Coronary Intravascular Lithotripsy Effectiveness and Safety in a Real-World Cohort
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAD | coronary artery disease |
CCS | chronic coronary syndrome |
CTO | chronic total occlusion |
Cx | circumflex artery |
DEB | drug-eluting balloon |
eGFR | estimated glomerular filtration rate |
HF | heart failure |
IVL | intravascular lithotripsy |
IVUS | intravascular ultrasound |
IQR | interquartile range |
LAD | left anterior descending artery |
LM | left main artery |
MACE | major cardiovascular events |
MI | myocardial infarction |
NC balloon | non-compliant balloon |
NSTEMI | non-ST-segment elevation myocardial infarction |
OCT | optical coherence tomography |
PCI | percutaneous coronary intervention |
RA | rotational atherectomy |
RCA | right coronary artery |
RVD | reference vessel diameter |
SC balloon | semi-compliant balloon |
SD | standard deviation |
STEMI | ST-segment elevation myocardial infarction |
TIMI | thrombolysis in myocardial infarction |
TLF | target lesion failure |
TLR | target lesion revascularization |
UA | unstable angina |
VF | ventricular fibrillation |
VT | ventricular tachycardia |
References
- Kereiakes, D.J.; Virmani, R.; Hokama, J.Y.; Illindala, U.; Mena-Hurtado, C.; Holden, A.; Hill, J.M.; Lyden, S.P.; Ali, Z.A. Principles of Intravascular Lithotripsy for Calcific Plaques Modification. JACC Cardiovasc. Interv. 2021, 14, 1275–1292. [Google Scholar] [CrossRef] [PubMed]
- Shumpei, M.; Yasuda, S.; Kataoka, Y.; Morii, I.; Kawamura, A.; Miyazaki, S. Significant Association of Coronary Artery Calcification in Stent Delivery Route With Restenosis After Sirolimus-Eluting Stent Implantation. Circ. J. 2009, 73, 1856–1863. [Google Scholar] [CrossRef]
- Honton, B.; Monsegu, J. Best Practice in Intravascular Lithotripsy. Interv. Cardiol. 2022, 17, e02. [Google Scholar] [CrossRef] [PubMed]
- Kereiakes, D.J.; Di Mario, C.; Riley, R.F.; Fajadet, J.; Shlofmitz, R.A.; Saito, S.; Ali, Z.A.; Klein, A.J.; Price, M.J.; Hill, J.M.; et al. Intravascular Lithotripsy for Treatment of Calcified Coronary Lesions: Patient-Level pooled Analysis of the Disrupt CAD Studies. JACC Cardiovasc. Interv. 2021, 14, 1337–1348. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Shah, N. The Impact and Pathophysiologic Consequences of Coronary Artery Calcium Deposition in Percutaneous Coronary Interventions. J. Invasive Cardiol. 2016, 28, 160–167. [Google Scholar] [PubMed]
- Ali, Z.A.; Nef, H.; Escaned, J.; Werner, N.; Banning, A.P.; Hill, J.M.; De Bruyne, B.; Montorfano, M.; Lefevre, T.; Stone, G.W.; et al. Safety and Effectiveness of Coronary Intravascular Lithotripsy for Treatment of Severely Calcified Coronary Stenoses: The Disrupt CAD II Study. Circ. Cardiovasc. Interv. 2019, 12, e008434. [Google Scholar] [CrossRef] [PubMed]
- Riley, R.F.; Patel, M.P.; Abbott, J.D.; Bangalore, S.; Brilakis, E.S.; Croce, K.J.; Doshi, D.; Kaul, P.; Kearney, K.E.; Kerrigan, J.L.; et al. SCAI Expert Consensus Statement on The Management of Calcified Coronary Lesions. J. Soc. Cardiovasc. Angiogr. Interv. 2023, 3, 101259. [Google Scholar] [CrossRef]
- Mody, R.; Dash, D.; Mody, B.; Maligireddy, A.R.; Agrawal, A.; Rastogi, L.; Monga, I.S. Can Most Calcified Coronary Stenosis Be Optimized With Coronary Intravascular Lithotripsy? JACC Asia 2023, 3, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Raber, L.; Mintz, G.S.; Koskinas, K.C.; Johson, T.W.; Holm, N.R.; Onuma, Y. Clinical use of intracoronary imaging. Part 1: Guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur. Heart J. 2018, 39, 3281–3300. [Google Scholar] [CrossRef]
- Petousis, S.; Skalidis, E.; Zacharis, E.; Kochiadakis, G.; Hamilos, M. The Role of Intracoronary Imaging for the Management of Calcified Lesions. J. Clin. Med. 2023, 12, 4622. [Google Scholar] [CrossRef]
- Toth, G.G.; Achim, A.; Kafka, M.; Wu, X.; Lunardi, M.; Biswas, S. Bench test and in vivo evaluation of longitudinal stent deformation during proximal optimization. Eurointervention 2022, 18, 83–90. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2019, 40, 237–269. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.M.; Kereiakes, D.J.; Shlofmitz, R.A.; Klein, A.J.; Riley, R.F.; Price, M.J.; Herrmann, H.C.; Bachinsky, W.; Waksman, R.; Stone, G.W.; et al. Intravascular Lithotripsy for Treatment of Severely Calcified Coronary Artery Disease. J. Am. Coll. Cardiol. 2020, 78, 2635–2646. [Google Scholar] [CrossRef] [PubMed]
- Salazar, C.H.; Gonzalo, N.; Aksoy, A.; Tovar Forero, M.N.; Nef, H.; Van Mieghem, N.M.; Latib, A.; Ocaranza Sanchez, R.; Werner, N.; Escaned, J. Feasibility, safety, and efficacy of intravascular lithotripsy in severely calcified left main coronary stenosis. JACC Cardiovasc. Interv. 2020, 13, 1727–1729. [Google Scholar] [CrossRef]
- Saito, S.; Yamazaki, S.; Takahashi, A.; Namiki, A.; Kawasaki, T.; Otsuji, S.; Nakamura, S.; Shibata, Y.; Disrupt Cad IV Investigators. Intravascular Lithotripsy for Vessel Preparation in Calcified Coronary Arteries Prior to Stent Placement. Circ. Rep. 2022, 4, 399–404. [Google Scholar] [CrossRef]
- Brinton, T.J.; Ali, Z.A.; Hill, J.M.; Meredith, I.T.; Maehara, A.; Illindala, U.; Lansky, A.; Götberg, M.; Van Mieghem, N.M.; Whitbourn, R.; et al. Feasibility of shockwave coronary intravascular lithotripsy for the treatment of calcified coronary stenoses: First Description. Circulation 2019, 139, 834–836. [Google Scholar] [CrossRef]
- Bulluck, H.; McEntregart, M. Contemporary tools and devices for coronary calcium modification. JRSM Cardiovasc. Dis. 2022, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Najam, O.; Bhind, R.; De Silva, K. Calcium Modification Techniques in Complex Percutaneous Coronary Intervention. Circ. Cardiovasc. Interv. 2021, 14, e009870. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, H.; Fan, L.; Fahy, E.; Shahid, F.; Ratib, K.; Nolan, J.; Mamas, M.; Zaman, A.; Ahmed, J. Intravascular imaging-guided intracoronary lithotripsy: First real-world experience. Health Sci. Rep. 2021, 4, e307. [Google Scholar] [CrossRef]
- Ali, Z.A.; Kereiakes, D.; Hill, J.; Saito, S.; Di Mario, C.; Honton, B.; Gonzalo, N.; Riley, R.; Maehara, A.; Matsumura, M.; et al. Safety and Effectiveness of Coronary Intravascular Lithotripsy for Treatment of Calcified Nodules. JACC Cardiovasc. Interv. 2023, 16, 1122–1124. [Google Scholar] [CrossRef]
- Blachutzik, F.; Meier, S.; Weissner, M.; Schlattner, S.; Gori, T.; Ullrich-Daub, H.; Gaede, L.; Achenbach, S.; Möllmann, H.; Chitic, B.; et al. Comparison of Coronary Intravascular Lithotripsy and Rotational Atherectomy in the Modification of Severely Calcified Stenoses. Am. J. Cardiol. 2023, 197, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Achim, A.; Alampi, C.; Krivoshei, L.; Leibungut, G. In Vitro effect of intravascular lithotripsy on the polymer of a drug-eluting stent. Eurointervention 2022, 18, e333–e334. [Google Scholar] [CrossRef] [PubMed]
- Beatty, B.; Shin, D.; Wolff, E.; Shearer, M.; Saggio, G.; Shlofmitz, E.; Jeremias, A.; Moses, J.W.; Shlofmitz, R.A.; Ali, Z.A. Quantitative In Vitro Investigation of Polymer Damage on Drug-Eluting Stents Resulting from Intravascular Lithotripsy. Am. J. Cardiol. 2024, 17, 320–322. [Google Scholar] [CrossRef] [PubMed]
- Lis, P.; Rajzer, M.; Klima, L. The Significance of Coronary Artery Calcification for Percutaneous Coronary Interventions. Healthcare 2024, 12, 520. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, S.; Rathore, S.; Achan, V. Changing paradigmfor treatment of heavily calcified coronary artery disease. A complementary role of rotational atherectomy and intravascular lithotripsy with shockwave balloon: A case report. Eur. Heart J. Case Rep. 2020, 5, ytaa456. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, C.S.; Wilson, S.J.; Bogle, R.; Hanratty, C.G.; Williams, R.; Walsh, S.J.; McEntegart, M.; Spratt, J.C. Intravascular lithotripsy for lesion preparation in patients with calcific distal left main disease. EuroIntervention 2020, 16, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Rola, P.; Włodarczak, A.; Kulczycki, J.J.; Barycki, M.; Furtan, Ł.; Pęcherzewski, M.; Szudrowicz, M.; Włodarczak, S.; Doroszko, A.; Lesiak, M. Efficacy and safety of shockwave intravascular lithotripsy (S-IVL) in calcified unprotected left main percutaneous coronary intervention—Short-term outcomes. Adv. Interv. Cardiol. 2021, 17, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Kassab, K.; Kassier, A.; Fischell, T.A. Intracoronary Lithotripsy Use for In-Stent Restenosis, Including Multilayer ISR. Cardiovasc. Revasc. Med. 2022, 44, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Watkins, S.; Good, R.; Hill, J.; Brinton, T.J.; Oldroyd, K.G. Intravascular lithotripsy to treat a severely underexpanded coronary stent. Eurointervention 2019, 15, 124–125. [Google Scholar] [CrossRef]
- Tizón-Marcos, H.; Rodríguez-Costoya, I.; Tevar, C.; Vaquerizo, B. Intracoronary lithotripsy for calcific neoatherosclerotic in-stent restenosis: A case report. Eur. Heart J. Case Rep. 2020, 4, 1–4. [Google Scholar] [CrossRef]
Age, years | 72 ± 9 |
Male | 89 (80.2) |
Diabetes | 62 (55.9) |
Systemic arterial hypertension | 101 (91) |
Dyslipidemia | 87 (78.4) |
Prior PCI | 53 (47.7) |
Prior coronary artery bypass grafting | 17 (15.3) |
Prior stroke | 2 (1.8) |
Current or former smoker | 43 (38.7) |
Renal insufficiency (eGFR < 60 mL/min/1.73 m2) | 45 (40.5) |
Renal replacement therapy | 8 (7.2) |
Clinical presentation | |
STEMI | 15 (13.5) |
NSTEMI | 23 (20.7) |
UA | 10 (9) |
CCS | 59 (53.2) |
VT/VF | 1 (0.9) |
HF/CS | 3 (2.7) |
Target Vessel | |
---|---|
LM artery | 9 |
LAD | 49 |
Cx | 15 |
RCA | 40 |
Treated vessel | |
1 | 109 (98.2) |
2 | 2 (1.8) |
Vessel diameter (mm) | 3 ± 0.5 |
In-stent restenosis | 20 (18) |
CTO | 12 (10.8) |
Bifurcation lesion | 9 (8.1) |
Bifurcation lesion with side branch involvement | 5 (4.5) |
Syntax score | 23 ± 13 |
Total procedure time, min | 99.5 (69) |
Contrast volume, mL | 237.5 (118) |
Access | |
Radial | 70 (63.1) |
Femoral | 41 (36.9) |
Pre-dilation | 106 (95.5) |
Number of lithotripsy catheters | 1.06 ± 0.3 |
RVD/IVL balloon | 1 [0.17] |
Number of pulses | 80 ± 25 |
Balloon dilation after IVL use | 43 (38.7) |
Stent delivery | 104 (93.7) |
DEB use | 7 (6.3) |
Number of stents implanted | 1.45 ± 0.8 |
Total stent length, mm | 35 (36) |
Post-stent dilation with NC balloon | 64 (57.7) |
IVL after stent implantation | 7 (6.3) |
IVUS | 21 (18.9) |
OCT | 3 (2.7) |
Primary endpoints | |
Primary safety endpoint | 4 (3.6) |
Primary effectiveness endpoint | 111 (100) |
Secondary endpoints | |
Procedural success | 111 (100) |
Peri-procedural complication | 4 (3.6) |
Minor dissection | 4 (3.6) |
Major dissection | 0 |
Perfuration | 0 |
Abrupt closure | 0 |
Slow flow/no reflow | 0 |
30-day cardiac death | 3 (2.7) |
30-day non-cardiac death | 0 (0) |
30-day MI | 1 (0.9) |
30-day TVR | 1 (0.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, C.; Vilela, M.; Nobre Menezes, M.; Silva Marques, J.; Jorge, C.M.; Rodrigues, T.; Almeida Duarte, J.; Marques da Costa, J.; Carrilho Ferreira, P.; Francisco, A.R.; et al. Coronary Intravascular Lithotripsy Effectiveness and Safety in a Real-World Cohort. J. Pers. Med. 2024, 14, 438. https://doi.org/10.3390/jpm14040438
Oliveira C, Vilela M, Nobre Menezes M, Silva Marques J, Jorge CM, Rodrigues T, Almeida Duarte J, Marques da Costa J, Carrilho Ferreira P, Francisco AR, et al. Coronary Intravascular Lithotripsy Effectiveness and Safety in a Real-World Cohort. Journal of Personalized Medicine. 2024; 14(4):438. https://doi.org/10.3390/jpm14040438
Chicago/Turabian StyleOliveira, Catarina, Marta Vilela, Miguel Nobre Menezes, João Silva Marques, Cláudia Moreira Jorge, Tiago Rodrigues, José Almeida Duarte, José Marques da Costa, Pedro Carrilho Ferreira, Ana Rita Francisco, and et al. 2024. "Coronary Intravascular Lithotripsy Effectiveness and Safety in a Real-World Cohort" Journal of Personalized Medicine 14, no. 4: 438. https://doi.org/10.3390/jpm14040438
APA StyleOliveira, C., Vilela, M., Nobre Menezes, M., Silva Marques, J., Jorge, C. M., Rodrigues, T., Almeida Duarte, J., Marques da Costa, J., Carrilho Ferreira, P., Francisco, A. R., Cardoso, P. P., & Pinto, F. J. (2024). Coronary Intravascular Lithotripsy Effectiveness and Safety in a Real-World Cohort. Journal of Personalized Medicine, 14(4), 438. https://doi.org/10.3390/jpm14040438