Gene Variants of the OAS/RNase L Pathway and Their Association with Severity of Symptoms and Outcome of SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Selection Criteria
2.2. Medical Data Collection and Parameters for the Categorizing of Patients Based on the Severity of COVID-19
2.3. SARS-CoV-2 Screening
2.4. DNA Isolation and Genotyping
2.5. Statistical Methods
3. Results
3.1. General Findings and Comparisons of the Genotype/allele Frequencies of the Gene Variants of the OAS/RNASEL Pathway between Asymptomatic and Symptomatic Groups with COVID-19
3.2. Comparisons of Genotype/Allele Frequencies of the Gene Variants of OAS/RNASEL Pathway between Hospitalized and Non-Hospitalized Patients with COVID-19
3.3. Gene Variants of OAS/RNase L Pathway and COVID-19 Severity
3.4. Gene Variants of OAS/RNase L Pathway and COVID-19 Outcome
3.5. Haplotype Analyses of the Gene Variants of the OAS/RNase L Pathway and Their Association with the COVID-19 Symptoms, Severity, and Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harrison, A.G.; Lin, T.; Wang, P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020, 41, 1100–1115. [Google Scholar] [CrossRef]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef]
- Eurosurveillance Editorial Team. Note from the editors: World Health Organization declares novel coronavirus (2019-nCoV) sixth public health emergency of international concern. Euro Surveill. 2020, 25, 200131e. [Google Scholar]
- World Health Organization. WHO COVID-19 Dashboard; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- Umakanthan, S.; Sahu, P.; Ranade, A.V.; Bukelo, M.M.; Rao, J.S.; Abrahao-Machado, L.F.; Dahal, S.; Kumar, H.; Kv, D. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad. Med. J. 2020, 96, 753–758. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e278. [Google Scholar] [CrossRef]
- Kim, Y.M.; Shin, E.C. Type I and III interferon responses in SARS-CoV-2 infection. Exp. Mol. Med. 2021, 53, 750–760. [Google Scholar] [CrossRef]
- Sadler, A.J.; Williams, B.R. Interferon-inducible antiviral effectors. Nat. Rev. Immunol. 2008, 8, 559–568. [Google Scholar] [CrossRef]
- Hovnanian, A.; Rebouillat, D.; Mattei, M.G.; Levy, E.R.; Marie, I.; Monaco, A.P.; Hovanessian, A.G. The human 2′,5′-oligoadenylate synthetase locus is composed of three distinct genes clustered on chromosome 12q24.2 encoding the 100-, 69-, and 40-kDa forms. Genomics 1998, 52, 267–277. [Google Scholar] [CrossRef]
- Li, X.L.; Blackford, J.A.; Hassel, B.A. RNase L mediates the antiviral effect of interferon through a selective reduction in viral RNA during encephalomyocarditis virus infection. J. Virol. 1998, 72, 2752–2759. [Google Scholar] [CrossRef]
- Sánchez-González, M.T.; Cienfuegos-Jiménez, O.; Álvarez-Cuevas, S.; Pérez-Maya, A.A.; Borrego-Soto, G.; Marino-Martínez, I.A. Prevalence of the SNP rs10774671 of the OAS1 gene in Mexico as a possible predisposing factor for RNA virus disease. Int. J. Mol. Epidemiol. Genet 2021, 12, 52–60. [Google Scholar] [PubMed]
- Knapp, S.; Yee, L.J.; Frodsham, A.J.; Hennig, B.J.; Hellier, S.; Zhang, L.; Wright, M.; Chiaramonte, M.; Graves, M.; Thomas, H.C.; et al. Polymorphisms in interferon-induced genes and the outcome of hepatitis C virus infection: Roles of MxA, OAS-1 and PKR. Genes Immun. 2003, 4, 411–419. [Google Scholar] [CrossRef]
- He, J.; Feng, D.; de Vlas, S.J.; Wang, H.; Fontanet, A.; Zhang, P.; Plancoulaine, S.; Tang, F.; Zhan, L.; Yang, H.; et al. Association of SARS susceptibility with single nucleic acid polymorphisms of OAS1 and MxA genes: A case-control study. BMC Infect. Dis. 2006, 6, 106. [Google Scholar] [CrossRef] [PubMed]
- Merad, M.; Blish, C.A.; Sallusto, F.; Iwasaki, A. The immunology and immunopathology of COVID-19. Science 2022, 375, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Schurr, T.G. Host genetic factors and susceptibility to SARS-CoV-2 infection. Am. J. Hum. Biol. 2020, 32, e23497. [Google Scholar] [CrossRef] [PubMed]
- Valdes-Aguayo, J.J.; Garza-Veloz, I.; Vargas-Rodriguez, J.R.; Martinez-Vazquez, M.C.; Avila-Carrasco, L.; Bernal-Silva, S.; Gonzalez-Fuentes, C.; Comas-Garcia, A.; Alvarado-Hernandez, D.E.; Centeno-Ramirez, A.S.H.; et al. Peripheral Blood Mitochondrial DNA Levels Were Modulated by SARS-CoV-2 Infection Severity and Its Lessening Was Associated with Mortality among Hospitalized Patients with COVID-19. Front. Cell. Infect. Microbiol. 2021, 11, 754708. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Living Guidance for Clinical Management of COVID-19: Living Guidance, 23 November 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Gao, M.; Yang, L.; Chen, X.; Deng, Y.; Yang, S.; Xu, H.; Chen, Z.; Gao, X. A study on infectivity of asymptomatic SARS-CoV-2 carriers. Respir. Med. 2020, 169, 106026. [Google Scholar] [CrossRef] [PubMed]
- Graham, L.A.; Maldonado, Y.A.; Tompkins, L.S.; Wald, S.H.; Chawla, A.; Hawn, M.T. Asymptomatic SARS-CoV-2 Transmission from Community Contacts in Healthcare Workers. Ann. Surg. 2020, 278, e947–e948. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Fierro, M.L.; Rios-Jasso, J.; Garza-Veloz, I.; Reyes-Veyna, L.; Cerda-Luna, R.M.; Duque-Jara, I.; Galvan-Jimenez, M.; Ramirez-Hernandez, L.A.; Morales-Esquivel, A.; Ortiz-Castro, Y.; et al. The role of close contacts of COVID-19 patients in the SARS-CoV-2 transmission: An emphasis on the percentage of nonevaluated positivity in Mexico. Am. J. Infect. Control. 2021, 49, 15–20. [Google Scholar] [CrossRef]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef]
- Al-Awaida, W.J.; Al Hourani, B.J.; Swedan, S.; Nimer, R.; Alzoughool, F.; Al-Ameer, H.J.; Al Tamam, S.E.; Alashqar, R.; Al Bawareed, O.; Gushchina, Y.; et al. Correlates of SARS-CoV-2 Variants on Deaths, Case Incidence and Case Fatality Ratio among the Continents for the Period of 1 December 2020 to 15 March 2021. Genes 2021, 12, 1061. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Khanijahani, A.; Iezadi, S.; Gholipour, K.; Azami-Aghdash, S.; Naghibi, D. A systematic review of racial/ethnic and socioeconomic disparities in COVID-19. Int. J. Equity Health 2021, 20, 248. [Google Scholar] [CrossRef] [PubMed]
- Delanghe, J.R.; Speeckaert, M.M. Host polymorphisms and COVID-19 infection. Adv. Clin. Chem. 2022, 107, 41–77. [Google Scholar] [CrossRef] [PubMed]
- Texis, T.; Cruz-Jaramilllo, J.L.; García-Muñoz, W.; Anzures-Cortés, L.; Haddad-Talancón, L.; Sánchez-García, S.; del C Jiménez Martínez, M.; Pérez Barragán, E.; Nieto-Patlán, A.; Martínez-Ezquerro, J.D.; et al. COVID-19 relevant genetic variants confirmed in an admixed population. medRxiv 2022. [Google Scholar] [CrossRef]
- Calvet, J.; Berenguer-Llergo, A.; Gay, M.; Massanella, M.; Domingo, P.; Llop, M.; Sanchez-Jimenez, E.; Arevalo, M.; Carrillo, J.; Albinana, N.; et al. Biomarker candidates for progression and clinical management of COVID-19 associated pneumonia at time of admission. Sci. Rep. 2022, 12, 640. [Google Scholar] [CrossRef] [PubMed]
- Chaaithanya, I.K.; Muruganandam, N.; Surya, P.; Anwesh, M.; Alagarasu, K.; Vijayachari, P. Association of Oligoadenylate Synthetase Gene Cluster and DC-SIGN (CD209) Gene Polymorphisms with Clinical Symptoms in Chikungunya Virus Infection. DNA Cell Biol. 2016, 35, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Kozak, K.; Pavlyshyn, H.; Kamyshnyi, A.; Shevchuk, O.; Korda, M.; Vari, S.G. Genes Polymorphisms and Their Association with COVID-19 Severity in Children. Viruses 2023, 15, 2093. [Google Scholar] [CrossRef]
- Meyer, M.S.; Penney, K.L.; Stark, J.R.; Schumacher, F.R.; Sesso, H.D.; Loda, M.; Fiorentino, M.; Finn, S.; Flavin, R.J.; Kurth, T.; et al. Genetic variation in RNASEL associated with prostate cancer risk and progression. Carcinogenesis 2010, 31, 1597–1603. [Google Scholar] [CrossRef]
- Martinez-Fierro, M.L.; Leach, R.J.; Gomez-Guerra, L.S.; Garza-Guajardo, R.; Johnson-Pais, T.; Beuten, J.; Morales-Rodriguez, I.B.; Hernandez-Ordonez, M.A.; Calderon-Cardenas, G.; Ortiz-Lopez, R.; et al. Identification of viral infections in the prostate and evaluation of their association with cancer. BMC Cancer 2010, 10, 326. [Google Scholar] [CrossRef]
- Lee, D.; Le Pen, J.; Yatim, A.; Dong, B.; Aquino, Y.; Ogishi, M.; Pescarmona, R.; Talouarn, E.; Rinchai, D.; Zhang, P.; et al. Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children. Science 2023, 379, eabo3627. [Google Scholar] [CrossRef] [PubMed]
- Skerenova, M.; Cibulka, M.; Dankova, Z.; Holubekova, V.; Kolkova, Z.; Lucansky, V.; Dvorska, D.; Kapinova, A.; Krivosova, M.; Petras, M.; et al. Host genetic variants associated with COVID-19 reconsidered in a Slovak cohort. Adv. Med. Sci. 2024, 69, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Zeberg, H.; Paabo, S. A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proc. Natl. Acad. Sci. USA 2021, 118, e2026309118. [Google Scholar] [CrossRef] [PubMed]
- Kozak, K.; Pavlyshyn, H.; Kamyshnyi, O.; Shevchuk, O.; Korda, M.; Vari, S.G. The Relationship between COVID-19 Severity in Children and Immunoregulatory Gene Polymorphism. Viruses 2023, 15, 2093. [Google Scholar] [CrossRef] [PubMed]
- Udomsinprasert, W.; Nontawong, N.; Saengsiwaritt, W.; Panthan, B.; Jiaranai, P.; Thongchompoo, N.; Santon, S.; Runcharoen, C.; Sensorn, I.; Jittikoon, J.; et al. Host genetic polymorphisms involved in long-term symptoms of COVID-19. Emerg. Microbes Infect. 2023, 12, 2239952. [Google Scholar] [CrossRef] [PubMed]
- Ruter, J.; Pallerla, S.R.; Meyer, C.G.; Casadei, N.; Sonnabend, M.; Peter, S.; Nurjadi, D.; Linh, L.T.K.; Fendel, R.; Gopel, S.; et al. Host genetic loci LZTFL1 and CCL2 associated with SARS-CoV-2 infection and severity of COVID-19. Int. J. Infect. Dis. 2022, 122, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Banday, A.R.; Stanifer, M.L.; Florez-Vargas, O.; Onabajo, O.O.; Zahoor, M.A.; Papenberg, B.W.; Ring, T.J.; Lee, C.H.; Andreakos, E.; Arons, E.; et al. Genetic regulation of OAS1 nonsense-mediated decay underlies association with risk of severe COVID-19. medRxiv 2021. [Google Scholar] [CrossRef]
- Tanimine, N.; Takei, D.; Tsukiyama, N.; Yoshinaka, H.; Takemoto, Y.; Tanaka, Y.; Kobayashi, T.; Tanabe, K.; Ishikawa, N.; Kitahara, Y.; et al. Identification of Aggravation-Predicting Gene Polymorphisms in Coronavirus Disease 2019 Patients Using a Candidate Gene Approach Associated with Multiple Phase Pathogenesis: A Study in a Japanese City of 1 Million People. Crit. Care Explor. 2021, 3, e0576. [Google Scholar] [CrossRef]
- Dieter, C.; de Almeida Brondani, L.; Lemos, N.E.; Schaeffer, A.F.; Zanotto, C.; Ramos, D.T.; Girardi, E.; Pellenz, F.M.; Camargo, J.L.; Moresco, K.S.; et al. Polymorphisms in ACE1, TMPRSS2, IFIH1, IFNAR2, and TYK2 Genes Are Associated with Worse Clinical Outcomes in COVID-19. Genes 2022, 14, 29. [Google Scholar] [CrossRef]
Variable | Symptomatic COVID-19 Cases (n = 70) | Asymptomatic Controls (n = 34) |
---|---|---|
Sex n (%) | ||
Male | 38 (54.3) | 24 (70.6) |
Female | 32 (45.7) | 10 (29.4) |
Age, years (±SD) | 58.3 ± 14.6 | 50.0 ± 18.3 |
Symptoms n (%) | ||
Fever | 42 (60) | NA |
Cough | 32 (45.7) | NA |
Cefalea | 34 (48.6) | NA |
Dyspnea | 45 (64.3) | NA |
Tachypnea | 40 (57.1) | NA |
Tachycardia | 4 (5.7) | NA |
Chest pain | 25 (35.7) | NA |
Vomit | 5 (7.1) | NA |
Diarrhea | 16 (22.9) | NA |
Asthenia | 17 (24.3) | NA |
Adynamia | 17 (24.3) | NA |
Myalgia | 33 (47.1) | NA |
Arthralgia | 30 (42.9) | NA |
Anosmia | 18 (25.7) | NA |
Dysgeusia | 18 (25.7) | NA |
Rhinorrhea | 16 (22.8) | NA |
Odynophagia | 20 (28.6) | NA |
General discomfort | 30 (42.8) | NA |
dbSNP ID | Genotype/Minor Allele | Symptomatic COVID-19 (n = 70) | Asymptomatic COVID-19 (n = 34) | OR (95% CI) | p-Value |
---|---|---|---|---|---|
RNASEL rs486907 | C/C | 44 (62.9) | 24 (70.6) | 1 | 0.7 |
C/T | 22 (31.4) | 8 (23.5) | 1.50 (0.58–3.88) | ||
T/T | 4 (5.7) | 2 (5.9) | 1.09 (0.19–6.40) | ||
Allele T | 30 (21.0) | 12 (18.0) | 1.27 (0.60–2.68) | 0.524 | |
OAS1 rs10774671 | A/A | 68 (97.1) | 32 (94.1) | 1 | 0.47 |
A/G | 2 (2.9) | 2 (5.9) | 0.47 (0.06–3.49) | ||
G/G | 0 (0) | 0 (0) | 0.00 (0.00–NA) | ||
Allele G | 2 (1.0) | 2 (3.0) | 0.47 (0.065–3.47) | 0.456 | |
OAS2 rs1293767 | G/G | 58 (82.9) | 22 (64.7) | 1 | 0.03 * |
G/C | 12 (17.1) | 10 (29.4) | 0.46 (0.17–1.20) | ||
C/C | 0 (0) | 2 (5.9) | 0.00 (0.00–NA) | ||
Allele C | 12 (9.0) | 14 (21.0) | 0.36 (0.15–0.83) | 0.014 * | |
OAS3 rs2285932 | C/C | 57 (81.4) | 22 (64.7) | 1 | 0.039 * |
C/T | 13 (18.6) | 10 (29.4) | 0.50 (0.19–1.31) | ||
T/T | 0 (0) | 2 (5.9) | 0.00 (0.00–NA) | ||
Allele T | 13 (9.0) | 14 (21.0) | 0.39 (0.2–0.9) | 0.023 * |
Variable | Hospitalized (n = 52) | Non-Hospitalized (n = 52) | p-Value |
---|---|---|---|
Sex n (%) | |||
Male | 24 (46.2) | 36 (69.2) | 0.013 |
Female | 28 (53.8) | 16 (30.8) | |
Age (years) | 58.3 ± 14.3 | 51.15 ± 17.9 | 0.0423 * |
Symptoms n (%) | |||
Fever | 23 (44.2) | 19 (36.5) | 0.602 |
Cough | 19 (36.5) | 13 (25) | 0.323 |
Headache | 13 (25) | 21 (40.4) | 0.222 |
Dyspnea | 29 (55.8) | 16 (30.8) | 0.104 |
Tachypnea | 13 (25) | 11 (21.2) | 0.713 |
Tachycardia | 4 (7.7) | 0 (0) | 0.05 |
Chest pain | 7 (13.5) | 18 (34.6) | 0.047 * |
Vomit | 2 (3.8) | 3 (5.8) | 0.072 |
Diarrhea | 4 (7.7) | 12 (22.9) | 0.062 |
Asthenia | 17 (32.7) | 0 (0) | <0.001 * |
Adynamia | 17 (32.7) | 0 (0) | <0.001 * |
Myalgia | 14 (26.9) | 19 (36.5) | 0.448 |
Arthralgia | 12 (23.1) | 18 (34.6) | 0.334 |
Anosmia | 2 (3.8) | 16 (30.8) | 0.002 * |
Dysgeusia | 4 (7.7) | 14 (26.9) | 0.029 * |
Rhinorrhea | 8 (15.4) | 8 (15.4) | 1 |
Odynophagia | 7 (13.5) | 13 (25) | 0.219 |
General discomfort | 10 (19.2) | 20 (38.5) | 0.107 |
dbSNP ID | Genotype/ Minor Allele | No Hospitalized (n = 52) | Hospitalized (n = 52) | OR (95%CI) | p-Value |
---|---|---|---|---|---|
RNASEL rs486907 | C/C | 32 (61.5) | 36 (69.2) | 1 | 0.68 |
C/T | 17 (32.7) | 13 (25.0) | 0.68 (0.29–1.61) | ||
T/T | 3 (5.8) | 3 (5.8) | 0.89 (0.17–4.72) | ||
Allele T | 23 (22.0) | 19 (18.0) | 0.78 (0.39–1.55) | 0.49 | |
OAS1 rs10774671 | A/A | 50 (96.2) | 50 (96.2) | 1 | 1 |
A/G | 2 (3.8) | 2 (3.8) | 1.00 (0.14–7.38) | ||
G/G | 0 (0) | 0 (0) | 0 (NA) | ||
Allele G | 2 (4.0) | 2 (4.0) | 1 | 1 | |
OAS2 rs1293767 | G/G | 38 (73.1) | 42 (80.8) | 1 | 0.21 |
G/C | 12 (23.1) | 10 (19.2) | 0.75 (0.29–1.94) | ||
C/C | 2 (3.8) | 0 (0) | 0.00 (0.00–NA) | ||
Allele C | 16 (15.0) | 10 (10.0) | 0.58 (0.25–1.35) | 0.208 | |
OAS3 rs2285932 | C/C | 38 (73.1) | 41 (78.8) | 1 | 0.23 |
C/T | 12 (23.1) | 11 (21.1) | 0.85 (0.34–2.15) | ||
T/T | 2 (3.8) | 0 (0) | 0.00 (0.00–NA) | ||
Allele T | 16 (15.0) | 11 (11.0) | 0.65 (0.28–1.47) | 0.302 |
Gene/Variant | COVID-19 Group Comparison | |||
---|---|---|---|---|
Asymptomatic (n = 34) versus: | ||||
Mild Disease (n = 12) | Moderate Disease (n = 21) | Severe Disease (n = 21) | Critical Disease (n = 16) | |
RNASEL/rs486907 | NS | NS | NS | NS |
OAS1/rs10774671 | NS | NS | NS | NS |
OAS2/rs1293767 | NS | NS | * | NS |
OAS3/rs2285932 | NS | NS | NS | NS |
Finding | Outcome of Hospitalized Patients with COVID-19 | p-Value | |
---|---|---|---|
Patients Who Did Not Survive (n = 27) | Patients Who Recovered from COVID-19 (n = 25) | ||
Type 2 diabetes mellitus n (%) | 10 (37.0) | 9 (36.0) | 0.938 |
Hypertension n (%) | 17 (62.96) | 7 (28.0) | 0.012 * |
Obesity n (%) | 7 (25.9) | 2 (8.0) | 0.143 |
Glucose on admission (mg/dL) | 178.92 ± 75.80 | 192.50 ± 144.72 | 0.389 |
Glucose at discharge (mg/dL) | 184.07 ± 103.74 | 140.42 ± 65.38 | 0.171 |
Total cholesterol (mg/dL) | 161.66 ± 43.78 | 160.35 ± 21.92 | 0.946 |
Triglycerides (mg/dL) | 326.80 ± 334.31 | 230.73 ± 127.39 | 0.943 |
Uric acid (mg/dL) | 6.020 ± 2.35 | 8.40 ± 3.91 | 0.292 |
Serum creatinine (mg/dL) | 2.022 ± 3.22 | 1.44 ± 3.17 | 0.1 |
Urea (mg/dL) | 57.48 ± 45.36 | 60.86 ± 51.55 | 0.788 |
Blood urea nitrogen (mg/dL) | 30.08 ± 15.62 | 28.68 ± 23.92 | 0.236 |
Erythrocyte Sedimentation Rate (mm/h) | 21.53 ± 6.60 | 33.00 ± 21.21 | 0.231 |
Dimer D (ng/mL) | 1.36 ± 1.24 | 2.60 ± 1.72 | 0.14 |
Lactate dehydrogenase (μ/L) | 688.72 ± 272.70 | 551.75 ± 354.41 | 0.124 |
C Reactive Protein (mg/L) | 73.62 ± 107.49 | 30.58 ± 15.09 | 0.852 |
Procalcitonin (ng/mL) | 1.87 ± 2.48 | 0.35 ± 0.21 | 0.354 |
Hemoglobin (gr/dL) | 12.32 ± 1.95 | 13.05 ± 2.90 | 0.353 |
Hematocrit (%) | 39.28 ± 9.46 | 40.01 ± 8.45 | 0.837 |
Mean corpuscular volume (fL) | 85.67 ± 8.15 | 88.13 ± 8.00 | 0.433 |
Mean corpuscular hemoglobin (pg/cell) | 29.20 ± 2.64 | 28.54 ± 2.82 | 0.402 |
Mean corpuscular hemoglobin (g/dL) | 33.63 ± 1.32 | 32.06 ± 1.67 | 0.015 * |
Red cell distribution width (%) | 14.22 ± 2.72 | 16.58 ± 9.40 | 0.640 |
Platelets (103/μL) | 205.23 ± 67.88 | 336.42 ± 157.30 | 0.003 * |
Leukocytes (103/μL) | 13.10 ± 6.89 | 10.78 ± 4.11 | 0.474 |
Lymphocytes (%) | 5.29 ± 3.61 | 16.36 ± 11.30 | <0.001 * |
Neutrophils (%) | 83.07 ± 21.82 | 73.39 ± 19.83 | 0.006 * |
dbSNP ID | Genotype/Minor Allele | Patients Who Recovered from COVID-19 (n = 25) | Patients Who Did Not Survive (n = 27) | OR (95% CI) | p-Value |
---|---|---|---|---|---|
RNASEL rs486907 | C/C | 16 (64.0) | 20 (74.1) | 1 | 0.68 |
C/T | 7 (28.0) | 6 (22.2) | 0.69 (0.19–2.45) | ||
T/T | 2 (8.0) | 1 (3.7) | 0.40 (0.03–4.82) | ||
Allele T | 8 (20.0) | 8 (15.0) | 0.61 (0.23–1.67) | 0.34 | |
OAS1 rs10774671 | A/A | 24 (96.0) | 26 (96.3) | 1 | 0.85 |
A/G | 1 (4.0) | 1 (3.7) | 0.92 (0.05–15.6) | ||
Allele G | 1 (20.0) | 1 (20.0) | 0.93 (0.05–15.2) | 0.95 | |
OAS2 rs1293767 | G/G | 20 (80.0) | 22 (81.5) | 1 | 0.89 |
C/G | 5 (20.0) | 5 (18.5) | 0.91 (0.23–3.61) | ||
Allele C | 4 (10.0) | 4 (8.0) | 0.91 (0.25–3.38) | 0.89 | |
OAS3 rs2285932 | C/C | 19 (76.0) | 22 (81.5) | 1 | 0.63 |
C/T | 6 (24.0) | 5 (18.5) | 0.72 (0.19–2.74) | ||
Allele T | 6 (12.0) | 5 (8.0) | 0.75 (0.21–2.62) | 0.65 |
RNASEL | OAS1 | OAS2 | OAS3 | Freq | OR (95% CI) | p-Value | |
---|---|---|---|---|---|---|---|
1 | C | A | G | C | 0.6794 | 1 | --- |
2 | T | A | G | C | 0.1855 | 1.83 (0.77–4.35) | 0.18 |
3 | C | A | C | T | 0.1035 | 0.43 (0.16–1.19) | 0.11 |
4 | T | A | C | T | 0.0076 | 0.00 (−Inf–Inf) | 1 |
rare | C | G | G | C | 0.024 | 1.08 (0.15–7.87) | 0.94 |
Global haplotype association p-value | 0.17 |
RNASEL | OAS1 | OAS2 | OAS3 | Freq | OR (95% CI) | p-Value | |
---|---|---|---|---|---|---|---|
1 | C | A | G | C | 0.6877 | 1 | --- |
2 | T | A | G | C | 0.1775 | 1.08 (0.53–2.19) | 0.83 |
3 | C | A | C | T | 0.0863 | 0.98 (0.34–2.85) | 0.97 |
4 | T | A | C | T | 0.0244 | 0.00 (−Inf–Inf) | 1 |
rare | T | G | C | T | 0.024 | 1.09 × 109 (1.085 × 109–1.0851 × 109) | <0.0001 * |
Global haplotype association p-value | 0.26 |
RNASEL | OAS1 | OAS2 | OAS3 | Freq | OR (95% CI) | p-Value | |
---|---|---|---|---|---|---|---|
1 | C | A | G | C | 0.701 | 1 | --- |
2 | T | A | G | C | 0.182 | 0.59 (0.22–1.56) | 0.29 |
3 | C | A | C | T | 0.086 | 0.58 (0.13–2.57) | 0.48 |
4 | C | G | G | C | 0.009 | 0.00 (−Inf–Inf) | 1 |
5 | C | A | G | T | 0.009 | 0.00 (−Inf–Inf) | 1 |
rare | C | G | C | T | 0.009 | 1.03 × 1020 (1.031 × 1020–1.0309 × 1020) | <0.0001 * |
Global haplotype association p-value | 0.36 |
Author/Year | Population | Study Design (n) | Gene Variants Evaluated | Findings |
---|---|---|---|---|
Kozak K, et al., 2023 [36]. | Ukrainian | Case-control (n = 75 children: 30 with mild or moderate disease, 30 with severe COVID-19 and multisystem inflammatory syndrome (MIS-C), and 15 without COVID-19). | ACE2 rs2074192, IFNAR2 rs2236757, TYK2 rs2304256, OAS1 rs10774671, OAS3 rs10735079, CD40 rs4813003, FCGR2A rs1801274, CASP3 rs113420705. | ACE2 rs2074192-T, IFNAR2 rs2236757-A, OAS1 rs10774671-A, CD40 rs4813003-C, CASP3 rs113420705-C and male sex contribute to severe COVID-19 course and MIS-C in 85.6% of cases. |
Skerenova M, et al., 2024 [34]. | Slovakian | Case-control (n = 202; 139 COVID-19 cases and 63 controls). | 17 single nucleotide variants (SNVs) in 11 genes: CD209, DPP9, OAS1 (including rs10774671), OAS3, TYK2, IFNAR2, CCHCR1, HLA-G, NOTCH4, THBS3, LZTFL1. | There was an influence of LZTFL1 and OAS1/OAS3 genetic variants on the severity of COVID-19. The OAS1/OAS3 haplotype ‘GTTG’ carrying a functional allele G of splice-acceptor variant rs10774671 manifested its protective function in the Delta pandemic wave. |
Udomsinprasert W, et al., 2023 [37]. | Thai | Case-control (n = 260 patients with COVID-19; 239 mild and 21 severe COVID-19). | 37 candidate genetic variants, including OAS3 rs10735079. | LZTFL1 rs10490770, rs11385942, rs17713054, NADSYN1 rs12785878, PLXNA4 rs1424597, IL10 rs1800896, ACE2 rs2285666, PEDS1 rs6020298, IL10RB rs8178562 were related to long-term symptoms, incidence of long COVID. OAS3 rs10735079 was not associated to severity, long-term symptoms or long COVID occurrence. |
Rüter J, et al., 2022 [38]. | German | Case-control, (n = 217: 123 COVID-19 cases and 94 controls). | 30 single nucleotide variants including OAS1 rs2660 and rs1131454, and OAS3 rs10735079. | Genetic variants in LZTFL1, APOE, ABO, FURIN, NOTCH4, CCL2, DPP9, IL6, OAS1 were associated with at least one of the phenotypes “susceptibility to infection”, “hospitalization”, or “severity”. LZTFL1 rs73064425 with hospitalization and severity, whereas rs1024611 near CCL2 and rs1131454 in OAS1 with susceptibility. |
Lee D, et al., 2023 [33]. | European, African, Asian, and American | Cohort (n = 558 patients with MIS-C, 1288 children and adults with asymptomatic or paucisymptomatic SARS-CoV-2 infection. | Whole-exome/whole-genome sequencing which included OAS1, OAS2 and RNASEL. | Identification of autosomal recessive deficiencies of OAS1, OAS2, or RNASEL (OAS1 p.R47*, OAS2 p.R535Q, p.Q258L, and p.V290I, and RNASEL p.G59S + E265*) as genetic etiologies of MIS-C in 5 children. In these patients, MIS-C may result from an excessive immune cell response to SARSCoV-2. RNASEL/OAS1-2 genetic deficiency resulted in the immunological and clinical phenotype of MIS-C. |
Banday AR, et al., 2021 [39]. | Patients from COVNET project (U.S. and Canada) | Case-control (n = 601 non-hospitalized vs. 954 hospitalized patients with COVID-19). | 19Kb-haplotype that included 76 OAS1 variants. | Rs10774671 and rs1131454 affect splicing and nonsense-mediated decay of OAS1. Genetically-regulated loss of OAS1 expression contributes to impaired spontaneous clearance of SARS-CoV-2 and elevated risk of hospitalization for COVID-19. |
Tanimine N, et al., 2021 [40]. | Japanese | Cohort (n = 230 patients with COVID-19; 202 non-severe and 28 severe). | 34 polymorphisms from 14 distinct candidate genes, including OAS1 rs1131454, rs2660, and rs10774671. | Rs1131454 (OAS1) and rs1143627 (IL-1B) were associated with the severity of SARS-CoV-2 (adjusted odds ratio = 7.1 and 4.6 in the dominant model, respectively). |
Dieter C, et al., 2023 [41]. | Brazilian | Nested cohort case-control study (n = 694 with COVID-19: 414 critically ill patients with severe COVID-19 and 280 non-critically ill; 469 survivors and 183 non-survivors). | ACE1 rs1799752, ACE2 rs2285666, DPP9 rs2109069, IFIH1 rs1990760, IFNAR2 rs2236757, IFNL4 rs368234815, TLR3 rs3775291, TMPRSS2 rs12329760, TYK2 rs2304256. | There was an association of rs1799752/ACE1, rs1990760/IFIH1, rs2236757/IFNAR2, rs12329760/TMPRSS2, and rs2304256/TYK2 with worse COVID-19 outcomes, especially among female and non-white patients. |
He J, et al., 2006. [14]. | Chinese | Case-control (n = 130). | OAS1 rs2660, Mx -88 G/T (rs2071430). | SNPs in the OAS1 3′-UTR and MxA promoter region appear associated with host susceptibility to SARS. |
Perez-Favila A, et al., 2024. This study. | Mexican | Cross-sectional, case-control (n = 104 patients with SARS-CoV-2 infection: 34 asymptomatic COVID-19 and 70 symptomatic COVID-19 cases. | RNASEL rs486907, OAS1 rs10774671, OAS2 rs1293767, and OAS3 rs2285932. | Patients with the allele C of the OAS2 gene rs1293767 (OR: 0.36, 95% CI: 0.15–0.83; p = 0.014;) and allele T of the OAS3 gene rs2285932 (OR: 0.39, 95% CI: 0.2–0.023; p = 0.023) had lower susceptibility to developing symptomatic COVID-19. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez-Favila, A.; Sanchez-Macias, S.; De Lara, S.A.O.; Garza-Veloz, I.; Araujo-Espino, R.; Castañeda-Lopez, M.E.; Mauricio-Gonzalez, A.; Vazquez-Reyes, S.; Velasco-Elizondo, P.; Trejo-Ortiz, P.M.; et al. Gene Variants of the OAS/RNase L Pathway and Their Association with Severity of Symptoms and Outcome of SARS-CoV-2 Infection. J. Pers. Med. 2024, 14, 426. https://doi.org/10.3390/jpm14040426
Perez-Favila A, Sanchez-Macias S, De Lara SAO, Garza-Veloz I, Araujo-Espino R, Castañeda-Lopez ME, Mauricio-Gonzalez A, Vazquez-Reyes S, Velasco-Elizondo P, Trejo-Ortiz PM, et al. Gene Variants of the OAS/RNase L Pathway and Their Association with Severity of Symptoms and Outcome of SARS-CoV-2 Infection. Journal of Personalized Medicine. 2024; 14(4):426. https://doi.org/10.3390/jpm14040426
Chicago/Turabian StylePerez-Favila, Aurelio, Sonia Sanchez-Macias, Sergio A. Oropeza De Lara, Idalia Garza-Veloz, Roxana Araujo-Espino, Maria E. Castañeda-Lopez, Alejandro Mauricio-Gonzalez, Sodel Vazquez-Reyes, Perla Velasco-Elizondo, Perla M. Trejo-Ortiz, and et al. 2024. "Gene Variants of the OAS/RNase L Pathway and Their Association with Severity of Symptoms and Outcome of SARS-CoV-2 Infection" Journal of Personalized Medicine 14, no. 4: 426. https://doi.org/10.3390/jpm14040426
APA StylePerez-Favila, A., Sanchez-Macias, S., De Lara, S. A. O., Garza-Veloz, I., Araujo-Espino, R., Castañeda-Lopez, M. E., Mauricio-Gonzalez, A., Vazquez-Reyes, S., Velasco-Elizondo, P., Trejo-Ortiz, P. M., Montaño, F. E. M., Castruita-De la Rosa, C., & Martinez-Fierro, M. L. (2024). Gene Variants of the OAS/RNase L Pathway and Their Association with Severity of Symptoms and Outcome of SARS-CoV-2 Infection. Journal of Personalized Medicine, 14(4), 426. https://doi.org/10.3390/jpm14040426