Characterization of Plastic Scintillator Detector for In Vivo Dosimetry in Gynecologic Brachytherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment
2.2. Monte Carlo Simulations and Experimental Validation
2.3. Away-Along Table
2.4. Angular Dependence
2.5. Temperature Dependence
2.6. Uncertainties
2.6.1. Monte Carlo Uncertainties
2.6.2. Experimental Uncertainties
3. Results
3.1. Monte Carlo Simulations and Experimental Validation
3.2. Away-Along Table
3.3. Angular Dependence
3.4. Temperature Dependence
4. Discussion
4.1. Monte Carlo Simulations and Experimental Validation
4.2. Away-Along Table
4.3. Angular Dependence
4.4. Temperature Dependence
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fonseca, G.P.; Johansen, J.G.; Smith, R.L.; Beaulieu, L.; Beddar, S.; Kertzscher, G.; Verhaegen, F.; Tanderup, K. In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice. Phys. Imaging Radiat. Oncol. 2020, 16, 1–11. [Google Scholar] [CrossRef]
- Herreros, A.; Pérez-Calatayud, J.; Ballester, F.; Barrera-Gómez, J.; Abellana, R.; Melo, J.; Moutinho, L.; Tagliaferri, L.; Rovirosa, Á. In Vivo Verification of Treatment Source Dwell Times in Brachytherapy of Postoperative Endometrial Carcinoma: A Feasibility Study. J. Pers. Med. 2022, 12, 911. [Google Scholar] [CrossRef]
- Belley, M.D.; Craciunescu, O.; Chang, Z.; Langloss, B.W.; Stanton, I.N.; Yoshizumi, T.T.; Therien, M.J.; Chino, J.P. Real-time dose-rate monitoring with gynecologic brachytherapy: Results of an initial clinical trial. Brachytherapy 2018, 17, 1023–1029. [Google Scholar] [CrossRef]
- Rosales, H.M.L.; Duguay-Drouin, P.; Archambault, L.; Beddar, S.; Beaulieu, L. Optimization of a multipoint plastic scintillator dosimeter for high dose rate brachytherapy. Med. Phys. 2019, 46, 2412–2421. [Google Scholar] [CrossRef] [PubMed]
- Perez-Calatayud, J.; Ballester, F.; Tedgren, Å.C.; DeWerd, L.A.; Papagiannis, P.; Rivard, M.J.; Siebert, F.-A.; Vijande, J. GEC-ESTRO ACROP recommendations on calibration and traceability of HE HDR-PDR photon-emitting brachytherapy sources at the hospital level. Radiother. Oncol. 2022, 176, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Rivard, M.J.; Ballester, F.; Butler, W.M.; DeWerd, L.A.; Ibbott, G.S.; Meigooni, A.S.; Melhus, C.S.; Mitch, M.G.; Nath, R.; Papagiannis, P. Supplement 2 for the 2004 update of the AAPM Task Group No. 43 Report: Joint recommendations by the AAPM and GEC-ESTRO: Joint. Med. Phys. 2017, 44, e297–e338. [Google Scholar] [CrossRef]
- Perez-Calatayud, J.; Ballester, F.; Das, R.K.; DeWerd, L.A.; Ibbott, G.S.; Meigooni, A.S.; Ouhib, Z.; Rivard, M.J.; Sloboda, R.S.; Williamson, J.F. Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: Report of the AAPM and ESTRO. Med. Phys. 2012, 39, 2904–2929. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, L.; Beddar, S. Review of plastic and liquid scintillation dosimetry for photon, electron, and proton therapy. Phys. Med. Biol. 2016, 61, R305–R343. [Google Scholar] [CrossRef]
- Beddar, S.; Beaulieu, L. Scintillation Dosimetry; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Alharbi, M.; Gillespie, S.; Woulfe, P.; Mccavana, P.; O’Keeffe, S.; Foley, M. Dosimetric Characterization of an Inorganic Optical Fiber Sensor for External Beam Radiation Therapy. IEEE Sensors J. 2019, 19, 2140–2147. [Google Scholar] [CrossRef]
- Cusumano, D.; Placidi, L.; D’Agostino, E.; Boldrini, L.; Menna, S.; Valentini, V.; De Spirito, M.; Azario, L. Characterization of an inorganic scintillator for small-field dosimetry in MR-guided radiotherapy. J. Appl. Clin. Med. Phys. 2020, 21, 244–251. [Google Scholar] [CrossRef]
- Ruiz-Arrebola, S.; Fabregat-Borrás, R.; Rodríguez, E.; Fernández-Montes, M.; Pérez-Macho, M.; Ferri, M.; García, A.; Cardenal, J.; Pacheco, M.T.; Anchuelo, J.; et al. Characterization of microMOSFET detectors for in vivo dosimetry in high-dose-rate brachytherapy with 192Ir. Med. Phys. 2020, 47, 2242–2253. [Google Scholar] [CrossRef]
- Fröhlich, G.; Kovács, K.D.; Major, T.; Polgár, C. In vivo dosimetry of the rectum in image-guided adaptive interstitial-intracavitary brachytherapy of cervix cancer—A feasibility study. Rep. Pract. Oncol. Radiother. 2019, 24, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, C.; Huertas, C.; García, D.; Sáez, M. Dosimetric characterization of a novel commercial plastic scintillation detector with an MR-Linac. Med. Phys. 2023, 50, 2525–2539. [Google Scholar] [CrossRef] [PubMed]
- Jacqmin, D.J.; Miller, J.R.; Barraclough, B.A.; Labby, Z.E. Commissioning an Exradin W2 plastic scintillation detector for clinical use in small radiation fields. J. Appl. Clin. Med. Phys. 2022, 23, e13728. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, A.; Patallo, I.S.; Billas, I.; Duane, S.; Nisbet, A.; Clark, C. Characterisation of a plastic scintillation detector to be used in a multicentre stereotactic radiosurgery dosimetry audit. Radiat. Phys. Chem. 2017, 140, 373–378. [Google Scholar] [CrossRef]
- Carrasco, P.; Jornet, N.; Jordi, O.; Lizondo, M.; Latorre-Musoll, A.; Eudaldo, T.; Ruiz, A.; Ribas, M. Characterization of the Exradin W1 scintillator for use in radiotherapy. Med. Phys. 2015, 42, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Rosales, H.M.L.; Archambault, L.; Beddar, S.; Beaulieu, L. Dosimetric performance of a multipoint plastic scintillator dosimeter as a tool for real-time source tracking in high dose rate 192Ir brachytherapy. Med. Phys. 2020, 47, 4477–4490. [Google Scholar] [CrossRef] [PubMed]
- Buranurak, S.; Andersen, C.E.; Beierholm, A.R.; Lindvold, L.R. Temperature variations as a source of uncertainty in medical fiber-coupled organic plastic scintillator dosimetry. Radiat. Meas. 2013, 56, 307–311. [Google Scholar] [CrossRef]
- Wootton, L.; Beddar, S. Temperature dependence of BCF plastic scintillation detectors. Phys. Med. Biol. 2013, 58, 2955–2967. [Google Scholar] [CrossRef]
- Lee, B.; Shin, S.H.; Jang, K.W.; Yoo, W.J. Effects of temperature and X-rays on plastic scintillating fiber and infrared optical fiber. Sensors 2015, 15, 11012–11026. [Google Scholar] [CrossRef]
- Galavis, P.E.; Hu, L.; Holmes, S.; Das, I.J. Characterization of the plastic scintillation detector Exradin W2 for small field dosimetry. Med. Phys. 2019, 46, 2468–2476. [Google Scholar] [CrossRef] [PubMed]
- Sempau, J.; Badal, A.; Brualla, L. A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries—Application to far-from-axis fields. Med. Phys. 2011, 38, 5887–5895. [Google Scholar] [CrossRef] [PubMed]
- Ballester, F.; Tedgren, Å.C.; Granero, D.; Haworth, A.; Mourtada, F.; Fonseca, G.P.; Zourari, K.; Papagiannis, P.; Rivard, M.J.; Siebert, F.-A.; et al. A generic high-dose rate 192Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism. Med. Phys. 2015, 42, 3048–3062. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Calatayud, J.; Granero, D.; Ballester, F. Phantom size in brachytherapy source dosimetric studies. Med. Phys. 2004, 31, 2075–2081. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency. Absorbed Dose Determination in External Beam Radiotherapy, Technical Reports Series No. 398 (Rev. 1); IAEA: Vienna, Austria, 2024. [Google Scholar] [CrossRef]
- Gomà, C.; Sterpin, E. Monte Carlo calculation of beam quality correction factors in proton beams using PENH. Phys. Med. Biol. 2019, 64, 185009. [Google Scholar] [CrossRef] [PubMed]
- ICRU. Report 90. J. Int. Comm. Radiat. Units Meas. 2016, 14. [Google Scholar] [CrossRef]
- NUDAT 2.6. National Nuclear Data Center, Brookhaven National Laboratory. 2015. Available online: http://www.nndc.bnl.gov/nudat2/ (accessed on 1 January 2016).
- JCGM 2008:100. Evaluation of measurement data—Guide to the expression of uncertainty in measurement. Int Organ Stand Geneva ISBN. 2008; (September): 134. Available online: http://www.bipm.org/en/publications/guides/gum.html (accessed on 18 February 2024).
- Granero, D.; Vijande, J.; Ballester, F.; Rivard, M.J. Dosimetry revisited for the HDR 192Ir brachytherapy source model. Med. Phys. 2011, 2011, 487–494. [Google Scholar] [CrossRef]
- Reed, J.L.; Rivard, M.J.; Micka, J.A.; Culberson, W.S.; DeWerd, L.A. Experimental and Monte Carlo dosimetric characterization of a 1 cm 103Pd brachytherapy source. Brachytherapy 2014, 13, 657–667. [Google Scholar] [CrossRef]
- Andreo, P.; Burns, D.T.; Salvat, F. On the uncertainties of photon mass energy-absorption coefficients and their ratios for radiation dosimetry. Phys. Med. Biol. 2012, 57, 2117–2136. [Google Scholar] [CrossRef]
- Gonod, M.; Suarez, M.A.; Avila, C.C.; Karakhanyan, V.; Eustache, C.; Crouzilles, J.; Laskri, S.; Vinchant, J.-F.; Aubignac, L.; Grosjean, T. Characterization of a miniaturized scintillator detector for time-resolved treatment monitoring in HDR-brachytherapy. Phys. Med. Biol. 2022, 67, 245016. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, E.B.; Johansen, J.G.; Overgaard, J.; Piché-Meunier, D.; Tho, D.; Rosales, H.M.L.; Tanderup, K.; Beaulieu, L.; Kertzscher, G.; Beddar, S. A high-Z inorganic scintillator–based detector for time-resolved in vivo dosimetry during brachytherapy. Med. Phys. 2021, 48, 7382–7398. [Google Scholar] [CrossRef] [PubMed]
- Geneva, I.I.; Cuzzo, B.; Fazili, T.; Javaid, W. Normal body temperature: A systematic review. Open Forum Infect. Dis. 2019, 6, ofz032. [Google Scholar] [CrossRef] [PubMed]
Topic | Item | Data |
---|---|---|
Software | Code, version/ release date | PENELOPE/PenEasy [23] 25 March 2020 |
Hardware | CPU model CPU time | Intel Core i7-7700 8.7 × 106 s for 4.3 × 106 s for 6.6 × 106 s for 3.8 × 106 s for 5.1 × 106 s for 2.7 × 107 s for |
Geometry | Geometry 1 Geometry 2 PSD Farmer chamber | 10 cm × 10 cm cylindrical PMMA phantom Water sphere of radius 40 cm [25] 0.5 mm diameter, 2 mm length Data provided by the manufacturer [27] |
Materials | Air composition 1 Air density 2 Water density 3 Farmer chamber | 75.527% N, 23.178% O, 1.283% Ar, 0.012% C 1.205 mg/cm3 was used for the standard temperature of 20 °C and an atmospheric pressure of 101.325 kPa Degassed liquid water ρ = 0.998 g/cm3 at 20 °C Data provided by the manufacturer [27] |
Source | Ir-192 source Ir-192 spectrum | Model used and parameter values [24] National Nuclear Data Center (NNDC) [29] |
Physics and transport | Electrons’ cut-off energy Photons’ cut-off energy Optimization 4 Variance reduction technique 5 | 1 keV in the detector volume and 10 keV in the rest of the phantom. 1 keV in all volumes 8.4 cm3 ellipsoid external to the detector Interaction forcing IF = 200 |
Scoring | Scored quantities Number of histories 6 | Energy deposited per history in the detector (eV/history) ~3 × 1011 s histories |
Relative Propagated Uncertainty | ||
---|---|---|
Uncertainty Component | Type A [%] | Type B [%] |
1 | - | 0.8 |
Clinic Monte Carlo 2 | - | 1.6 |
Phantom composition, density 3 | - | 0.6 |
Materials’ cross-sections 4 | - | 0.1 |
Total combined uncertainty | 1.9% |
Relative Propagated Uncertainty | ||
---|---|---|
Uncertainty Component | Type A [%] | Type B [%] |
calibration factor 1 | - | 0.6 |
Electrometer calibration 1 Clinic Farmer reproducibility | - 0.5 | 0.1 - |
Source positioning inside needles | - - | 0.2 1.6 |
Mechanical drilling of needle holes | - | 1.0 |
Total combined uncertainty | 2.1% |
Ratio | Monte Carlo Result 1 | Experimental Validation |
---|---|---|
1.075 ± 2.4% | 1.084 ± 2.1% 2 | |
1.096 ± 2.4% 3 | - | |
1.086 ± 2.4% 4 | 1.106 ± 2.9% 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herreros, A.; Pérez-Calatayud, J.; Ballester, F.; Abellana, R.; Neves, J.; Melo, J.; Moutinho, L.; Tarrats-Rosell, J.; Serrano-Rueda, S.; Tagliaferri, L.; et al. Characterization of Plastic Scintillator Detector for In Vivo Dosimetry in Gynecologic Brachytherapy. J. Pers. Med. 2024, 14, 321. https://doi.org/10.3390/jpm14030321
Herreros A, Pérez-Calatayud J, Ballester F, Abellana R, Neves J, Melo J, Moutinho L, Tarrats-Rosell J, Serrano-Rueda S, Tagliaferri L, et al. Characterization of Plastic Scintillator Detector for In Vivo Dosimetry in Gynecologic Brachytherapy. Journal of Personalized Medicine. 2024; 14(3):321. https://doi.org/10.3390/jpm14030321
Chicago/Turabian StyleHerreros, Antonio, José Pérez-Calatayud, Facundo Ballester, Rosa Abellana, Joana Neves, Joana Melo, Luis Moutinho, Jordi Tarrats-Rosell, Sergi Serrano-Rueda, Luca Tagliaferri, and et al. 2024. "Characterization of Plastic Scintillator Detector for In Vivo Dosimetry in Gynecologic Brachytherapy" Journal of Personalized Medicine 14, no. 3: 321. https://doi.org/10.3390/jpm14030321
APA StyleHerreros, A., Pérez-Calatayud, J., Ballester, F., Abellana, R., Neves, J., Melo, J., Moutinho, L., Tarrats-Rosell, J., Serrano-Rueda, S., Tagliaferri, L., Placidi, E., & Rovirosa, A. (2024). Characterization of Plastic Scintillator Detector for In Vivo Dosimetry in Gynecologic Brachytherapy. Journal of Personalized Medicine, 14(3), 321. https://doi.org/10.3390/jpm14030321