The Application of Precision Medicine in Structural Heart Diseases: A Step towards the Future
Abstract
:1. Introduction
2. Valvular Heart Disease
2.1. Aortic Valve
2.2. Mitral Valve
2.3. Tricuspid Valve
3. Left Atrial Appendage Occlusion (LAAO)
4. 3D Printing Cost Analysis and Effectiveness
5. Ethical Considerations and Legal Issues for 3D Printing
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Goetz, L.H.; Schork, N.J. Personalized Medicine: Motivation, Challenges, and Progress. Fertil. Steril. 2018, 109, 952–963. [Google Scholar] [CrossRef] [PubMed]
- Braig, Z.V. Personalized Medicine: From Diagnostic to Adaptive. Biomed. J. 2022, 45, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Nan, J.; Rezaei, M.; Mazhar, R.; Jaber, F.; Musharavati, F.; Zalnezhad, E.; Chowdhury, M.E.H. Finite Element Analysis of the Mechanism of Traumatic Aortic Rupture (TAR). Comput. Math. Methods Med. 2020, 2020, 6718495. [Google Scholar] [CrossRef] [PubMed]
- Duraiswamy, N.; Weaver, J.D.; Ekrami, Y.; Retta, S.M.; Wu, C. A Parametric Computational Study of the Impact of Non-Circular Configurations on Bioprosthetic Heart Valve Leaflet Deformations and Stresses: Possible Implications for Transcatheter Heart Valves. Cardiovasc. Eng. Technol. 2016, 7, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Qian, Z.; Vukicevic, M.; Engelhardt, S.; Kheradvar, A.; Zhang, C.; Little, S.H.; Verjans, J.; Comaniciu, D.; O’Neill, W.W.; et al. 3D Printing, Computational Modeling, and Artificial Intelligence for Structural Heart Disease. JACC Cardiovasc. Imaging 2021, 14, 41–60. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, L.; Qin, T.; Xi, Z.; Sun, L.; Wu, H.; Li, D. 3D Printing in Adult Cardiovascular Surgery and Interventions: A Systematic Review. J. Thorac. Dis. 2020, 12, 3227–3237. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wong, R.H.L.; Lee, A.P.-W. Three-Dimensional Printing in Structural Heart Disease and Intervention. Ann. Transl. Med. 2019, 7, 579. [Google Scholar] [CrossRef] [PubMed]
- Bhatla, P.; Tretter, J.T.; Chikkabyrappa, S.; Chakravarti, S.; Mosca, R.S. Surgical Planning for a Complex Double-outlet Right Ventricle Using 3D Printing. Echocardiography 2017, 34, 802–804. [Google Scholar] [CrossRef] [PubMed]
- Vettukattil, J.J.; Mohammad Nijres, B.; Gosnell, J.M.; Samuel, B.P.; Haw, M.P. Three-dimensional Printing for Surgical Planning in Complex Congenital Heart Disease. J. Card. Surg. 2019, 34, 1363–1369. [Google Scholar] [CrossRef]
- Hosny, A.; Dilley, J.D.; Kelil, T.; Mathur, M.; Dean, M.N.; Weaver, J.C.; Ripley, B. Pre-Procedural Fit-Testing of TAVR Valves Using Parametric Modeling and 3D Printing. J. Cardiovasc. Comput. Tomogr. 2019, 13, 21–30. [Google Scholar] [CrossRef]
- Tuncay, V.; van Ooijen, P.M.A. 3D Printing for Heart Valve Disease: A Systematic Review. Eur. Radiol. Exp. 2019, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Gharleghi, R.; Dessalles, C.A.; Lal, R.; McCraith, S.; Sarathy, K.; Jepson, N.; Otton, J.; Barakat, A.I.; Beier, S. 3D Printing for Cardiovascular Applications: From End-to-End Processes to Emerging Developments. Ann. Biomed. Eng. 2021, 49, 1598–1618. [Google Scholar] [CrossRef] [PubMed]
- Illi, J.; Bernhard, B.; Nguyen, C.; Pilgrim, T.; Praz, F.; Gloeckler, M.; Windecker, S.; Haeberlin, A.; Gräni, C. Translating Imaging Into 3D Printed Cardiovascular Phantoms. JACC Basic. Transl. Sci. 2022, 7, 1050–1062. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Mensah, G.A.; Fuster, V. The Global Burden of Cardiovascular Diseases and Risks. J. Am. Coll. Cardiol. 2020, 76, 2980–2981. [Google Scholar] [CrossRef] [PubMed]
- Mensah, G.A.; Roth, G.A.; Fuster, V. The Global Burden of Cardiovascular Diseases and Risk Factors. J. Am. Coll. Cardiol. 2019, 74, 2529–2532. [Google Scholar] [CrossRef] [PubMed]
- Aluru, J.S.; Barsouk, A.; Saginala, K.; Rawla, P.; Barsouk, A. Valvular Heart Disease Epidemiology. Med. Sci. 2022, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Nkomo, V.T.; Gardin, J.M.; Skelton, T.N.; Gottdiener, J.S.; Scott, C.G.; Enriquez-Sarano, M. Burden of Valvular Heart Diseases: A Population-Based Study. Lancet 2006, 368, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Moncla, L.-H.M.; Briend, M.; Bossé, Y.; Mathieu, P. Calcific Aortic Valve Disease: Mechanisms, Prevention and Treatment. Nat. Rev. Cardiol. 2023, 20, 546–559. [Google Scholar] [CrossRef]
- Enriquez-Sarano, M.; Grapsa, J. Valvular Heart Diseases in Women: Facts vs. Incantations. Eur. Heart J. 2023, 44, 833–835. [Google Scholar] [CrossRef]
- DesJardin, J.T.; Chikwe, J.; Hahn, R.T.; Hung, J.W.; Delling, F.N. Sex Differences and Similarities in Valvular Heart Disease. Circ. Res. 2022, 130, 455–473. [Google Scholar] [CrossRef]
- Cribier, A. Development of Transcatheter Aortic Valve Implantation (TAVI): A 20-Year Odyssey. Arch. Cardiovasc. Dis. 2012, 105, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Postolache, A.; Sperlongano, S.; Lancellotti, P. TAVI after More Than 20 Years. J. Clin. Med. 2023, 12, 5645. [Google Scholar] [CrossRef] [PubMed]
- Ovcharenko, E.A.; Klyshnikov, K.U.; Yuzhalin, A.E.; Savrasov, G.V.; Kokov, A.N.; Batranin, A.V.; Ganyukov, V.I.; Kudryavtseva, Y.A. Modeling of Transcatheter Aortic Valve Replacement: Patient Specific vs General Approaches Based on Finite Element Analysis. Comput. Biol. Med. 2016, 69, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Ripley, B.; Kelil, T.; Cheezum, M.K.; Goncalves, A.; Di Carli, M.F.; Rybicki, F.J.; Steigner, M.; Mitsouras, D.; Blankstein, R. 3D Printing Based on Cardiac CT Assists Anatomic Visualization Prior to Transcatheter Aortic Valve Replacement. J. Cardiovasc. Comput. Tomogr. 2016, 10, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Bosi, G.M.; Capelli, C.; Cheang, M.H.; Delahunty, N.; Mullen, M.; Taylor, A.M.; Schievano, S. A Validated Computational Framework to Predict Outcomes in TAVI. Sci. Rep. 2020, 10, 9906. [Google Scholar] [CrossRef] [PubMed]
- Barati, S.; Fatouraee, N.; Nabaei, M.; Petrini, L.; Migliavacca, F.; Luraghi, G.; Matas, J.F.R. Patient-Specific Multi-Scale Design Optimization of Transcatheter Aortic Valve Stents. Comput. Methods Programs Biomed. 2022, 221, 106912. [Google Scholar] [CrossRef] [PubMed]
- Sammour, Y.; Krishnaswamy, A.; Kumar, A.; Puri, R.; Tarakji, K.G.; Bazarbashi, N.; Harb, S.; Griffin, B.; Svensson, L.; Wazni, O.; et al. Incidence, Predictors, and Implications of Permanent Pacemaker Requirement After Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2021, 14, 115–134. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, T.; Yamanaka, F.; Shishido, K.; Moriyama, N.; Komatsu, I.; Yokoyama, H.; Miyashita, H.; Sato, D.; Sugiyama, Y.; Hayashi, T.; et al. Impact of High Implantation of Transcatheter Aortic Valve on Subsequent Conduction Disturbances and Coronary Access. JACC Cardiovasc. Interv. 2023, 16, 1192–1204. [Google Scholar] [CrossRef] [PubMed]
- Drakopoulou, M.; Oikonomou, G.; Apostolos, A.; Karmpalioti, M.; Simopoulou, C.; Koliastasis, L.; Latsios, G.; Synetos, A.; Benetos, G.; Trantalis, G.; et al. The Role of ECG Strain Pattern in Prognosis after TAVI: A Sub-Analysis of the DIRECT Trial. Life 2023, 13, 1234. [Google Scholar] [CrossRef]
- Rocatello, G.; El Faquir, N.; De Santis, G.; Iannaccone, F.; Bosmans, J.; De Backer, O.; Sondergaard, L.; Segers, P.; De Beule, M.; de Jaegere, P.; et al. Patient-Specific Computer Simulation to Elucidate the Role of Contact Pressure in the Development of New Conduction Abnormalities After Catheter-Based Implantation of a Self-Expanding Aortic Valve. Circ. Cardiovasc. Interv. 2018, 11, e005344. [Google Scholar] [CrossRef]
- Haghiashtiani, G.; Qiu, K.; Zhingre Sanchez, J.D.; Fuenning, Z.J.; Nair, P.; Ahlberg, S.E.; Iaizzo, P.A.; McAlpine, M.C. 3D Printed Patient-Specific Aortic Root Models with Internal Sensors for Minimally Invasive Applications. Sci. Adv. 2020, 6, eabb4641. [Google Scholar] [CrossRef] [PubMed]
- Galli, V.; Loncaric, F.; Rocatello, G.; Astudillo, P.; Sanchis, L.; Regueiro, A.; De Backer, O.; Swaans, M.; Bosmans, J.; Ribeiro, J.M.; et al. Towards Patient-Specific Prediction of Conduction Abnormalities Induced by Transcatheter Aortic Valve Implantation: A Combined Mechanistic Modelling and Machine Learning Approach. Eur. Heart J. Digit. Health 2021, 2, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Catalano, M.A.; Rutkin, B.; Koss, E.; Maurer, G.; Berg, J.; Hartman, A.; Yu, P.-J. Accuracy of Predicted Effective Orifice Area in Determining Incidence of Patient-Prosthesis Mismatch after Transcatheter Aortic Valve Replacement. J. Card. Surg. 2021, 36, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Compagnone, M.; Marchetti, G.; Taglieri, N.; Ghetti, G.; Bruno, A.G.; Orzalkiewicz, M.; Marrozzini, C.; Bacchi Reggiani, M.-L.; Palmerini, T.; Galiè, N.; et al. Long-Term Outcome of Prosthesis-Patient Mismatch after Transcatheter Aortic Valve Replacement. Int. J. Cardiol. 2020, 318, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Fukui, M.; Garcia, S.; Lesser, J.R.; Gössl, M.; Tang, L.; Caye, D.; Newell, M.; Hashimoto, G.; Lopes, B.B.C.; Stanberry, L.I.; et al. Prosthesis-Patient Mismatch Defined by Cardiac Computed Tomography versus Echocardiography after Transcatheter Aortic Valve Replacement. J. Cardiovasc. Comput. Tomogr. 2021, 15, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Thorburn, C.; Abdel-Razek, O.; Fagan, S.; Pearce, N.; Furey, M.; Harris, S.; Bartellas, M.; Adams, C. Three-Dimensional Printing for Assessment of Paravalvular Leak in Transcatheter Aortic Valve Implantation. J. Cardiothorac. Surg. 2020, 15, 211. [Google Scholar] [CrossRef] [PubMed]
- Reiff, C.; Zhingre Sanchez, J.D.; Mattison, L.M.; Iaizzo, P.A.; Garcia, S.; Raveendran, G.; Gurevich, S. 3-Dimensional Printing to Predict Paravalvular Regurgitation after Transcatheter Aortic Valve Replacement. Catheter. Cardiovasc. Interv. 2020, 96, E703–E710. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Wang, K.; Liu, S.; Zhou, X.; Rajagopal, V.; Meduri, C.; Kauten, J.R.; Chang, Y.-H.; Wu, C.; Zhang, C.; et al. Quantitative Prediction of Paravalvular Leak in Transcatheter Aortic Valve Replacement Based on Tissue-Mimicking 3D Printing. JACC Cardiovasc. Imaging 2017, 10, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Aigner, P.; Sella Bart, E.; Panfili, S.; Körner, T.; Mach, M.; Andreas, M.; Königshofer, M.; Saitta, S.; Redaelli, A.; Schmid, A.; et al. Quantification of Paravalvular Leaks Associated with TAVI Implants Using 4D MRI in an Aortic Root Phantom Made Possible by the Use of 3D Printing. Front. Cardiovasc. Med. 2023, 10, 1083300. [Google Scholar] [CrossRef]
- Mao, Y.; Ma, Y.; Liu, Y.; Jin, P.; Li, L.; Yang, J. Transcatheter Closure of a Paravalvular Leak After Transcatheter Aortic Valve Replacement with 3-Dimensional Printing Guidance: A Case Report. J. Endovasc. Ther. 2023, 30, 471–476. [Google Scholar] [CrossRef]
- Verma, R.; Cohen, G.; Colbert, J.; Fedak, P.W.M. Bicuspid Aortic Valve Associated Aortopathy: 2022 Guideline Update. Curr. Opin. Cardiol. 2023, 38, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Vincent, F.; Ternacle, J.; Denimal, T.; Shen, M.; Redfors, B.; Delhaye, C.; Simonato, M.; Debry, N.; Verdier, B.; Shahim, B.; et al. Transcatheter Aortic Valve Replacement in Bicuspid Aortic Valve Stenosis. Circulation 2021, 143, 1043–1061. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-H.; Kim, W.-K.; Dhoble, A.; Milhorini Pio, S.; Babaliaros, V.; Jilaihawi, H.; Pilgrim, T.; De Backer, O.; Bleiziffer, S.; Vincent, F.; et al. Bicuspid Aortic Valve Morphology and Outcomes After Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2020, 76, 1018–1030. [Google Scholar] [CrossRef] [PubMed]
- Lavon, K.; Marom, G.; Bianchi, M.; Halevi, R.; Hamdan, A.; Morany, A.; Raanani, E.; Bluestein, D.; Haj-Ali, R. Biomechanical Modeling of Transcatheter Aortic Valve Replacement in a Stenotic Bicuspid Aortic Valve: Deployments and Paravalvular Leakage. Med. Biol. Eng. Comput. 2019, 57, 2129–2143. [Google Scholar] [CrossRef] [PubMed]
- Young, L.; Harb, S.C.; Puri, R.; Khatri, J. Percutaneous Coronary Intervention of an Anomalous Coronary Chronic Total Occlusion: The Added Value of Three-dimensional Printing. Catheter. Cardiovasc. Interv. 2020, 96, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Heitkemper, M.; Sivakumar, S.; Hatoum, H.; Dollery, J.; Lilly, S.M.; Dasi, L.P. Simple 2-Dimensional Anatomic Model to Predict the Risk of Coronary Obstruction during Transcatheter Aortic Valve Replacement. J. Thorac. Cardiovasc. Surg. 2020, 162, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Heitkemper, M.; Hatoum, H.; Azimian, A.; Yeats, B.; Dollery, J.; Whitson, B.; Rushing, G.; Crestanello, J.; Lilly, S.M.; Dasi, L.P. Modeling Risk of Coronary Obstruction during Transcatheter Aortic Valve Replacement. J. Thorac. Cardiovasc. Surg. 2020, 159, 829–838.e3. [Google Scholar] [CrossRef] [PubMed]
- Russo, J.J.; Yuen, T.; Tan, J.; Willson, A.B.; Gurvitch, R. Assessment of Coronary Artery Obstruction Risk During Transcatheter Aortic Valve Replacement Utilising 3D-Printing. Heart Lung Circ. 2022, 31, 1134–1143. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, R.; Orii, M.; Fujiwara, J.; Yoshizawa, M.; Nakajima, Y.; Ishikawa, Y.; Kumagai, A.; Fusazaki, T.; Tashiro, A.; Kin, H.; et al. Sex-Related Differences in Cardiac Remodeling and Reverse Remodeling After Transcatheter Aortic Valve Implantation in Patients with Severe Aortic Stenosis in a Japanese Population. Int. Heart J. 2020, 61, 961–969. [Google Scholar] [CrossRef]
- Kampaktsis, P.N.; Subramayam, P.; Sherifi, I.; Vavuranakis, M.; Siasos, G.; Tousoulis, D.; Worku, B.; Minutello, R.M.; Wong, S.C.; Devereux, R.B. Impact of Paravalvular Leak on Left Ventricular Remodeling and Global Longitudinal Strain 1 Year after Transcatheter Aortic Valve Replacement. Future Cardiol. 2021, 17, 337–345. [Google Scholar] [CrossRef]
- Harb, S.C.; Rodriguez, L.L.; Vukicevic, M.; Kapadia, S.R.; Little, S.H. Three-Dimensional Printing Applications in Percutaneous Structural Heart Interventions. Circ. Cardiovasc. Imaging 2019, 12, e009014. [Google Scholar] [CrossRef]
- Rosalia, L.; Ozturk, C.; Goswami, D.; Bonnemain, J.; Wang, S.X.; Bonner, B.; Weaver, J.C.; Puri, R.; Kapadia, S.; Nguyen, C.T.; et al. Soft Robotic Patient-Specific Hydrodynamic Model of Aortic Stenosis and Ventricular Remodeling. Sci. Robot. 2023, 8, eade2184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shen, Y.; Zhang, L.; Song, C.; Jing, Z.; Lu, Q. Preoperative Evaluation of Transcatheter Aortic Valve Replacement with Assistance of 3D Printing Technique: Reanalysis of 4 Death Cases. J. Interv. Med. 2019, 2, 166–170. [Google Scholar] [CrossRef]
- Bharucha, A.H.; Moore, J.; Carnahan, P.; MacCarthy, P.; Monaghan, M.J.; Baghai, M.; Deshpande, R.; Byrne, J.; Dworakowski, R.; Eskandari, M. Three-Dimensional Printing in Modelling Mitral Valve Interventions. Echo Res. Pract. 2023, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Vukicevic, M.; Vekilov, D.P.; Grande-Allen, J.K.; Little, S.H. Patient-Specific 3D Valve Modeling for Structural Intervention. Structural Heart 2017, 1, 236–248. [Google Scholar] [CrossRef]
- Vukicevic, M.; Mosadegh, B.; Min, J.K.; Little, S.H. Cardiac 3D Printing and Its Future Directions. JACC Cardiovasc. Imaging 2017, 10, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Vukicevic, M.; Mehta, S.M.; Grande-Allen, K.J.; Little, S.H. Development of 3D Printed Mitral Valve Constructs for Transcatheter Device Modeling of Tissue and Device Deformation. Ann. Biomed. Eng. 2022, 50, 426–439. [Google Scholar] [CrossRef]
- Bertolini, M.; Mullen, M.; Belitsis, G.; Babu, A.; Colombo, G.; Cook, A.; Mullen, A.; Capelli, C. Demonstration of Use of a Novel 3D Printed Simulator for Mitral Valve Transcatheter Edge-to-Edge Repair (TEER). Materials 2022, 15, 4284. [Google Scholar] [CrossRef]
- Daemen, J.H.T.; Heuts, S.; Olsthoorn, J.R.; Maessen, J.G.; Sardari Nia, P. Mitral Valve Modelling and Three-Dimensional Printing for Planning and Simulation of Mitral Valve Repair. Eur. J. Cardio-Thorac. Surg. 2019, 55, 543–551. [Google Scholar] [CrossRef]
- Drakopoulou, M.; Latsios, G.; Synetos, A.; Benetos, G.; Soulaidopoulos, S.; Oikonomou, G.; Apostolos, A.; Aggeli, K.; Lozos, V.; Lymperiadis, D.; et al. Transcatheter Mitral Valve-in-Valve Replacement Transeptally Using a Novel Balloon-Expandable Device. J. Card. Surg. 2022, 37, 3376–3377. [Google Scholar] [CrossRef]
- Drakopoulou, M.; Oikonomou, G.; Latsios, G.; Synetos, A.; Benetos, G.; Simopoulou, C.; Apostolos, A.; Soulaidopoulos, S.; Aggeli, K.; Lozos, V.; et al. Takotsubo Cardiomyopathy Complicating Transcatheter Mitral Valve-in-Valve Replacement. J. Geriatr. Cardiol. 2022, 19, 559–561. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-H.; Bleiziffer, S.; Latib, A.; Eschenbach, L.; Ancona, M.; Vincent, F.; Kim, W.-K.; Unbehaum, A.; Asami, M.; Dhoble, A.; et al. Predictors of Left Ventricular Outflow Tract Obstruction After Transcatheter Mitral Valve Replacement. JACC Cardiovasc. Interv. 2019, 12, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Okutucu, S.; Mach, M.; Oto, A. Mitral Paravalvular Leak Closure: Transcatheter and Surgical Solutions. Cardiovasc. Revascularization Med. 2020, 21, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Jędrzejek, M. Mitral Paravalvular Leak 3D Printing from 3D-Transesophageal Echocardiography. Anatol. J. Cardiol. 2023, 27, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Wang, Y.; Liu, Y.; Yang, J. Transapical Concomitant Transseptal Transcatheter Closure of a Giant Mitral Paravalvular Leak under Three-dimensional Printing Guidance. Catheter. Cardiovasc. Interv. 2024, 103, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Cordón, J.F.; Vilalta, V.; Millán, X.; Moustafa, A.H.; Fernández-Nofrerias, E.; Julià, I.; Carrillo, X.; Delgado, V. Complex Mitral Paravalvular Leak Closure. JACC Cardiovasc. Interv. 2023, 16, 2181–2182. [Google Scholar] [CrossRef] [PubMed]
- Pitsis, A.; Kelpis, T.; Theofilogiannakos, E.; Tsotsolis, N.; Boudoulas, H.; Boudoulas, K.D. Mitral Valve Repair: Moving towards a Personalized Ring. J. Cardiothorac. Surg. 2019, 14, 108. [Google Scholar] [CrossRef] [PubMed]
- Frishman, S.; Kight, A.; Pirozzi, I.; Maddineni, S.; Imbrie-Moore, A.M.; Karachiwalla, Z.; Paulsen, M.J.; Kaiser, A.D.; Woo, Y.J.; Cutkosky, M.R. DynaRing: A Patient-Specific Mitral Annuloplasty Ring with Selective Stiffness Segments. J. Med. Device 2022, 16, 031009. [Google Scholar] [CrossRef] [PubMed]
- Zhai, M.-E.; Mao, Y.; Liu, Y.; Yang, J. Transcatheter Mitral Valve Replacement to Treat Severe Calcified Rheumatic Native Mitral Stenosis: Role of Three-Dimensional Printing—A Case Report. Eur. Heart J. Case Rep. 2023, 7, ytad434. [Google Scholar] [CrossRef]
- Topilsky, Y.; Maltais, S.; Medina Inojosa, J.; Oguz, D.; Michelena, H.; Maalouf, J.; Mahoney, D.W.; Enriquez-Sarano, M. Burden of Tricuspid Regurgitation in Patients Diagnosed in the Community Setting. JACC Cardiovasc. Imaging 2019, 12, 433–442. [Google Scholar] [CrossRef]
- Cork, D.P.; McCullough, P.A.; Mehta, H.S.; Barker, C.M.; Van Houten, J.; Gunnarsson, C.; Ryan, M.P.; Baker, E.R.; Mollenkopf, S.; Verta, P. The Economic Impact of Clinically Significant Tricuspid Regurgitation in a Large, Administrative Claims Database. J. Med. Econ. 2020, 23, 521–528. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef] [PubMed]
- Anselmi, A.; Ruggieri, V.G.; Harmouche, M.; Flécher, E.; Corbineau, H.; Langanay, T.; Lelong, B.; Verhoye, J.-P.; Leguerrier, A. Appraisal of Long-Term Outcomes of Tricuspid Valve Replacement in the Current Perspective. Ann. Thorac. Surg. 2016, 101, 863–871. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Pyrpyris, N.; Aznaouridis, K.; Iliakis, P.; Valatsou, A.; Tsioufis, P.; Beneki, E.; Mantzouranis, E.; Aggeli, K.; Tsiamis, E.; et al. Transcatheter Tricuspid Valve Interventions: A Triumph for Transcatheter Procedures? Life 2023, 13, 1417. [Google Scholar] [CrossRef]
- Amerini, A.; Hatam, N.; Malasa, M.; Pott, D.; Tewarie, L.; Isfort, P.; Goetzenich, A.; Hildinger, M.; Autschbach, R.; Spillner, J. A Personalized Approach to Interventional Treatment of Tricuspid Regurgitation: Experiences from an Acute Animal Study. Interact. Cardiovasc. Thorac. Surg. 2014, 19, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Harb, S.C.; Spilias, N.; Griffin, B.P.; Svensson, L.G.; Klatte, R.S.; Bakaeen, F.G.; Kapadia, S.R.; Wierup, P. Surgical Repair for Primary Tricuspid Valve Disease. JACC Case Rep. 2020, 2, 2217–2222. [Google Scholar] [CrossRef]
- Harb, S.C.; Rodriguez, L.L.; Svensson, L.G.; Xu, B.; Elgharably, H.; Klatte, R.; Krishnaswamy, A.; Grimm, R.A.; Griffin, B.P.; Kapadia, S.R.; et al. Pitfalls and Pearls for 3-Dimensional Printing of the Tricuspid Valve in the Procedural Planning of Percutaneous Transcatheter Therapies. JACC Cardiovasc. Imaging 2018, 11, 1531–1534. [Google Scholar] [CrossRef] [PubMed]
- Spring, A.M.; Pirelli, L.; Basman, C.L.; Kliger, C.A. The Importance of Pre-Operative Imaging and 3-D Printing in Transcatheter Tricuspid Valve-in-Valve Replacement. Cardiovasc. Revascularization Med. 2021, 28, 161–165. [Google Scholar] [CrossRef]
- Vukicevic, M.; Faza, N.N.; Little, S.H. Patient-Specific Preprocedural Planning for Tricuspid Valve Repair and Replacement Procedures. Curr. Opin. Cardiol. 2021, 36, 495–504. [Google Scholar] [CrossRef]
- Mao, Y.; Liu, Y.; Meng, X.; Ma, Y.; Li, L.; Zhai, M.; Jin, P.; Lu, F.; Yang, J. Treatment of Severe Tricuspid Regurgitation Induced by Permanent Pacemaker Lead: Transcatheter Tricuspid Valve Replacement with the Guidance of 3-Dimensional Printing. Front. Cardiovasc. Med. 2023, 10, 1030997. [Google Scholar] [CrossRef]
- Mao, Y.; Li, L.; Liu, Y.; Zhai, M.; Ma, Y.; Xu, C.; Jin, P.; Yang, J. Safety, Efficacy, and Clinical Outcomes of Transcatheter Tricuspid Valve Replacement: One-Year Follow-Up. Front. Cardiovasc. Med. 2022, 9, 1019813. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Yang, J. Transjugular Tricuspid Valve-in-ring Replacement Using the Novel System under Three-dimensional Printing Guidance. ESC Heart Fail. 2023, 11, 581–586. [Google Scholar] [CrossRef]
- Tsigkas, G.; Apostolos, A.; Despotopoulos, S.; Vasilagkos, G.; Kallergis, E.; Leventopoulos, G.; Mplani, V.; Davlouros, P. Heart Failure and Atrial Fibrillation: New Concepts in Pathophysiology, Management, and Future Directions. Heart Fail. Rev. 2021, 27, 1201–1210. [Google Scholar] [CrossRef]
- Tsigkas, G.; Apostolos, A.; Despotopoulos, S.; Vasilagkos, G.; Papageorgiou, A.; Kallergis, E.; Leventopoulos, G.; Mplani, V.; Koniari, I.; Velissaris, D.; et al. Anticoagulation for Atrial Fibrillation in Heart Failure Patients: Balancing between Scylla and Charybdis. J. Geriatr. Cardiol. 2021, 18, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Katsaros, O.; Apostolos, A.; Toutouzas, K. Left Atrial Appendage Occlusion in Chronic Kidney Disease: Opening the Way to Randomized Trials. Europace 2023, 25, euad342. [Google Scholar] [CrossRef]
- Lakkireddy, D.; Thaler, D.; Ellis, C.R.; Swarup, V.; Sondergaard, L.; Carroll, J.; Gold, M.R.; Hermiller, J.; Diener, H.-C.; Schmidt, B.; et al. Amplatzer Amulet Left Atrial Appendage Occluder Versus Watchman Device for Stroke Prophylaxis (Amulet IDE): A Randomized, Controlled Trial. Circulation 2021, 144, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Galea, R.; De Marco, F.; Meneveau, N.; Aminian, A.; Anselme, F.; Gräni, C.; Huber, A.T.; Teiger, E.; Iriart, X.; Babongo Bosombo, F.; et al. Amulet or Watchman Device for Percutaneous Left Atrial Appendage Closure: Primary Results of the SWISS-APERO Randomized Clinical Trial. Circulation 2022, 145, 724–738. [Google Scholar] [CrossRef]
- Holmes, D.R.; Kar, S.; Price, M.J.; Whisenant, B.; Sievert, H.; Doshi, S.K.; Huber, K.; Reddy, V.Y. Prospective Randomized Evaluation of the Watchman Left Atrial Appendage Closure Device in Patients with Atrial Fibrillation Versus Long-Term Warfarin Therapy. J. Am. Coll. Cardiol. 2014, 64, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, B.; Sutaria, N.; Davies, D.W.; Kanagaratnam, P. Successful Placement of Left Atrial Appendage Closure Device Is Heavily Dependent on 3-Dimensional Transesophageal Imaging. J. Am. Coll. Cardiol. 2011, 58, 1283. [Google Scholar] [CrossRef]
- Samaras, A.; Papazoglou, A.S.; Balomenakis, C.; Bekiaridou, A.; Moysidis, D.V.; Patsiou, V.; Orfanidis, A.; Giannakoulas, G.; Kassimis, G.; Fragakis, N.; et al. Residual Leaks Following Percutaneous Left Atrial Appendage Occlusion and Outcomes: A Meta-Analysis. Eur. Heart J. 2024, 45, 214–229. [Google Scholar] [CrossRef]
- Otton, J.M.; Spina, R.; Sulas, R.; Subbiah, R.N.; Jacobs, N.; Muller, D.W.M.; Gunalingam, B. Left Atrial Appendage Closure Guided by Personalized 3D-Printed Cardiac Reconstruction. JACC Cardiovasc. Interv. 2015, 8, 1004–1006. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.; Marconi, S.; Muscogiuri, G.; Guglielmo, M.; Baggiano, A.; Italiano, G.; Mancini, M.E.; Auricchio, F.; Andreini, D.; Rabbat, M.G.; et al. Left Atrial Appendage Closure Guided by 3D Computed Tomography Printing Technology: A Case Control Study. J. Cardiovasc. Comput. Tomogr. 2019, 13, 336–339. [Google Scholar] [CrossRef] [PubMed]
- DeCampos, D.; Teixeira, R.; Saleiro, C.; Oliveira-Santos, M.; Paiva, L.; Costa, M.; Botelho, A.; Gonçalves, L. 3D Printing for Left Atrial Appendage Closure: A Meta-Analysis and Systematic Review. Int. J. Cardiol. 2022, 356, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.R.; Luery, S.E.; Ghosh, R.M.; Maehara, C.K.; Silvestro, E.; Whitehead, K.K.; Sze, R.W.; Hsu, W.; Nguyen, K.-L. Cardiovascular 3-D Printing: Value-Added Assessment Using Time-Driven Activity-Based Costing. J. Am. Coll. Radiol. 2020, 17, 1469–1474. [Google Scholar] [CrossRef] [PubMed]
- Choonara, Y.E.; du Toit, L.C.; Kumar, P.; Kondiah, P.P.D.; Pillay, V. 3D-Printing and the Effect on Medical Costs: A New Era? Expert. Rev. Pharmacoecon Outcomes Res. 2016, 16, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Kirillova, A.; Bushev, S.; Abubakirov, A.; Sukikh, G. Bioethical and Legal Issues in 3D Bioprinting. Int. J. Bioprint 2020, 6, 272. [Google Scholar] [CrossRef] [PubMed]
- Beer, N.; Hegger, I.; Kaae, S.; De Bruin, M.L.; Genina, N.; Alves, T.L.; Hoebert, J.; Kälvemark Sporrong, S. Scenarios for 3D Printing of Personalized Medicines—A Case Study. Explor. Res. Clin. Soc. Pharm. 2021, 4, 100073. [Google Scholar] [CrossRef] [PubMed]
- Alzoubi, L.; Aljabali, A.A.A.; Tambuwala, M.M. Empowering Precision Medicine: The Impact of 3D Printing on Personalized Therapeutic. AAPS PharmSciTech 2023, 24, 228. [Google Scholar] [CrossRef]
- Rizzo, M.L.; Turco, S.; Spina, F.; Costantino, A.; Visi, G.; Baronti, A.; Maiese, A.; Di Paolo, M. 3D Printing and 3D Bioprinting Technology in Medicine: Ethical and Legal Issues. Clin. Ter. 2023, 174, 80–84. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrysostomidis, G.; Apostolos, A.; Papanikolaou, A.; Konstantinou, K.; Tsigkas, G.; Koliopoulou, A.; Chamogeorgakis, T. The Application of Precision Medicine in Structural Heart Diseases: A Step towards the Future. J. Pers. Med. 2024, 14, 375. https://doi.org/10.3390/jpm14040375
Chrysostomidis G, Apostolos A, Papanikolaou A, Konstantinou K, Tsigkas G, Koliopoulou A, Chamogeorgakis T. The Application of Precision Medicine in Structural Heart Diseases: A Step towards the Future. Journal of Personalized Medicine. 2024; 14(4):375. https://doi.org/10.3390/jpm14040375
Chicago/Turabian StyleChrysostomidis, Grigorios, Anastasios Apostolos, Amalia Papanikolaou, Konstantinos Konstantinou, Grigorios Tsigkas, Antigoni Koliopoulou, and Themistokles Chamogeorgakis. 2024. "The Application of Precision Medicine in Structural Heart Diseases: A Step towards the Future" Journal of Personalized Medicine 14, no. 4: 375. https://doi.org/10.3390/jpm14040375
APA StyleChrysostomidis, G., Apostolos, A., Papanikolaou, A., Konstantinou, K., Tsigkas, G., Koliopoulou, A., & Chamogeorgakis, T. (2024). The Application of Precision Medicine in Structural Heart Diseases: A Step towards the Future. Journal of Personalized Medicine, 14(4), 375. https://doi.org/10.3390/jpm14040375