Approach and Management of Pregnancies with Risk Identified by Non-Invasive Prenatal Testing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Making a Family Pedigree
3.2. Distribution of Cases by Years
3.3. Confirmed Versus High-Risk Cases at NIPT
3.4. Twin Pregnancies
3.5. NIPT-Identified High-Risk Cases
3.6. Gestational Age at Time of NIPT
3.7. Fetal Fraction
3.8. Maternal Age
3.9. Indications for the NIPT
3.10. The Direct Method of Checking High-Risk Pregnancies at NIPT
4. Discussions
- They are performed early in pregnancy (from the 10th week onwards).
- They are more accurate in detecting common chromosomal aneuploidy, with a lower rate of false positives, by comparison with biochemical screening tests.
- They reduce the number of invasive tests and consequent risk of miscarriage.
- We would like to mention the disadvantages of the NIPT compared to the invasive techniques:
- NIPT has not yet become a diagnostic method and women may still need to undergo risky invasive procedures to verify a possible positive NIPT finding [41].
- There is concern that the use of NIPT in routine prenatal care may increase the risk of stigma and discrimination against individuals who are living with trisomy 21, negatively impacting the support society provides to women who decide to raise a child with Down syndrome.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abreviations
ABI GeneAmp® System 9700 (Thermo Fisher Scientific Inc. (NYSE: TMO) Waltham, Massachusetts, United States) | Applied Biosystem Gene Amplification |
ACOG | American College of Obstetricians and Gynecologists |
BCT | Blood Collection Tube |
BGI | Beijing Genomics Institute |
cffDNA | Cell-Free Fetal Deoxyribonucleic Acid |
CNV | Copy number Variation |
CVS | Chorionic Villus Sampling |
DECIPHER | DatabasE of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources |
CNV | Copy number Variation |
CVS | Chorionic Villus Sampling |
DECIPHER | DatabasE of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources |
Del | Deletion |
DNA | Deoxyribonucleic Acid |
DT | Double Test |
Dup | Duplication |
FF | Fetal Fraction |
GA | Gestational Age |
IVF | In Vitro Fertilization |
MA | Maternal Age |
Mb | Megabase |
NCBI | National Center for Biotechnology Information |
NGS | Next-Generation Sequencing |
NIPT | Non-Invasive Prenatal Testing |
NIFTY | Non-Invasive Fetal TrisomY |
NPV | Negative Predicitive Value |
OMIM | Online Mendelian Inheritance in Man |
QF-PCR | Quantitative Fluorescent Polymerase Chain Reaction |
PPV | Positive Predictive Value |
SHOX gene | Short-Stature Homeobox gene |
SNP-Array | Single Nucleotide Polymorphism Array |
TT | Triple Test |
USA | United States of America |
Appendix A
No | Maternal Age | Gestational Age | Biochemical Risk | FF | NIPT Risk | Invasive Procedure | Genetic Test | Conclusion | Pregnancy Management |
1 | 31 | 19 | TT1 = 1:100 T212 risk | 15% | NIPS4 risk: XYY | Amniocentesis | QF-PCR8: XYY | NIPT Confirmed TT infirmed | Continues |
2 | 28 | 11 | DT3 = 1:5 T21 risk | 25% | NIPS risk: T21 | Uterine evacuation | Kariotype: T21 | NIPT Confirmed DT Confirmed | Miscarriage |
3 | 33 | 12 | DT = 1:300 T21 risk | 14% | NIPS risk: T13 | Amniocentesis | QF-PCR8: XY | NIPT Infirmed DT Infirmed | Continues |
4 | 29 | 16 | DT = 1:140 T21 risk | 22% | NIPS risk: Del5622q11 | Amniocentesis | Array: XY | Undetermined | Continues |
5 | 41 | 13 | DT = 1:4 T21 risk | 15.6% | NIFTY6 doble risk: T147 + DelXp | Amniocentesis | Kariotype + Array | NIPT Confirmed (delXp) DT Infirmed | Medically terminated pregnancy |
6 | 25 | 12 | DT = 1:141 T21 risk | 12% | Nifty risk: T21 risk | Amniocentesis | Kariotype | NIPT Confirmed DT Confirmed | Medically terminated pregnancy |
7 | 36 | 12 | DT = 1:70 T21 risk | 13% | Nifty risk: T21 (47,XY + 21) +(46,XX) | Double amniocentesis | QF-PCR + Kariotype | NIPT Confirmed DT Confirmed | Medically terminated pregnancy |
References
- Lau, T.K.; Chan, M.K.; Lo, P.S.; Chan, H.Y.; Chan, W.S.; Koo, T.Y.; Ng, H.Y.; Pooh, R.K. Clinical utility of noninvasive fetal trisomy (NIFTY) test--early experience. J. Matern. Fetal Neonatal. Med. 2012, 25, 1856–1859. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Sayres, L.C.; Cho, M.K.; Cook-Deegan, R.; Chandrasekharan, S. Commercial landscape of noninvasive prenatal testing in the United States. Prenat Diagn. 2013, 33, 521–531. [Google Scholar] [CrossRef]
- Gug, C.; Mozos, I.; Ratiu, A.; Tudor, A.; Gorduza, E.V.; Caba, L.; Gug, M.; Cojocariu, M.; Furau, C.; Furau, G.; et al. The First Study to Report NIPT Findings in a Romanian Population. Medicina 2022, 58, 79. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, S.; Wang, W.; Dong, Y.; Zhang, M.; Wang, X.; Yin, C. Cell-free DNA screening for sex chromosome aneuploidies by non-invasive prenatal testing in maternal plasma. Mol. Cytogenet. 2020, 13, 10. [Google Scholar] [CrossRef]
- Abedalthagafi, M.; Bawazeer, S.; Fawaz, R.I.; Heritage, A.M.; Alajaji, N.M.; Faqeih, E. Non-invasive prenatal testing: A revolutionary journey in prenatal testing. Front. Med. 2023, 10, 1265090. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, K.H. Screening for fetal aneuploidies at 11 to 13 weeks. Prenat. Diagn. 2011, 31, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, C.; Sun, Y.; Tang, J.; Tong, K.; Zhu, J. Noninvasive prenatal testing for assessing foetal sex chromosome aneuploidy: A retrospective study of 45,773 cases. Mol. Cytogenet. 2021, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians and Gynecologists Committee on Genetics. Committee Opinion No. 545: Noninvasive prenatal testing for fetal aneuploidy. Obstet. Gynecol. 2012, 120, 1532–1534. [Google Scholar] [CrossRef] [PubMed]
- Gregg, A.R.; Skotko, B.G.; Benkendorf, J.L.; Monaghan, K.G.; Bajaj, K.; Best, R.G.; Klugman, S.; Watson, M.S. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: A position statement of the American College of Medical Genetics and Genomics. Genet. Med. 2016, 18, 1056–1065. [Google Scholar] [CrossRef]
- McGowan-Jordan, J.; Simons, A.; Schmid, M. (Eds.) An International System for Human Cytogenomic Nomenclature; S. Karger A.G.: Basel, Switzerland, 2016; ISBN 978-3-318-05857-4. [Google Scholar]
- Van Den Bogaert, K.; Lannoo, L.; Brison, N.; Gatinois, V.; Baetens, M.; Blaumeiser, B.; Boemer, F.; Bourlard, L.; Bours, V.; De Leener, A.; et al. Outcome of publicly funded nationwide first-tier noninvasive prenatal screening. Genet. Med. 2021, 23, 1137–1142. [Google Scholar] [CrossRef]
- van Schendel, R.V.; van El, C.G.; Pajkrt, E.; Henneman, L.; Cornel, M.C. Implementing non-invasive prenatal testing for aneuploidy in a national healthcare system: Global challenges and national solutions. BMC Health Serv. Res. 2017, 17, 670. [Google Scholar] [CrossRef]
- Perrot, A.; Horn, R. The ethical landscape(s) of non-invasive prenatal testing in England, France and Germany: Findings from a comparative literature review. Eur. J. Hum. Genet. 2022, 30, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Baranova, E.E.; Sagaydak, O.V.; Galaktionova, A.M.; Kuznetsova, E.S.; Kaplanova, M.T.; Makarova, M.V.; Belenikin, M.S.; Olenev, A.S.; Songolova, E.N. Whole genome non-invasive prenatal testing in prenatal screening algorithm: Clinical experience from 12,700 pregnancies. BMC Pregnancy Childbirth 2022, 22, 633. [Google Scholar] [CrossRef] [PubMed]
- Grati, F.R.; Bajaj, K.; Zanatta, V.; Malvestiti, F.; Malvestiti, B.; Marcato, L.; Grimi, B.; Maggi, F.; Simoni, G.; Gross, S.J.; et al. Implications of fetoplacental mosaicism on cell-free DNA testing for sex chromosome aneuploidies. Prenat. Diagn. 2017, 37, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Syngelaki, A.; Chelemen, T.; Dagklis, T.; Allan, L.; Nicolaides, K.H. Challenges in the diagnosis of fetal non-chromosomal abnormalities at 11-13 weeks. Prenat. Diagn. 2011, 31, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Su, J.Y.; Wei, Y.N.; Chen, H.F.; Tong, J.R.; Chen, Y.; Deng, L.; Huang, L.L.; Zhang, L.Y. Analysis of the results of non-invasive prenatal testing (NIPT) in 545 pregnant women in advanced maternal age. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 7101–7106. [Google Scholar] [CrossRef] [PubMed]
- Demko, Z.; Prigmore, B.; Benn, P. A Critical Evaluation of Validation and Clinical Experience Studies in Non-Invasive Prenatal Testing for Trisomies 21, 18, and 13 and Monosomy, X.J. Clin. Med. 2022, 11, 4760. [Google Scholar] [CrossRef] [PubMed]
- Jayashankar, S.S.; Nasaruddin, M.L.; Hassan, M.F.; Dasrilsyah, R.A.; Shafiee, M.N.; Ismail, N.A.S.; Alias, E. Non-Invasive Prenatal Testing (NIPT): Reliability, Challenges, and Future Directions. Diagnostics 2023, 13, 2570. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, F.; Shang, X.; Liu, S.; Li, M.; Zhong, M. A study on non-invasive prenatal screening for the detection of aneuploidy. Ginekol. Pol. 2022, 93, 716–720. [Google Scholar] [CrossRef]
- van Eekhout, J.C.A.; Bekker, M.N.; Bax, C.J.; Galjaard, R.H. Non-invasive prenatal testing (NIPT) in twin pregnancies affected by early single fetal demise: A systematic review of NIPT and vanishing twins. Prenat. Diagn. 2023, 43, 829–837. [Google Scholar] [CrossRef]
- Gorduza, E.V.; Popescu, R.; Caba, L.; Ivanov, I.; Martiniuc, V.; Nedelea, F.; Militaru, M.; Socolov, D.V. Prenatal diagnosis of 21 trisomy by quantification of methylated fetal DNA in maternal blood: Study on 10 pregnancies. Rev. Română de Med. de Lab. 2013, 21, 275–284. [Google Scholar] [CrossRef]
- Willems, P.J.; Dierickx, H.; Segers, N.; Castenmiller, C.; Verschueren, S.; DeBoulle, K.; Vandenakker, E.S.; Bekedam, D.; Van Wijngaarden, W.; Engelen, M.C.; et al. High positive predictive value (PPV) of cell-free DNA (cfDNA) testing in a clinical study of 10,000 consecutive pregnancies. J. Mol. Biomark. Diagn. 2016, 7, 285–287. [Google Scholar] [CrossRef]
- Chen, C.P.; Wu, F.T.; Wang, L.K.; Pan, Y.T.; Lee, M.S.; Wang, W. High-level mosaic trisomy 14 at amniocentesis in a pregnancy associated with congenital heart defects and intrauterine growth restriction on fetal ultrasound. Taiwan J. Obstet. Gynecol. 2023, 62, 594–596. [Google Scholar] [CrossRef]
- Stochholm, K.; Juul, S.; Gravholt, C.H. Diagnosis and mortality in 47, XYY persons: A registry study. Orphanet J. Rare Dis. 2010, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Gug, C.; Rațiu, A.; Navolan, D.; Drăgan, I.; Groza, I.M.; Păpurică, M.; Vaida, M.A.; Mozos, I.; Jurcă, M.C. Incidence and Spectrum of Chromosomal Abnormalities in Miscarriage Samples: A Retrospective Study of 330 cases. Cytogenet. Genome Res. 2019, 158, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Gug, C.; Burada, F.; Ioana, M.; Riza, A.L.; Moldovan, M.; Mozoș, I.; Rațiu, A.; Martiniuc, V.; Gorduza, E.V. Polyploidy in first and second trimester pregnancies in Romania. Clin. Lab. 2020, 66, 517–527. [Google Scholar] [CrossRef]
- Tica, O.S.; Gug, C.; Tica, A.A.; Busuioc, C.J.; Amiri, S.; Tica, I.; Brailoiu, G.B.; Tica, V.I. A unique case of recurrent fetal cystic hygroma: First fetus with an inherited heteromorphism of chromosome 1 (1qh+) and the second fetus with 69XXX triploidy. Rom. J. Morphol. Embryol. 2020, 61, 935–940. [Google Scholar] [CrossRef]
- Caba, L.; Rusu, C.; Plăiaşu, V.; Gug, C.; Grămescu, M.; Bujoran, C.; Ochiană, D.; Voloşciuc, M.; Popescu, R.; Braha, E.; et al. Ring autosomes: Some unexpected findings. Balkan J. Med. Genet. 2012, 15, 35–46. [Google Scholar] [CrossRef]
- Gug, C.; Stoicănescu, D.; Mozos, I.; Nussbaum, L.; Cevei, M.; Stambouli, D.; Pavel, A.G.; Doroș, G. De Novo 8p21.3→p23.3 Duplication with t(4;8)(q35;p21.3) Translocation associated with Mental Retardation, Autism Spectrum Disorder and Congenital Heart Defects: Case Report With Literature Review. Front. Pediatr. 2020, 8, 375. [Google Scholar] [CrossRef]
- Popescu, R.; Gramescu, M.; Caba, L.; Pânzaru, M.-C.; Butnariu, L.; Braha, E.; Popa, S.; Rusu, C.; Cardos, G.; Zeleniuc, M.; et al. A Case of Inherited t(4;10)(q26;q26.2) Chromosomal Translocation Elucidated by Multiple Chromosomal and Molecular Analyses. Case Report and Review of the Literature. Genes 2021, 12, 1957. [Google Scholar] [CrossRef]
- Butler, M.G.; Usrey, K.M.; Roberts, J.L.; Manzardo, A.M.; Schroeder, S.R. 20q13.2-q13.33 deletion syndrome: A case report. J. Pediatr. Genet. 2013, 2, 157–161. [Google Scholar] [CrossRef]
- Hanafusa, H.; Morisada, N.; Ishida, Y.; Sakata, R.; Morita, K.; Miura, S.; Ye, M.J.; Yamamoto, T.; Okamoto, N.; Nozu, K.; et al. The smallest de novo 20q11.2 microdeletion causing intellectual disability and dysmorphic features. Hum. Genome Var. 2017, 4, 17050. [Google Scholar] [CrossRef] [PubMed]
- Machiela, M.J.; Zhou, W.; Caporaso, N.; Dean, M.; Gapstur, S.M.; Goldin, L.; Rothman, N.; Stevens, V.L.; Yeager, M.; Chanock, S.J. Mosaic chromosome 20q deletions are more frequent in the aging population. Blood Adv. 2017, 1, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Kehrer-Sawatzki, H.; Daumiller, E.; Müller-Navia, J.; Kendziorra, H.; Rossier, E.; du Bois, G.; Barbi, G. Interstitial deletion del(10)(q25.2q25.3 approximately 26.11)-case report and review of the literature. Prenat. Diagn. 2005, 25, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Ogata, T.; Muroya, K.; Matsuo, N.; Shinohara, O.; Yorifuji, T.; Nishi, Y.; Hasegawa, Y.; Horikawa, R.; Tachibana, K. Turner syndrome and Xp deletions: Clinical and molecular studies in 47 patients. J. Clin. Endocrinol. Metab. 2001, 86, 5498–5508. [Google Scholar] [CrossRef] [PubMed]
- Gug, C.; Huțanu, D.; Vaida, M.; Doroş, G.; Popa, C.; Stroescu, R.; Furău, G.; Furau, C.; Grigorita, L.; Mozos, I. De novo unbalanced translocation t(15;22) (q26.2;q12) with velo-cardio-facial syndrome: A case report and review of the literature. Exp. Ther. Med. 2018, 16, 3589–3595. [Google Scholar] [CrossRef]
- 22q11.2 Duplication Syndrome—About the Disease—Genetic and Rare Diseases Information Center (nih.gov). Available online: https://rarediseases.info.nih.gov/diseases/10557/22q112-duplication-syndrome (accessed on 31 January 2024).
- Song, J.; Jiang, W.; Zhang, C.; Wang, B. Prenatal diagnosis and genetic counseling of a 10p11.23q11.21 duplication associated with normal phenotype. Mol. Cytogenet. 2022, 15, 21. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hao, Y.; Chen, D.; Ji, D.; Zhu, W.; Zhu, X.; Wei, Z.; Cao, Y.; Zhang, Z.; Zhou, P. Non-invasive preimplantation genetic testing for putative mosaic blastocysts: A pilot study. Hum. Reprod. 2021, 36, 2020–2034. [Google Scholar] [CrossRef] [PubMed]
- Kotsopoulou, I.; Tsoplou, P.; Mavrommatis, K.; Kroupis, C. Non-invasive prenatal testing (NIPT): Limitations on the way to become diagnosis. Diagnosis 2015, 2, 141–158. [Google Scholar] [CrossRef]
- UK National Screening Committee cfDNA Testing in the Fetal Anomaly Screening Programme. GOV.UK. Available online: https://view-health-screening-recommendations.service.gov.uk/review/fetal-anomalies-2015/download-documents/cover_sheet/ (accessed on 24 January 2024).
- Comité Consultatif National d’Ethique. Avis N°120. Questions Éthiques Associées au Développement des Tests Génétiques Foetaux sur Sang Maternel. Available online: https://www.ccne-ethique.fr/fr/publications/avis-120-questions-ethiques-associees-au-developpement-des-tests-genetiques-foetaux (accessed on 24 January 2024).
- Minear, M.A.; Alessi, S.; Allyse, M.; Michie, M.; Chandrasekharan, S. Noninvasive prenatal genetic testing: Current and emerging ethical, legal, and social issues. Annu. Rev. Genom. Hum. Genet. 2015, 16, 369–398. [Google Scholar] [CrossRef]
- Rehmann-Sutter, C.; Timmermans, D.R.M.; Raz, A. Non-invasive prenatal testing (NIPT): Is routinization problematic? BMC Med. Ethics 2023, 24, 87. [Google Scholar] [CrossRef] [PubMed]
Chromosomal Abnormality | Type of Aneuploidy | Suspected Risk at NIPT1 | Confirmed Risk at NIPT |
---|---|---|---|
Common autosomal trisomies | Trisomy 21 | 15 | 15 |
Trisomy 18 | 7 | 6 | |
Trisomy 13 | 3 | 1 | |
Rare autosomal trisomies | Trisomy 14 | 1 | 0 |
Trisomy 6 | 1 | 0 | |
Gonosomal aneuploidy: | Y chromosome disomy | 3 | 3 |
Klinefelter XXY | 1 | 1 (XXXY) | |
Trisomy XXX | 1 | 0 | |
Monosomy X | 4 | 2 |
CNVs | Size | Status | Origin |
---|---|---|---|
Del11p36 | 2.30 Mb3 | False positive | |
Del5p (Lejeune) | Undetermined | False positive | |
Del(10q25.2–q26.3) | 22.57 Mb | False positive | |
Del(15)(q11.2–13.1) (Prader Willi) | Undetermined | Undetermined | |
Del(15)(q11.2–13.1) (Prader Willi) | 5.60 Mb | False positive | |
Del(20q11.21–q13.13) | 18.40 Mb | False positive | MATERNAL |
Del(20q11.21–q13.13) | 19.50 Mb | False positive | MATERNAL |
Del(22q11.21) (DiGeorge) | 2.54 Mb | False positive | |
Del(22q11.21) (DiGeorge) | Undetermined | Undetermined | |
Del(X)(p22.33–11.21) | 54.27 Mb | Positive: arr [GRCh37] Xp22.33p11.1 (168551_62051248) x 1 | FETAL |
Dup(5q23) | ? | Undetermined | ? |
Dup2(22q11.21) (DiGeorge) | ? | Undetermined | ? |
Dup(22q11.21) (DiGeorge) | atipical | False positive | MATERNAL |
Dup(9)(p24.3-p21.1) | 7.5 Mb | Positive: arr [GRCh37] 9p24.3p21.1 (208455_28238046) x 3 | FETAL |
Evaluated Parameter | Study Group | Suspected Risk by NIPT | Confirmed Risk by Direct Method |
---|---|---|---|
Average GA1 (weeks): | NIPT4: 12.025 | NIPT: 12.88 | NIPT: 12.67 |
Nifty6-pro: 12.04 | Nifty-pro:12.65 | Nifty-pro:12.41 | |
NIPS5: 12.01 | NIPS: 13.12 | NIPS: 12.93 | |
Average FF2 (%) | NIPT: 10.65 | NIPT: 12.88 | NIPT: 11.67 |
Nifty-pro: 10.98 | Nifty-pro: 12.46 | Nifty-pro: 11.22 | |
NIPS: 10.30 | NIPS: 12.12 | NIPS: 12.12 | |
Average MA3 (years): | NIPT: 33.1 | NIPT: 35.35 | NIPT: 35.82 |
Nifty-pro: 33.5 | Nifty-pro: 35.7 | Nifty-pro: 36 | |
NIPS: 32.7 | NIPS: 35 | NIPS: 35.65 |
Cases with High-Risk at NIPT1 | Cases with Confirmed Risk | Unconfirmed Cases (False Positives) | Indefinite | |
---|---|---|---|---|
Maternal age | 28 | 17 (60.71%) | 10 | 1 |
Monitoring the apparently normal pregnancy | 14 | 8 (57.14%) | 6 | 0 |
Biochemical risk | 8 | 6 (75%) | 1 | 1 |
Abnormal ultrasound | 5 | 5 (100%) | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gug, M.; Rațiu, A.; Andreescu, N.; Farcaș, S.; Laitin, S.; Gug, C. Approach and Management of Pregnancies with Risk Identified by Non-Invasive Prenatal Testing. J. Pers. Med. 2024, 14, 366. https://doi.org/10.3390/jpm14040366
Gug M, Rațiu A, Andreescu N, Farcaș S, Laitin S, Gug C. Approach and Management of Pregnancies with Risk Identified by Non-Invasive Prenatal Testing. Journal of Personalized Medicine. 2024; 14(4):366. https://doi.org/10.3390/jpm14040366
Chicago/Turabian StyleGug, Miruna, Adrian Rațiu, Nicoleta Andreescu, Simona Farcaș, Sorina Laitin, and Cristina Gug. 2024. "Approach and Management of Pregnancies with Risk Identified by Non-Invasive Prenatal Testing" Journal of Personalized Medicine 14, no. 4: 366. https://doi.org/10.3390/jpm14040366
APA StyleGug, M., Rațiu, A., Andreescu, N., Farcaș, S., Laitin, S., & Gug, C. (2024). Approach and Management of Pregnancies with Risk Identified by Non-Invasive Prenatal Testing. Journal of Personalized Medicine, 14(4), 366. https://doi.org/10.3390/jpm14040366