Mechanical Ventilation, Retinal Avascularity and Rate of Vascularisation: A Triad of Predictors for Retinopathy of Prematurity Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ophthalmologic Examination
2.3. Risk Factors for Retinopathy of Prematurity
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Univariate Analysis of Risk Factors for ROP Treatment
3.3. Multivariate Analysis of ROP Treatment
3.4. Tables for Calculating the Risk of ROP That Needs Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Damman, O.; Hartnett, M.E.; Stahl, A. Retinopathy of prematurity. Dev. Med. Child. Neurol. 2023, 65, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Azami, M.; Jaafari, Z.; Rahmati, S.; Farahani, A.D.; Badfar, G. Prevalence and risk factors of retinopathy of prematurity in Iran: A systematic review and meta-analysis. BMC Ophthalmol. 2018, 18, 83. [Google Scholar] [CrossRef]
- Lin, W.C.; Jordan, B.K.; Scottoline, B.; Ostmo, S.R.; Coyner, A.S.; Singh, P.; Kalpathy-Cramer, J.; Erdogmus, D.; Chan, R.V.P.; Chiang, M.F.; et al. Oxigenation fluctuations associated with severe retinopathy of prematurity: Insights from a multimodal deep learning approach. Ophthalmol. Sci. 2023, 4, 100417. [Google Scholar] [CrossRef] [PubMed]
- Poppe, J.A.; Fitzgibbon, S.P.; Taal, H.R.; Loudon, S.E.; Tjiam, A.M.; Roehr, C.C.; Reiss, I.K.M.; Simons, S.H.P.; Hartley, C. Early prediction of severe retinopathy of prematurity requiring laser treatment using physiological data. Pediatr. Res. 2023, 94, 699–706. [Google Scholar] [CrossRef]
- Bremmer, A.; Chan, L.Y.; Jones, C.; Shah, S.P. Comparison of weight-gain-based prediction models for retinopathy of prematurity in an Australian population. J. Ophthalmol. 2023, 2023, 8406287. [Google Scholar] [CrossRef]
- Castejón, M.G.; Chaves-Samaniego, M.C.; Larraya, A.S.P.; Molina, J.M.O.; Hoyos, A.M.; García-Serrano, J.L. Risk calculator for retinopathy of prematurity requiring treatment. Front. Pediatr. 2020, 8, 529639. [Google Scholar] [CrossRef]
- Padhi, T.; Bhusal, U.; Padhy, S.; Patel, A.; Kelgaonker, A.; Khalsa, A.; Das, T.; Kapil, V.; Shah, M.; Sugumar, S.; et al. The retinal vascular growth rate in babies with retinopathy of prematurity could indicate treatment need. Indian J. Ophthalmol. 2022, 70, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Solans Pérez de Larraya, A.M.; Ortega Molina, J.M.; Fernández, J.U.; Escudero Gómez, J.; Salgado Miranda, A.D.; Chaves Samaniego, M.J.; García Serrano, J.L. Retinal vascular speed <0.5 disc diameter per week as an early sign of retinopathy of prematurity requiring treatment. Eur. J. Ophthalmol. 2018, 28, 441–445. [Google Scholar] [PubMed]
- Hani, A.M.; Gensure, R.H.; Scruggs, B.A.; Anderson, J.; Chiang, M.F.; Campbell, J.P. Prevalence of persistent avascular retina in untreated children with a history of retinopathy of prematurity screening. JAAPOS Off. Publ. Am. Assoc. Pediatr. Ophthalmol. Strabismus. 2022, 26, 29–31. [Google Scholar] [CrossRef]
- Fu, Z.; Nilsson, A.K.; Hellstrom, A.; Smith, L.E.H. Retinopathy of prematurity: Metabolic risk factors. eLife 2002, 11, e80550. [Google Scholar] [CrossRef]
- Strube, Y.N.J.; Wright, K.W. Pathophysiology of retinopathy of prematurity. Saud. J. Ophthalmol. 2022, 36, 239–242. [Google Scholar]
- Jang, J.H.; Kim, Y.C. Retinal vascular development in an immature retina at 33-34 weeks postmenstrual age predicts retinopathy of prematurity. Sci. Rep. 2020, 10, 18111. [Google Scholar] [CrossRef]
- Lai, T.T.; Yang, C.M.; Hsieh, Y.T.; Yeh, P.T.; Huang, C.W.; Tsai, C.Y. Rate of and time to complete vascularisation in premature infants and associated factors. Retina 2023, 43, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.-Q.; Huang, X.; Xue, K.; Yu, J.; Ruan, L.; Shan, H.-D.; Xu, G.-Z. Natural involution of acute retinopathy of prematurity not requiring treatment: Factors associated with the time course of involution. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3165–3170. [Google Scholar] [CrossRef] [PubMed]
- Ferrer Novella, C.; González Viejo, I.; Pueyo Royo, V.; Martínez Fernández, R.; Galdós Iztueta, M.; Peralta Calvo, J.; Abelairas Gómez, J.; Tejada Palacios, P.; Martín Begué, N.; Wolley-Dod, C.; et al. Screening program for retinopathy of prematurity in Spain. Arch. Soc. Esp. Oftalmol. 2013, 88, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Cryotherapy for Retinopathy of Prematurity Cooperative Group. Multicenter trial of cryotherapy for retinopathy of prematurity: Ophthalmological outcomes at 10 years. Arch. Ophthalmol. 2001, 119, 110–118. [Google Scholar]
- Fierson, W.M. Screening examination of premature infants for retinopathy of prematurity. Pediatrics 2018, 142, e20183061, Erratum in Pediatrics 2019, 143, e20183810. [Google Scholar] [CrossRef] [PubMed]
- International Committee for the Classification of Retinopathy of Prematurity. The international classification of retinopathy of prematurity revisited. Arch. Ophthalmol. 2005, 123, 991–999. [Google Scholar] [CrossRef]
- Marinov, V.G.; Koleva-Georgieva, D.N.; Sivkova, N.P.; Krasteva, M.B. The 5-minute Apgar score as a prognostic factor for development and progression of retinopathy of prematurity. Folia Med. 2017, 59, 78–83. [Google Scholar] [CrossRef]
- Benitz, W.E.; Committee on Fetus and Newborn; American Academy of Pediatrics. Patent ductus arteriosus in preterm infants. Pediatrics 2016, 137. [Google Scholar] [CrossRef]
- Papile, L.A.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage; a study of infants with birth weights less than 1500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.M.; Lin, S.A.; Chan, Y.C.; Kuo, H.K. Correlation between periventricular leukomalacia and retinopathy of prematurity. Eur. J. Ophthalmol. 2012, 22, 980–984. [Google Scholar] [CrossRef] [PubMed]
- Higgins, R.D.; Jobe, A.H.; Koso-Thomas, M.; Bancalari, E.; Viscardi, R.M.; Hartert, T.V.; Ryan, R.M.; Kallapur, S.G.; Steinhorn, R.H.; Konduri, G.G.; et al. Bronchopulmonary dysplasia; Executive summary of a Workshop. J. Pediatr. 2018, 197, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Wade, K.C.; Pistilli, M.; Baumritter, A.; Karp, K.; Gong, A.; Kemper, A.P.; Ying, G.S.; Quinn, G. e-Retinopathy of prematurity study cooperative group. Safety of retinopathy of prematurity. Examination and imaging in premature infants. J. Pediatr. 2015, 167, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Matics, T.J.; Sanchez-Pinto, L.N. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the Sepsis-3 definitions in critically III children. JAMA Pediatr. 2017, 171, e172352. [Google Scholar] [CrossRef] [PubMed]
- Good, W.V. Final results of the early treatment for retinopathy of prematurity (ETROP) randomized trial. Trans. Am. Ophthalmol. Soc. 2004, 102, 233–250. [Google Scholar] [PubMed]
- Good, W.V. The early treatment for retinopathy of prematurity study: Structural findings at age 2 years. Br. J. Ophthalmol. 2006, 90, 1378–1382. [Google Scholar] [PubMed]
- Wang, S.K.; Korot, E.; Zaidi, M.; Ji, M.H.; Al-Moujahed, A.; Callaway, N.F.; Kumm, J. Modeling absolute zone size in retinopathy of prematurity in relation to axial length. Sci. Rep. 2022, 12, 4717. [Google Scholar] [CrossRef] [PubMed]
- Fevereiro-Martins, M.; Marques-Neves, C.; Guimarães, H.; Bicho, M. Retinopathy of prematurity: A review of pathophysiology and signaling pathways. Surv. Ophthalmol. 2023, 68, 175–210. [Google Scholar] [CrossRef]
- Campbell, J.P.; Ryan, M.C.; Lore, E.; Tian, P.; Ostmo, S.; Jonas, K.; Chan, R.V.P.; Chiang, M.F. Imaging & informatics in retinopathy of prematurity research consortium. Diagnostic discrepances in retinopathy of prematurity classification. Ophthalmology 2016, 123, 1795–1801. [Google Scholar]
- Kim, S.J.; Port, A.D.; Swan, R.; Campbell, J.P.; Chan, R.V.P.; Chiang, M.F. Retinopathy of prematurity: A review of risk factors and their clinical significance. Surv. Ophthalmol. 2018, 63, 618–637. [Google Scholar] [CrossRef] [PubMed]
- Hellström, A.; Hård, A.L. Screening and novel therapies for retinopathy of prematurity-A review. Early Human. Dev. 2019, 138, 104846. [Google Scholar] [CrossRef] [PubMed]
- Löfqvist, C.; Andersson, E.; Sigurdsson, J.; Engström, E.; Hård, A.-L.; Niklasson, A.; Smith, L.E.H.; Hellström, A. Longitudinal postnatal weight and insulin-like growth factor I measurements in the prediction of retinopathy of prematurity. Arch. Ophthalmol. 2006, 124, 1711–1718. [Google Scholar] [CrossRef] [PubMed]
- Binenbaum, G.; Ying, G.-S.; Quinn, G.E.; Huang, J.; Dreiseitl, S.; Antigua, J.; Foroughi, N.; Abbasi, S. The CHOP postnatal weight gain, birth weight, and gestational age retinopathy of prematurity risk model. Arch. Ophthalmol. 2012, 130, 1560–1565. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.H.; Wagner, B.D.; McCourt, E.A.; Cerda, A.; Sillau, S.; Palestine, A.; Enzenauer, R.W.; Mets-Halgrimson, R.B.; Paciuc-Beja, M.; Gralla, J.; et al. The Colorado-retinopathy of prematurity model (CO-ROP): Postnatal weight gain screening algorithm. J. AAPOS 2016, 20, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Lorentz, B.; Stieger, K.; Jäger, M.; Mais, C.; Stieger, S.; Andrassi-Darida, M. Retinal vascular development with 0.312 intravitreal bevacizumab to treat severe posterior retinopathy of prematurity: A longitudinal fluorescein angiographic study. Retina 2017, 37, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Sauer, L.; Chandler, M.; Hartnett, M.E. Extending peripheral retinal vascularisation in retinopathy of prematurity through regulation of VEGF signaling. Am. J. Ophthalmol. 2023, 260, 190–199. [Google Scholar] [CrossRef]
- de Larraya, A.M.S.P.; Molina, J.M.O.; Fernández, J.U.; Ramírez, A.R.G.; Serrano, J.L.G. Speed of retinal vascularisation in retinopathy of prematurity: Risk and protective factors. Biomed Res. Int. 2019, 2019, 2721578. [Google Scholar] [CrossRef]
Risk Factors | p Value | Odds Ratio (95% CI) |
---|---|---|
Duration of invasive respiratory support, days | 0.001 | 1.05 (1.02–1.08) |
Each additional diameter of avascular area (DD) | 0.000 | 2.21 (1.66–2.94) |
Retinal vascularisation rate, <0.5 vs. ≥0.5 DD/week | 0.000 | 19.03 (6.52–55.55) |
Duration of Invasion Respiratory Support (Days) | Avascular Area of the Retina in the First Examination (DD) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
0 | 0.17% | 0.38% | 0.84% | 1.85% | 4.00% | 8.44% | 16.95% | 31.10% | 49.95% | 68.84% |
5 | 0.22% | 0.49% | 1.09% | 2.39% | 5.15% | 10.73% | 21.01% | 37.05% | 56.56% | 74.23% |
10 | 0.29% | 0.65% | 1.42% | 3.10% | 6.61% | 13.52% | 25.75% | 43.41% | 62.92% | 78.96% |
15 | 0.38% | 0.84% | 1.85% | 4.00% | 8.45% | 16.96% | 31.13% | 50.00% | 68.86% | 83.03% |
20 | 0.50% | 1.09% | 2.40% | 5.16% | 10.74% | 21.03% | 37.07% | 56.58% | 74.24% | 86.44% |
25 | 0.65% | 1.42% | 3.10% | 6.62% | 13.56% | 25.76% | 43.43% | 62.94% | 78.98% | 89.26% |
30 | 0.84% | 1.85% | 4.01% | 8.46% | 16.98% | 31.15% | 50.02% | 68.89% | 83.04% | 91.55% |
Duration of Invasion Respiratory Support (Days) | Avascular Area of the Retina in the First Examination (DD) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
0 | 3.20% | 6.83% | 13.95% | 26.40% | 44.25% | 63.71% | 79.52% | 89.57% | 95.00% | 97.67% |
5 | 4.14% | 8.72% | 17.45% | 31.86% | 50.84% | 69.59% | 83.50% | 91.80% | 96.12% | 98.20% |
10 | 5.33% | 11.07% | 21.60% | 37.87% | 57.41% | 74.89% | 86.84% | 93.58% | 96.99% | 98.61% |
15 | 6.83% | 13.96% | 26.42% | 44.27% | 63.73% | 79.54% | 89.58% | 95.00% | 97.67% | 98.93% |
20 | 8.73% | 17.46% | 31.88% | 50.87% | 69.61% | 83.52% | 91.81% | 96.12% | 98.21% | 99.18% |
25 | 11.08% | 21.61% | 37.89% | 57.44% | 74.91% | 86.85% | 93.59% | 96.99% | 98.62% | 99.37% |
30 | 13.97% | 26.44% | 44.29% | 63.76% | 79.55% | 89.59% | 95.01% | 97.68% | 98.93% | 99.51% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Protsyk, O.; García Serrano, J.L. Mechanical Ventilation, Retinal Avascularity and Rate of Vascularisation: A Triad of Predictors for Retinopathy of Prematurity Treatment. J. Pers. Med. 2024, 14, 379. https://doi.org/10.3390/jpm14040379
Protsyk O, García Serrano JL. Mechanical Ventilation, Retinal Avascularity and Rate of Vascularisation: A Triad of Predictors for Retinopathy of Prematurity Treatment. Journal of Personalized Medicine. 2024; 14(4):379. https://doi.org/10.3390/jpm14040379
Chicago/Turabian StyleProtsyk, Olena, and José Luis García Serrano. 2024. "Mechanical Ventilation, Retinal Avascularity and Rate of Vascularisation: A Triad of Predictors for Retinopathy of Prematurity Treatment" Journal of Personalized Medicine 14, no. 4: 379. https://doi.org/10.3390/jpm14040379
APA StyleProtsyk, O., & García Serrano, J. L. (2024). Mechanical Ventilation, Retinal Avascularity and Rate of Vascularisation: A Triad of Predictors for Retinopathy of Prematurity Treatment. Journal of Personalized Medicine, 14(4), 379. https://doi.org/10.3390/jpm14040379