Detailed Radiomorphometric Analysis of the Surgical Corridor for the Suprageniculate Approach
Abstract
:1. Introduction
2. Materials and Methods
- A posterior one (Wp and Hp) starting from the anterior end of the ampulla of the ASSC;
- A middle one (Wm and Hm) starting from the most posterior portion of the geniculate ganglion or from the angle between the labyrinthine and tympanic segments of the facial nerve;
- An anterior one (Wa and Ha) starting from the anteriormost point of the geniculate ganglion.
- Group 0 (type A): no evidence of pneumatization;
- Group 1 (type B): pneumatization of the air cells above the geniculate ganglion;
- Group 2 (type C): evidence of pneumatization above the geniculate ganglion and at the level of the petrous apex.
3. Results
3.1. Basic Descriptive Statistical Analysis of the Quantitative Variables
3.2. Height and Width of the Corridor and Patients’ Gender
3.3. Corridor’s Height and Width and Measurement Side
3.4. Correlation between the Different Height and Width Measurements of the Corridor
3.5. Descriptive Statistics of the Degree of Pneumatization and Correlation between the Different Access Height and Width Measurements and the Degree of Pneumatization
4. Discussion
5. Conclusions
- The surgical corridor of the transcanal suprageniculate approach is defined by its dimensions in two crucial checkpoints—the external and internal windows. The external window is set on a tilted horizontal plane and it is limited by the middle cranial fossa anterolaterally and a set of structures such as the proximal tympanic facial nerve, the ampulla of the anterior semicircular canal, the vestibule and the geniculate ganglion. The internal window is set on a parasagittal plane passing through the tympanic facial nerve and it is limited by the vestibule and the ampulla of the anterior semicircular canal posteriorly and the middle cranial fossa anteriorly.
- The dimensions of the external and internal windows decrease in a posterior to anterior direction. It corresponds to the slope of the middle cranial fossa that is found anteriorly to the anterior semicircular canal. The width of the external window and the height of the internal window positively correlate with each other. These measurements do not seem to be correlated to side and gender.
- The suprageniculate pneumatization degree may be classified into three types. Type A means no pneumatization in the area of the geniculate ganglion. Type B means pneumatization of the air cells above the geniculate ganglion. Type C means pneumatization above the geniculate ganglion that extends to the area of the petrous apex. This classification might help with the preoperative assessment of the area of the suprageniculate fossa as it correlates with the width and height of the surgical windows of the suprageniculate approach.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lahlou, G.; Nguyen, Y.; Russo, F.Y.; Ferrary, E.; Sterkers, O.; Bernardeschi, D. Geniculate Ganglion Tumors: Clinical Presentation and Surgical Results. Otolaryngol. Neck Surg. 2016, 155, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Berman, J.M.; Farkashidy, J.; Jahn, A.F.; Hawke, M. Peripheral Facial Paralysis Secondary to Metastatic Malignant Melanoma: A Clinicopathologic Report. JAMA Otolaryngol. Neck Surg. 1979, 105, 51–52. [Google Scholar] [CrossRef]
- Veillon, F.; Taboada, L.R.; Abu Eid, M.; Riehm, S.; Debry, C.; Schultz, P.; Charpiot, A. Pathology of the Facial Nerve. Neuroimaging Clin. N. Am. 2008, 18, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Kida, Y.; Yoshimoto, M.; Hasegawa, T. Radiosurgery for facial schwannoma. J. Neurosurg. 2007, 106, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Kim, H.; Champ, C.; Jain, G.; Farrell, C.; Andrews, D.W.; Judy, K.; Liu, H.; Artz, G.; Werner-Wasik, M.; et al. Fractionated Stereotactic Radiotherapy for Facial Nerve Schwannomas. J. Neurol. Surg. Part B Skull Base 2016, 77, 075–080. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lahlou, G.; Nguyen, Y.; Russo, F.Y.; Ferrary, E.; Sterkers, O.; Bernardeschi, D. Intratemporal facial nerve schwannoma: Clinical presentation and management. Eur. Arch. Oto-Rhino-Laryngology 2016, 273, 3497–3504. [Google Scholar] [CrossRef]
- Kim, C.-S.; Chang, S.O.; Oh, S.H.; Ahn, S.-H.; Hwang, C.H.; Lee, H.J. Management of Intratemporal Facial Nerve Schwannoma. Otol. Neurotol. 2003, 24, 312–316. [Google Scholar] [CrossRef] [PubMed]
- McMonagle, B.; Al-Sanosi, A.; Croxson, G.; Fagan, P. Facial schwannoma: Results of a large case series and review. J. Laryngol. Otol. 2008, 122, 1139–1150. [Google Scholar] [CrossRef] [PubMed]
- Marchioni, D.; Rubini, A.; Nogueira, J.F.; Isaacson, B.; Presutti, L. Transcanal endoscopic approach to lesions of the suprageniculate ganglion fossa. Auris Nasus Larynx 2018, 45, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Isaacson, B.; Killeen, D.E.; Bianconi, L.; Marchioni, D. Endoscopic Assisted Lateral Skull Base Surgery. Otolaryngol. Clin. N. Am. 2021, 54, 163–173. [Google Scholar] [CrossRef]
- Cömert, E.; Cömert, A.; Çay, N.; Tunçel, Ü.; Tekdemir, İ. Surgical Anatomy of the Infralabyrinthine Approach. Otolaryngol. Neck Surg. 2014, 151, 301–307. [Google Scholar] [CrossRef]
- Tan, A.D.; Ng, J.H.; Lim, S.A.; Low, D.Y.; Yuen, H.W. Classification of Temporal Bone Pneumatization on High-Resolution Computed Tomography: Prevalence Patterns and Implications. Otolaryngol. Neck Surg. 2018, 159, 743–749. [Google Scholar] [CrossRef]
- Makki, F.M.; Amoodi, H.A.; van Wijhe, R.G.; Bance, M. Anatomic Analysis of the Mastoid Tegmen: Slopes and Tegmen Shape Variances. Otol. Neurotol. 2011, 32, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Marchioni, D.; Presutti, L. Endoscopic Lateral Skull Base Surgery: Principles, Anatomy, Approaches; Thieme: Stuttgart, Germany, 2023. [Google Scholar]
- Marchioni, D.; Gazzini, L.; Bisi, N.; Barillari, M.; Rubini, A. Subcochlear canaliculus patterns in the pediatric and adult population: Radiological findings and surgical implications. Surg. Radiol. Anat. 2021, 43, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
- Marchioni, D.; Rubini, A.; Gazzini, L.; Alicandri-Ciufelli, M.; Molinari, G.; Reale, M.; Presutti, L. Complications in Endoscopic Ear Surgery. Otol. Neurotol. 2018, 39, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Molinari, G.; Serafini, E.; Barbazza, A.; Marchioni, D.; Presutti, L.; Nizzoli, F.; Reggiani, E.; Guidotti, M.; Borghi, A.; Fernandez, I.J. Endoscopic approach to geniculate ganglion: A multicentric experience. Eur. Arch. Oto-Rhino-Laryngol. 2024, 281, 1761–1771. [Google Scholar] [CrossRef]
- Nogueira, J.F.; de Sousa Lobo Ferreira Querido, R.; Gonçalves da Silva Leite, J.; Cabral da Costa, T. Future of Endoscopic Ear Surgery. Otolaryngol. Clin. N. Am. 2021, 54, 221–231. [Google Scholar] [CrossRef]
M | SD | Sk | Min | Max | p | |
---|---|---|---|---|---|---|
Left side | ||||||
Tilted Axial Plane Wp | 7.52 | 1.91 | 0.60 | 4.02 | 13.00 | 0.066 |
Tilted Axial Plane Wm | 5.63 | 2.30 | 0.41 | 0.00 | 11.30 | 0.206 |
Tilted Axial Plane Wa | 1.76 | 1.56 | 0.68 | 0.00 | 6.74 | <0.001 |
Parasagittal Plane Hp | 7.67 | 1.34 | −0.30 | 4.28 | 11.20 | 0.146 |
Parasagittal Plane Hm | 4.56 | 1.60 | 0.25 | 0.00 | 9.69 | 0.399 |
Parasagittal Plane Ha | 1.83 | 1.79 | 1.74 | 0.00 | 9.65 | <0.001 |
Tilted Axial Plane D1 | 7.17 | 1.79 | 0.47 | 3.29 | 12.70 | 0.179 |
Parasagittal Plane D2 | 7.17 | 1.80 | 0.51 | 3.61 | 12.80 | 0.124 |
Right side | ||||||
Tilted Axial Plane Wp | 7.40 | 1.97 | 0.55 | 3.06 | 14.00 | 0.190 |
Tilted Axial Plane Wm | 5.60 | 2.43 | 0.18 | 0.00 | 11.40 | 0.816 |
Tilted Axial Plane Wa | 1.78 | 1.73 | 1.61 | 0.00 | 8.48 | <0.001 |
Parasagittal Plane Hp | 7.56 | 1.17 | 0.10 | 5.28 | 10.00 | 0.302 |
Parasagittal Plane Hm | 4.45 | 1.37 | −0.07 | 1.51 | 7.42 | 0.517 |
Parasagittal Plane Ha | 1.56 | 1.28 | 0.52 | 0.00 | 5.18 | <0.001 |
Tilted Axial Plane D1 | 7.43 | 1.80 | 0.24 | 3.68 | 12.50 | 0.413 |
Parasagittal Plane D2 | 7.47 | 1.83 | 0.23 | 3.59 | 12.60 | 0.566 |
Female (n = 40) | Male (n = 40) | p | Cohen’s d | |||
---|---|---|---|---|---|---|
M | SD | M | SD | |||
Left side | ||||||
Tilted Axial Plane Wp | 7.49 | 1.97 | 7.55 | 1.87 | 0.890 | 0.03 |
Tilted Axial Plane Wm | 5.43 | 2.20 | 5.83 | 2.41 | 0.439 | 0.17 |
Tilted Axial Plane Wa | 1.64 | 1.57 | 1.88 | 1.55 | 0.505 | 0.15 |
Parasagittal Plane Hp | 7.47 | 1.26 | 7.87 | 1.39 | 0.176 | 0.31 |
Parasagittal Plane Hm | 4.21 | 1.18 | 4.91 | 1.88 | 0.051 | 0.44 |
Parasagittal Plane Ha | 1.47 | 1.21 | 2.18 | 2.19 | 0.078 | 0.40 |
Tilted Axial Plane D1 | 6.86 | 1.45 | 7.48 | 2.05 | 0.124 | 0.35 |
Parasagittal Plane D2 | 6.87 | 1.49 | 7.47 | 2.04 | 0.132 | 0.34 |
Right side | ||||||
Tilted Axial Plane Wp | 7.12 | 2.01 | 7.69 | 1.92 | 0.199 | 0.29 |
Tilted Axial Plane Wm | 5.28 | 2.16 | 5.91 | 2.66 | 0.248 | 0.26 |
Tilted Axial Plane Wa | 1.52 | 1.62 | 2.04 | 1.81 | 0.175 | 0.31 |
Parasagittal Plane Hp | 7.38 | 1.21 | 7.75 | 1.10 | 0.156 | 0.32 |
Parasagittal Plane Hm | 4.32 | 1.33 | 4.58 | 1.42 | 0.388 | 0.19 |
Parasagittal Plane Ha | 1.42 | 1.23 | 1.71 | 1.33 | 0.308 | 0.23 |
Tilted Axial Plane D1 | 6.90 | 1.60 | 7.97 | 1.85 | 0.007 | 0.62 |
Parasagittal Plane D2 | 6.95 | 1.61 | 7.98 | 1.90 | 0.010 | 0.59 |
Left Side | Right Side | p | Cohen’s d | |||
---|---|---|---|---|---|---|
M | SD | M | SD | |||
Tilted Axial Plane Wp | 7.52 | 1.91 | 7.40 | 1.97 | 0.628 | 0.05 |
Tilted Axial Plane Wm | 5.63 | 2.30 | 5.60 | 2.43 | 0.918 | 0.01 |
Tilted Axial Plane Wa | 1.76 | 1.56 | 1.78 | 1.73 | 0.913 | 0.01 |
Parasagittal Plane Hp | 7.67 | 1.34 | 7.56 | 1.17 | 0.373 | 0.10 |
Parasagittal Plane Hm | 4.56 | 1.60 | 4.45 | 1.37 | 0.517 | 0.07 |
Parasagittal Plane Ha | 1.83 | 1.79 | 1.56 | 1.28 | 0.179 | 0.15 |
Tilted Axial Plane D1 | 7.17 | 1.79 | 7.43 | 1.80 | 0.240 | 0.13 |
Parasagittal Plane D2 | 7.17 | 1.80 | 7.47 | 1.83 | 0.191 | 0.15 |
Left Side | ||||||||
Tilted Axial Plane Wp | Tilted Axial Plane Wm | Tilted Axial Plane Wa | Parasagittal Plane Hp | Parasagittal Plane Hm | Parasagittal Plane Ha | Tilted Axial Plane D1 | ||
Tilted Axial Plane Wm | r Pearson | 0.60 | ||||||
significance | <0.001 | |||||||
Tilted Axial Plane Wa | r Pearson | 0.32 | 0.42 | |||||
significance | 0.004 | <0.001 | ||||||
Parasagittal Plane Hp | r Pearson | 0.09 | 0.21 | 0.35 | ||||
significance | 0.421 | 0.060 | 0.002 | |||||
Parasagittal Plane Hm | r Pearson | 0.12 | 0.38 | 0.50 | 0.62 | |||
significance | 0.284 | <0.001 | <0.001 | <0.001 | ||||
Parasagittal Plane Ha | r Pearson | 0.22 | 0.33 | 0.75 | 0.38 | 0.64 | ||
significance | 0.050 | 0.003 | <0.001 | <0.001 | <0.001 | |||
Tilted Axial Plane D1 | r Pearson | 0.27 | 0.38 | 0.67 | 0.31 | 0.47 | 0.58 | |
significance | 0.016 | <0.001 | <0.001 | 0.005 | <0.001 | <0.001 | ||
Parasagittal Plane D2 | r Pearson | 0.26 | 0.38 | 0.68 | 0.31 | 0.49 | 0.61 | 0.99 |
significance | 0.018 | <0.001 | <0.001 | 0.005 | <0.001 | <0.001 | <0.001 | |
Right side | ||||||||
Tilted Axial Plane Wp | Tilted Axial Plane Wm | Tilted Axial Plane Wa | Parasagittal Plane Hp | Parasagittal Plane Hm | Parasagittal Plane Ha | Tilted Axial Plane D1 | ||
Tilted Axial Plane Wm | r Pearson | 0.72 | ||||||
significance | <0.001 | |||||||
Tilted Axial Plane Wa | r Pearson | 0.48 | 0.61 | |||||
significance | <0.001 | <0.001 | ||||||
Parasagittal Plane Hp | r Pearson | 0.21 | 0.21 | 0.32 | ||||
significance | 0.064 | 0.063 | 0.004 | |||||
Parasagittal Plane Hm | r Pearson | 0.23 | 0.27 | 0.46 | 0.77 | |||
significance | 0.037 | 0.016 | <0.001 | <0.001 | ||||
Parasagittal Plane Ha | r Pearson | 0.33 | 0.42 | 0.72 | 0.37 | 0.57 | ||
significance | 0.003 | <0.001 | <0.001 | <0.001 | <0.001 | |||
Tilted Axial Plane D1 | r Pearson | 0.35 | 0.32 | 0.57 | 0.34 | 0.45 | 0.55 | |
significance | 0.001 | 0.003 | <0.001 | 0.002 | <0.001 | <0.001 | ||
Parasagittal Plane D2 | r Pearson | 0.35 | 0.33 | 0.57 | 0.34 | 0.45 | 0.56 | 1.00 |
significance | 0.002 | 0.003 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 |
Pneumatization | |||
---|---|---|---|
Left Side | Right Side | ||
Tilted Axial Plane Wp | Spearman’s rho | 0.19 | 0.39 |
significance | 0.098 | <0.001 | |
Tilted Axial Plane Wm | Spearman’s rho | 0.21 | 0.20 |
significance | 0.064 | 0.074 | |
Tilted Axial Plane Wa | Spearman’s rho | 0.22 | 0.42 |
significance | 0.046 | <0.001 | |
Parasagittal Plane Hp | Spearman’s rho | 0.17 | 0.26 |
significance | 0.143 | 0.022 | |
Parasagittal Plane Hm | Spearman’s rho | 0.51 | 0.50 |
significance | <0.001 | <0.001 | |
Parasagittal Plane Ha | Spearman’s rho | 0.24 | 0.39 |
significance | 0.030 | <0.001 | |
Tilted Axial Plane D1 | Spearman’s rho | 0.39 | 0.54 |
significance | <0.001 | <0.001 | |
Parasagittal Plane D2 | Spearman’s rho | 0.39 | 0.55 |
significance | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojciechowski, T.; Bisi, N.; Szopiński, K.; Marchioni, D. Detailed Radiomorphometric Analysis of the Surgical Corridor for the Suprageniculate Approach. J. Pers. Med. 2024, 14, 516. https://doi.org/10.3390/jpm14050516
Wojciechowski T, Bisi N, Szopiński K, Marchioni D. Detailed Radiomorphometric Analysis of the Surgical Corridor for the Suprageniculate Approach. Journal of Personalized Medicine. 2024; 14(5):516. https://doi.org/10.3390/jpm14050516
Chicago/Turabian StyleWojciechowski, Tomasz, Nicola Bisi, Kazimierz Szopiński, and Daniele Marchioni. 2024. "Detailed Radiomorphometric Analysis of the Surgical Corridor for the Suprageniculate Approach" Journal of Personalized Medicine 14, no. 5: 516. https://doi.org/10.3390/jpm14050516
APA StyleWojciechowski, T., Bisi, N., Szopiński, K., & Marchioni, D. (2024). Detailed Radiomorphometric Analysis of the Surgical Corridor for the Suprageniculate Approach. Journal of Personalized Medicine, 14(5), 516. https://doi.org/10.3390/jpm14050516