Prediction of Failure to Progress after Labor Induction: A Multivariable Model Using Pelvic Ultrasound and Clinical Data
Abstract
:1. Introduction
2. Material and Methods
- Failure of induction, defined as the failure to reach the active period of labor (4 cm of dilatation and complete cervical effacement) after twelve hours of oxytocic induction and regular uterine contractions (at least four every ten minutes).
- Arrest disorder intrapartum, defined as the absence of progress (4 h of arrest) in the cervical dilatation once the active period of labor is reached.
- Cephalo-pelvic disproportion, defined as the absence of further descent (3 h of arrest in multiparous and 4 h of arrest in primiparous women under epidural analgesia).
3. Results
4. Discussion
4.1. Background
4.2. Summary of Findings
4.3. The Use of Perineal Ultrasound
4.4. Clinical Implications
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Carlson, N.; Ellis, J.; Page, K.; Amore, A.D.; Phillippi, J. Review of Evidence-Based Methods for Successful Labor Induction. J. Midwifery Women’s Health 2021, 66, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Colomo, C.; Gobernado-Tejedor, J.A. The validity of ultrasonography in predicting the outcomes of labour induction. Arch. Gynecol. Obstet. 2015, 293, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Ghi, T.; Henrich, W.; Tutschek, B.; Kamel, R.; Lees, C.C.; Mappa, I.; Kovalenko, M.; Lau, W.; Eggebo, T.; et al. Ultrasound in labor: Clinical practice guideline and recommendation by the WAPM-World Association of Perinatal Medicine and the PMF-Perinatal Medicine Foundation. J. Perinat. Med. 2022, 50, 1007–1029. [Google Scholar] [CrossRef]
- Ghi, T.; Eggebø, T.; Lees, C.; Kalache, K.; Rozenberg, P.; Youssef, A.; Salomon, L.J.; Tutschek, B. ISUOG Practice Guidelines: Intrapartum ultrasound. Ultrasound Obstet. Gynecol. 2018, 52, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Fuster-Rojas, S.I.; Valero-Domínguez, J. Inducción del parto sin cesárea previa. In Obstetricia y Ginecología, guía de actuación, 2nd ed.; Editorial Médica Panamericana: Madrid, Spain, 2014; pp. 703–705. [Google Scholar]
- Akmal, S.; Kametas, N.; Tsoi, E.; Howard, R.; Nicolaides, K.H. Ultrasonographic occiput position in early labour in the prediction of caesarean section. BJOG Int. J. Obstet. Gynaecol. 2004, 111, 532–536. [Google Scholar] [CrossRef]
- Kamel, R.A.; Negm, S.M.; Youssef, A.; Bianchini, L.; Brunelli, E.; Pilu, G.; Soliman, M.; Nicolaides, K.H. Predicting cesarean delivery for failure to progress as an outcome of labor induction in term singleton pregnancy. Am. J. Obstet. Gynecol. 2021, 224, 609.e1–609.e11. [Google Scholar] [CrossRef] [PubMed]
- Milner, J.; Arezina, J. The accuracy of ultrasound estimation of fetal weight in comparison to birth weight: A systematic review. Ultrasound 2018, 26, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, C.M.; Sotiriadis, A.; Odibo, A.; Khalil, A.; D’Antonio, F.; Feltovich, H.; Salomon, L.J.; Sheehan, P.; Napolitano, R.; Berghella, V.; et al. ISUOG Practice Guidelines: Role of ultrasound in the prediction of spontaneous preterm birth. Ultrasound Obstet. Gynecol. 2022, 60, 435–456. [Google Scholar] [CrossRef]
- Bishop, E.H. Pelvic Scoring for Elective Induction. Obstet Gynecol. 1964, 24, 266–268. [Google Scholar] [PubMed]
- Reis, F.; Gervasi, M.; Florio, P.; Bracalente, G.; Fadalti, M.; Severi, F.; Petraglia, F. Prediction of successful induction of labor at term: Role of clinical history, digital examination, ultrasound assessment of the cervix, and fetal fibronectin assay. Am. J. Obstet. Gynecol. 2003, 189, 1361–1367. [Google Scholar] [CrossRef]
- Rane, S.M.; Guirgis, R.R.; Higgins, B.; Nicolaides, K.H. The value of ultrasound in the prediction of successful induction of labor. Ultrasound Obstet. Gynecol. 2004, 24, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Usman, S.; Barton, H.; Wilhelm-Benartzi, C.; Lees, C.C. Ultrasound is better tolerated than vaginal examination in and before labour. Aust. N. Z. J. Obstet. Gynaecol. 2018, 59, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Gillor, M.; Vaisbuch, E.; Zaks, S.; Barak, O.; Hagay, Z.; Levy, R. Transperineal sonographic assessment of angle of progression as a predictor of successful vaginal delivery following induction of labor. Ultrasound Obstet. Gynecol. 2016, 49, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Barbera, A.F.; Pombar, X.; Perugino, G.; Lezotte, D.C.; Hobbins, J.C. A new method to assess fetal head descent in labor with transperineal ultrasound. Ultrasound Obstet. Gynecol. 2009, 33, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Kalache, K.D.; Dückelmann, A.M.; Michaelis, S.M.; Lange, J.; Cichon, G.; Dudenhausen, J.W. Transperineal ultrasound imaging in prolonged second stage of labor with occipitoanterior presenting fetuses: How well does the ‘angle of progression’ predict the mode of delivery? Ultrasound Obstet. Gynecol. 2009, 33, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Hinkson, L.; Henrich, W.; Tutschek, B. Intrapartum ultrasound during rotational forceps delivery: A novel tool for safety, quality control, and teaching. Am. J. Obstet. Gynecol. 2020, 224, 93.e1–93.e7. [Google Scholar] [CrossRef] [PubMed]
- Henrich, W.; Dudenhausen, J.; Fuchs, I.; Kämena, A.; Tutschek, B. Intrapartum translabial ultrasound (ITU): Sonographic landmarks and correlation with successful vacuum extraction. Ultrasound Obstet. Gynecol. 2006, 28, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Tutschek, B.; Braun, T.; Chantraine, F.; Henrich, W. A study of progress of labour using intrapartum translabial ultrasound, assessing head station, direction, and angle of descent. BJOG Int. J. Obstet. Gynaecol. 2010, 118, 62–69. [Google Scholar] [CrossRef]
- D’Souza, R.; Ashraf, R.; Foroutan, F. Prediction models for determining the success of labour induction: A systematic review and critical analysis. Best Pract. Res. Clin. Obstet. Gynaecol. 2021, 79, 42–54. [Google Scholar] [CrossRef]
- Costas, T.; de la O Rodríguez, M.; Sánchez-Barba, M.; Alcázar, J.L. Predictive Value of Cervical Shear Wave Elastography in the Induction of Labor in Late-Term Pregnancy Nulliparous Women: Preliminary Results. Diagnostics 2023, 13, 1782. [Google Scholar] [CrossRef]
- Prado, C.A.d.C.; Júnior, E.A.; Duarte, G.; Quintana, S.M.; Tonni, G.; Cavalli, R.d.C.; Marcolin, A.C. Predicting success of labor induction in singleton term pregnancies by combining maternal and ultrasound variables. J. Matern.-Fetal Neonatal Med. 2016, 29, 3511–3518. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Atkinson, J.; Mitchell, A.R.; Tong, S.; Walker, S.P.; Middleton, A.; Lindquist, A.; Hastie, R. Comparison of Maternal Labor-Related Complications and Neonatal Outcomes Following Elective Induction of Labor at 39 Weeks of Gestation vs Expectant Management: A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, e2313162. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burrows, A.; Finkenzeller, K.; Pudwell, J.; Smith, G. Elective Induction of Labour at 39 Weeks Compared with Expectant Management in Nulliparous Persons Delivering in a Community Hospital. J. Obstet. Gynaecol. Can. 2022, 44, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Sinkey, R.G.; Lacevic, J.; Reljic, T.; Hozo, I.; Gibson, K.S.; Odibo, A.O.; Djulbegovic, B.; Lockwood, C.J. Elective induction of labor at 39 weeks among nulliparous women: The impact on maternal and neonatal risk. PLoS ONE 2018, 13, e0193169. [Google Scholar] [CrossRef] [PubMed]
- Marrs, C.; La Rosa, M.; Caughey, A.; Saade, G. Elective Induction at 39 Weeks of Gestation and the Implications of a Large, Multicenter, Randomized Controlled Trial. Obstet. Gynecol. 2019, 133, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.S.; A de Groot, J.; Dutton, S.; Omar, O.; Shanyinde, M.; Tajar, A.; Voysey, M.; Wharton, R.; Yu, L.-M.; Moons, K.G.; et al. External validation of multivariable prediction models: A systematic review of methodological conduct and reporting. BMC Med. Res. Methodol. 2014, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- López-Jiménez, N.; García-Sánchez, F.; Hernández-Pailos, R.; Rodrigo-Álvaro, V.; Pascual-Pedreño, A.; Moreno-Cid, M.; Delgado-Rodríguez, M.; Hernández-Martínez, A. Risk of caesarean delivery in labour induction: A systematic review and external validation of predictive models. BJOG Int. J. Obstet. Gynaecol. 2021, 129, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Meier, K.; Parrish, J.; D’Souza, R. Prediction models for determining the success of labor induction: A systematic review. Acta Obstet. Gynecol. Scand. 2019, 98, 1100–1112. [Google Scholar] [CrossRef] [PubMed]
- Gonen, R.; Degani, S.; Ron, A. Prediction of successful induction of labor: Comparison of transvaginal ultrasonography and the Bishop score. Eur. J. Ultrasound 1998, 7, 183–187. [Google Scholar] [CrossRef]
- Kolkman, D.G.E.; Brinkhorst, S.J.; van der Post, J.A.M.; Pajkrt, E.; Opmeer, B.C.; Mol, B.W.J.; Verhoeven, C.J.M. The Bishop Score as a Predictor of Labor Induction Success: A Systematic Review. Am. J. Perinatol. 2013, 30, 625–630. [Google Scholar] [CrossRef]
- Hamm, R.F.; McCoy, J.; Oladuja, A.; Bogner, H.R.; Elovitz, M.A.; Morales, K.H.; Srinivas, S.K.; Levine, L.D. Maternal Morbidity and Birth Satisfaction After Implementation of a Validated Calculator to Predict Cesarean Delivery During Labor Induction. JAMA Netw. Open 2020, 3, e2025582. [Google Scholar] [CrossRef] [PubMed]
- Levine, L.D.; Downes, K.L.; Parry, S.; Elovitz, M.A.; Sammel, M.D.; Srinivas, S.K. A validated calculator to estimate risk of cesarean after an induction of labor with an unfavorable cervix. Am. J. Obstet. Gynecol. 2017, 218, 254.e1–254.e7, Erratum in Am. J. Obstet. Gynecol. 2018, 219, P304. [Google Scholar] [CrossRef]
- Lu, J.; Cheng, Y.K.Y.; Ho, S.Y.S.; Sahota, D.S.; Hui, L.L.; Poon, L.C.; Leung, T.Y. The predictive value of cervical shear wave elastography in the outcome of labor induction. Acta Obstet. Gynecol. Scand. 2019, 99, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.L.; Kwan, A.; Tse, W.T.; Poon, L.C. The use of ultrasound, fibronectin and other parameters to predict the success of labour induction. Best Pract. Res. Clin. Obstet. Gynaecol. 2021, 79, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Garite, T.J.; Casal, D.; Garcia-Alonso, A.; Kreaden, U.; Jimenez, G.; Ayala, J.A.; Reimbold, T. Fetal fibronectin: A new tool for the prediction of successful induction of labor. Am. J. Obstet. Gynecol. 1996, 175, 1516–1521. [Google Scholar] [CrossRef]
- Blanch, G.; Oláh, K.S.; Walkinshaw, S. The presence of fetal fibronectin in the cervicovaginal secretions of women at term—Its role in the assessment of women before labor induction and in the investigation of the physiologic mechanisms of labor. Am. J. Obstet. Gynecol. 1996, 174, 262–266. [Google Scholar] [CrossRef]
(a) | ||||
---|---|---|---|---|
1-All Pregnancies (N = 387) | 2-Other Mode of Delivery (N = 311) | 3-Cesarean for Failure to Progress (N = 76) | 2 vs. 3 * | |
Median (1st, 3rd quartile) | Median (1st, 3rd quartile) | Median (1st, 3rd quartile) | p-value | |
Maternal age in years | 34 (30, 38) | 34 (30, 38) | 35 (31, 39) | <0.05 |
Maternal pre-pregnancy weight (kgs) | 67 (59, 75) | 67 (59, 76) | 66.7 (58, 75.4) | NS |
Maternal height (cms) | 164 (160, 168) | 164 (159, 168) | 165 (160, 168) | NS |
Maternal Body Mass Index, Kg/m2 | 24.6 (22, 27.9) | 24.6 (21.8, 27.9) | 24.5 (22.3, 27.6) | NS |
Number of gestations | 2 (1, 3) | 2 (1, 3) | 1 (1, 2) | <0.0001 |
Parity | 0 (0, 1) | 0 (0, 1) | 0 (0, 0) | <0.0001 |
Gestational age at examination (weeks + days) | 40 + 4 (39 + 6, 40 + 6) | 40 + 4 (39 + 6, 40 + 6) | 40 + 4 (39 + 6, 40+ 6) | NS |
Gestational age at delivery (weeks + days) | 40 + 5 (40 + 0, 41 + 0) | 40 + 5 (40 + 0, 41 + 0) | 40 + 5 (40 + 0, 41 + 0) | NS |
Estimated fetal weight (grams) | 3445 (3161, 3684) | 3414 (3150, 3645) | 3545 (3209, 3864) | <0.01 |
Estimated fetal weight centile | 62(31, 85) | 58 (30, 83) | 70 (42.2, 94.7) | <0.01 |
Cervical length | 27.7 (8.9); 28 (21, 33) | 27.1 (9.1); 28 (20, 33) | 30.5 (25, 35) | <0.01 |
Angle of descent | 104 (96, 113) | 105 (97, 115) | 103.5 (89.2, 112) | <0.05 |
Interval to 42 weeks (days) | 9 (7, 14) | 9 (7, 14) | 9 (7, 14) | NS |
N (%) | N (%) | N (%) | ||
Posterior position | 165 (42.6) | 116 (37.3) | 49 (64.5) | <0.0001 |
Smoking | 30 (7.7) | 26 (8.4) | 4 (5.2) | NS |
Birth (>40 weeks) | 274 (70.8) | 219 (70.4) | 60 (78.9) | NS |
Male gender | 203 (52.4) | 157 (50.5) | 46 (60.5) | NS |
Type of induction | ||||
Balloon (mechanical induction) | 26 (6.7) | 22 (7.1) | 4 (5.3) | NS |
Prostaglandin E2 (dinoprostone) | 350 () | 279 (89.7) | 71 (93.4) | NS |
Oxytocin | 11 (2.8) | 10 (3.2) | 1 (1.3) | NS |
(b) | ||||
1-All Pregnancies (N = 387) | 2-Other Mode of Delivery (N = 311) | 3-Cesarean for Failure to Progress (N = 76) | 2 vs. 3 * | |
Median (1st, 3rd quartile) | Median (1st, 3rd quartile) | Median (1st, 3rd quartile) | p-value | |
Induction length (exam–delivery interval in hours) | 24 (13 35) | 22.0 (11.2); 20 (12, 32) | 33.8 (7.8); 36 (29.7, 39) | <0.0001 |
Birth weight (grams) | 3450 (3160, 3735) | 3400 (3120, 3680) | 3563 (3198, 3848) | <0.05 |
Birth weight centile | 47 (19, 77) | 44 (19,72) | 57 (29.2, 87) | <0.05 |
N (%) | N (%) | N (%) | ||
Apgar < 7 at 5 min | 2 (0.5) | 2 (0.6) | 0 (0) | NS |
Arterial pH < 7.10 | 13 (3.3) | 12 (3.8) | 1 (1.3) | NS |
Mode of birth | ||||
Cesarean section (failure to progress) | 76 (19.6) | 0 (0) | 76 (100) | <0.0001 |
Cesarean section (intrapartum fetal compromise) | 31 (8) | 31 (10) | 0 (0) | <0.01 |
Assisted vaginal delivery | 82 (21.2) | 82 (26.4) | 0 (0) | <0.0001 |
Spontaneous vaginal delivery | 198 (51.2) | 198 (63.7) | 0 (0) | <0.0001 |
Neonatal transferral to intensive care unit | 3 (0.8) | 3 (0.96) | 0 (0) | NS |
b-Coefficient | SE | OR (95% CI) | OR p-Value | AUC | AUC p-Value | |
---|---|---|---|---|---|---|
Maternal age | 0.049 | 0.02 | 1.05 (1.00, 1.10) | <0.05 | 0.58 | <0.05 |
Parity | −1.410 | 0.32 | 0.24 (0.13, 0.46) | <0.0001 | 0.67 | <0.0001 |
Maternal weight | 0.004 | 0.009 | 1.00 (0.99, 1.02) | NS | 0.51 | NS |
Maternal height | 0.009 | 0.02 | 1.01 (0.97, 1.05) | NS | 0.51 | NS |
Fetal gender (male) | 0.408 | 0.26 | 1.50 (0.90, 2.51) | NS | 0.55 | NS |
EFW centile | 0.012 | 0.004 | 1.01 (1.00,1.02) | <0.01 | 0.60 | <0.01 |
Cervical length | 0.041 | 0.01 | 1.04 (1.01, 1.07) | <0.01 | 0.60 | <0.01 |
Angle of descent | −0.023 | 0.01 | 0.98 (0.96, 1.00) | <0.05 | 0.57 | <0.05 |
Posterior position | 1.115 | 0.27 | 3.05 (1.81, 5.15) | <0.0001 | 0.59 | <0.01 |
Interval to 42 weeks | −0.009 | 0.02 | 0.99 (0.95, 1.03) | NS | 0.51 | NS |
β-Coefficient | SE | OR (95% CI) | OR p-Value | |
---|---|---|---|---|
Model 1. All studied parameters. | ||||
Maternal age | 0.076 | 0.03 | 1.08 (1.02, 1.14) | <0.01 |
Parity | −1.591 | 0.35 | 0.20 (0.10, 0.40) | <0.00001 |
Maternal weight | −0.0004 | 0.01 | 1.00 (0.98, 1.02) | NS |
Maternal height | −0.026 | 0.03 | 0.97 (0.93, 1.03) | NS |
Fetal gender (male) | 0.580 | 0.30 | 1.79 (1.00, 3.20) | NS * |
EFW centile | 0.016 | 0.01 | 1.02 (1.01, 1.03) | <0.01 |
Cervical length | 0.038 | 0.02 | 1.04 (1.00, 1.08) | <0.05 |
Angle of descent | −0.019 | 0.01 | 0.98 (0.96, 1.00) | NS |
Posterior position | 1.083 | 0.30 | 2.95 (1.65, 5.28) | <0.001 |
Interval to 42 weeks | −0.006 | 0.03 | 0.99 (0.94, 1.05) | NS |
Intercept | −0.107 | |||
AIC = 323, AUC: 0.82, 95% CI (0.77–0.87), p < 0.0001, DR 26% for a FPR of 5%, DR 46% for a FPR of 10%. | ||||
Model 2. Significant parameters plus fetal gender (borderline significance). | ||||
Maternal age | 0.065 | 0.03 | 1.07 (1.013, 1.12) | <0.05 |
Parity | −1.562 | 0.34 | 0.21 (0.11, 0.41) | <0.00001 |
Fetal gender (male) | 0.628 | 0.29 | 1.87 (1.05, 3.33) | <0.05 |
EFW centile | 0.015 | 0.01 | 1.02 (1.00, 1.03) | <0.01 |
Cervical length | 0.046 | 0.02 | 1.05 (1.01, 1.08) | <0.01 |
Posterior position | 1.104 | 0.29 | 3.02 (1.70, 5.36) | <0.001 |
Intercept | −6.270 | |||
AIC = 318.3, AUC: 0.81, 95% CI (0.76–0.86), p < 0.0001, DR 24% for a FPR of 5%, DR 37% for a FPR of 10%. | ||||
Model 3. Significant parameters. | ||||
Maternal age | 0.062 | 0.03 | 1.06 (1.01, 1.12) | <0.05 |
Parity | −1.504 | 0.33 | 0.22 (0.12, 0.43) | <0.00001 |
EFW centile | 0.015 | 0.01 | 1.02 (1.00, 1.03) | <0.01 |
Cervical length | 0.043 | 0.02 | 1.04 (1.01, 1.08) | <0.01 |
Posterior position | 1.080 | 0.29 | 2.94 (1.66, 5.21) | <0.001 |
Intercept | −5.747 | |||
AIC = 321, AUC: 0.80, 95% CI (0.75–0.85), p < 0.0001, DR 28% for a FPR of 5%, DR 39% for a FPR of 10%. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novillo-Del Álamo, B.; Martínez-Varea, A.; Satorres-Pérez, E.; Nieto-Tous, M.; Modrego-Pardo, F.; Padilla-Prieto, C.; García-Florenciano, M.V.; Bello-Martínez de Velasco, S.; Morales-Roselló, J. Prediction of Failure to Progress after Labor Induction: A Multivariable Model Using Pelvic Ultrasound and Clinical Data. J. Pers. Med. 2024, 14, 502. https://doi.org/10.3390/jpm14050502
Novillo-Del Álamo B, Martínez-Varea A, Satorres-Pérez E, Nieto-Tous M, Modrego-Pardo F, Padilla-Prieto C, García-Florenciano MV, Bello-Martínez de Velasco S, Morales-Roselló J. Prediction of Failure to Progress after Labor Induction: A Multivariable Model Using Pelvic Ultrasound and Clinical Data. Journal of Personalized Medicine. 2024; 14(5):502. https://doi.org/10.3390/jpm14050502
Chicago/Turabian StyleNovillo-Del Álamo, Blanca, Alicia Martínez-Varea, Elena Satorres-Pérez, Mar Nieto-Tous, Fernando Modrego-Pardo, Carmen Padilla-Prieto, María Victoria García-Florenciano, Silvia Bello-Martínez de Velasco, and José Morales-Roselló. 2024. "Prediction of Failure to Progress after Labor Induction: A Multivariable Model Using Pelvic Ultrasound and Clinical Data" Journal of Personalized Medicine 14, no. 5: 502. https://doi.org/10.3390/jpm14050502
APA StyleNovillo-Del Álamo, B., Martínez-Varea, A., Satorres-Pérez, E., Nieto-Tous, M., Modrego-Pardo, F., Padilla-Prieto, C., García-Florenciano, M. V., Bello-Martínez de Velasco, S., & Morales-Roselló, J. (2024). Prediction of Failure to Progress after Labor Induction: A Multivariable Model Using Pelvic Ultrasound and Clinical Data. Journal of Personalized Medicine, 14(5), 502. https://doi.org/10.3390/jpm14050502