 0.122 |
PCI (n (%)) | 22 (69) | 35 (80) | 0.290 |
Gensini 1 after PCI (median (Q1–Q3)) | 1 (0–5) | 5(0–10) | 0.131 |
Gensini 2 (median (Q1–Q3)) | 1 (0–5) | 13.5 (8–27.5) | <0.001 |
Time interval (days) (median (Q1–Q3)) | 383 (242–889) | 371 (124–813) | 0.490 |
Parameters | Group 1 n = 32 | Group 2 n = 44 | p |
---|---|---|---|
Urbanization related to distance: | |||
| 0.435 (0.291–0.671) | 0.467 (0.334–0.626) | 0.570 |
| 0.394 (0.248–0.552) | 0.426 (0.226–0.568) | 0.883 |
| 0.334 (0.217–0.498) | 0.374 (0.224–0.484) | 0.846 |
300 m distance development: | |||
| 0.344 (0.233–0.471) | 0.365 (0.227–0.458) | 0.962 |
| 0.009 (0.000–0.020) | 0.004 (0.000–0.015) | 0.257 |
| 0.005 (0.000–0.042) | 0.012 (0.002–0.034) | 0.479 |
500 m distance development: | |||
| 0.282 (0.158–0.375) | 0.302 (0.189–0.394) | 0.854 |
| 0.014 (0.003–0.028) | 0.009 (0.002–0.021) | 0.381 |
| 0.011 (0.002–0.028) | 0.018 (0.004–0.038) | 0.302 |
700 m distance development: | |||
| 0.226 (0.150–0.366) | 0.246 (0.155–0.332) | 0.937 |
| 0.023 (0.004–0.045) | 0.018 (0.05–0.034) | 0.621 |
| 0.010 (0.002–0.024) | 0.012 (0.001–0.037) | 0.304 |
Univariable | Multivariable | |||||
---|---|---|---|---|---|---|
300 m Distance (28.3 Hectares) | ||||||
Parameters | OR | 95% CI | p | OR | 95% CI | p |
Demographic and clinical factors: | ||||||
Sex | 1.01 | 0.39–2.64 | 0.979 | - | - | - |
Age | 0.97 | 0.92–1.02 | 0.203 | - | - | - |
BMI | 1.02 | 0.99–1.05 | 0.276 | - | - | - |
HA | 1.75 | 0.69–4.42 | 0.236 | - | - | - |
DM | 1.34 | 0.46–3.90 | 0.592 | - | - | - |
Hyperlipidemia | 2.25 | 0.89–5.70 | 0.087 | 2.83 | 1.05–7.66 | 0.040 |
CV disease | 1.65 | 0.50–5.47 | 0.409 | - | - | - |
Coronary angiography: | ||||||
Primary Gensini | 1.01 | 0.99–1.03 | 0.392 | - | - | - |
Primary PCI | 1.71 | 0.62–5.03 | 0.286 | - | - | - |
Time interval | 1.00 | 0.99–1.00 | 0.611 | - | - | - |
Development: | ||||||
| 0.67 | 0.05–1.32 | 0.752 | - | - | - |
| 1.46 | 1.23–6.23 | 0.727 | - | - | - |
| 2.49 | 1.45–4.23 | 0.893 | - | - | - |
500 m Distance (78.5 Hectares) | ||||||
Parameters | OR | 95% CI | p | OR | 95% CI | p |
Demographic and clinical factors: | ||||||
Sex | 1.01 | 0.39–2.64 | 0.979 | - | - | - |
Age | 0.97 | 0.92–1.02 | 0.203 | - | - | - |
BMI | 1.02 | 0.99–1.05 | 0.276 | - | - | - |
HA | 1.75 | 0.69–4.42 | 0.236 | - | - | - |
DM | 1.34 | 0.46–3.90 | 0.592 | - | - | - |
Hyperlipidemia | 2.25 | 0.89–5.70 | 0.087 | 3.51 | 1.18–10.41 | 0.024 |
CV disease | 1.65 | 0.50–5.47 | 0.409 | - | - | - |
Coronary angiography: | ||||||
Primary Gensini | 1.01 | 0.99–1.03 | 0.392 | 1.02 | 0.99–1.05 | 0.152 |
Primary PCI | 1.71 | 0.62–5.03 | 0.286 | - | - | - |
Time interval | 1.00 | 0.99–1.00 | 0.611 | - | - | - |
Development: | ||||||
| 0.50 | 0.06–1.47 | 0.531 | 0.07 | 0.01–0.66 | 0.101 |
| 1.78 | 1.34–7.49 | 0.459 | - | - | - |
| 6.78 | 2.45–9.45 | 0.135 | - | - | - |
700 m Distance (153.9 Hectares) | ||||||
Parameters | OR | 95% CI | p | OR | 95% CI | p |
Demographic and clinical factors: | ||||||
Sex | 1.01 | 0.39–2.64 | 0.979 | - | - | - |
Age | 0.97 | 0.92–1.02 | 0.203 | - | - | - |
BMI | 1.02 | 0.99–1.05 | 0.276 | - | - | - |
HA | 1.75 | 0.69–4.42 | 0.236 | - | - | - |
DM | 1.34 | 0.46–3.90 | 0.592 | - | - | - |
Hyperlipidemia | 2.25 | 0.89–5.70 | 0.087 | 4.24 | 1.34–13.39 | 0.014 |
CV disease | 1.65 | 0.50–5.47 | 0.409 | - | - | - |
Coronary angiography: | ||||||
Primary Gensini | 1.01 | 0.99–1.03 | 0.392 | 1.02 | 1.0–1.05 | 0.112 |
Primary PCI | 1.71 | 0.62–5.03 | 0.286 | - | - | - |
Time interval | 1.00 | 0.99–1.00 | 0.611 | - | - | - |
Development: | ||||||
| 0.59 | 0.02–1.23 | 0.747 | 0.03 | 0.00–0.49 | 0.025 |
| 2.56 | 1.67–4.87 | 0.535 | - | - | - |
| 12.67 | 2.45–16.56 | 0.113 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbanowicz, T.; Skotak, K.; Olasińska-Wiśniewska, A.; Filipiak, K.J.; Bratkowski, J.; Krasińska, B.; Krasiński, Z.; Tykarski, A.; Jemielity, M. The Interplay between Dyslipidemia and Neighboring Developments in Coronary Artery Disease Progression: A Personalized Approach. J. Pers. Med. 2024, 14, 237. https://doi.org/10.3390/jpm14030237
Urbanowicz T, Skotak K, Olasińska-Wiśniewska A, Filipiak KJ, Bratkowski J, Krasińska B, Krasiński Z, Tykarski A, Jemielity M. The Interplay between Dyslipidemia and Neighboring Developments in Coronary Artery Disease Progression: A Personalized Approach. Journal of Personalized Medicine. 2024; 14(3):237. https://doi.org/10.3390/jpm14030237
Chicago/Turabian StyleUrbanowicz, Tomasz, Krzysztof Skotak, Anna Olasińska-Wiśniewska, Krzysztof J. Filipiak, Jakub Bratkowski, Beata Krasińska, Zbigniew Krasiński, Andrzej Tykarski, and Marek Jemielity. 2024. "The Interplay between Dyslipidemia and Neighboring Developments in Coronary Artery Disease Progression: A Personalized Approach" Journal of Personalized Medicine 14, no. 3: 237. https://doi.org/10.3390/jpm14030237
APA StyleUrbanowicz, T., Skotak, K., Olasińska-Wiśniewska, A., Filipiak, K. J., Bratkowski, J., Krasińska, B., Krasiński, Z., Tykarski, A., & Jemielity, M. (2024). The Interplay between Dyslipidemia and Neighboring Developments in Coronary Artery Disease Progression: A Personalized Approach. Journal of Personalized Medicine, 14(3), 237. https://doi.org/10.3390/jpm14030237