Long-Term Clinical Outcomes of 3D-Printed Subperiosteal Titanium Implants: A 6-Year Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection Criteria
- -
- Age over 60 years, or younger individuals with severe bone loss, thin zygomas (<4 mm), or reduced vertical height, making it extremely challenging to place two zygomatic implants on the same side;
- -
- Stable general and oral health status;
- -
- Good oral hygiene;
- -
- Complete or significantly partial edentulism accompanied by severe bone atrophy, which precludes the placement of standard-size implants;
- -
- Opting out of bone regeneration procedures;
- -
- Consent to attend postoperative follow-up appointments.
- -
- Age under 60 years, except for the selected younger patients;
- -
- Diagnosed with systemic diseases or receiving pharmacotherapy that contraindicates surgical intervention, including the following:
- -
- Immunocompromised state;
- -
- Uncontrolled diabetes mellitus;
- -
- Neoplasms of the head and neck region;
- -
- Undergoing bisphosphonate therapy;
- -
- Inadequate oral hygiene.
- -
- Lifestyle habits such as tobacco use or bruxism;
- -
- Less severe cases of partial or complete edentulism where the placement of standard-sized dental implants is feasible;
- -
- Incapacity or unwillingness to adhere to requisite postoperative follow-up protocols.
2.2. Pre-Surgical Cone-Beam Computed Tomography (CBCT)
2.3. Design and Production of Patient-Specific Subperiostal Implants
2.4. Surgical Procedure and Prosthetic Treatment
2.5. Evaluating Complications and Implant Survival
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kern, J.S.; Kern, T.; Wolfart, S.; Heussen, N. A systematic review and meta-analysis of removable and fixed implant-supported prostheses in edentulous jaws: Post-loading implant loss. Clin. Oral Implants Res. 2016, 27, 174–195. [Google Scholar] [CrossRef] [PubMed]
- Cawood, J.I.; Howell, R.A. A classification of the edentulous jaws. Int. J. Oral Maxillofac. Surg. 1988, 17, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Buser, D.; Sennerby, L.; De Bruyn, H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontol. 2000 2017, 73, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Chatzopoulos, G.S.; Wolff, L.F. Retrospective analysis of 50,333 implants on implant failure and associated patient-related factors. J. Stomatol. Oral Maxillofac. Surg. 2023, 124 (Suppl. S6), 101555. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Ao, X.; Xie, P.; Jiang, F.; Chen, W. The biological width around implant. J. Prosthodont. Res. 2021, 65, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Keleş, H.G.; Karaca, Ç. Comparison of Stress Distribution Among Standard Dental Implants Placed in Grafted Bone, Zygomatic Implants, and Subperiosteal Implants in the Atrophic Edentulous Maxilla: 3D Finite Element Analysis. Int. J. Oral Maxillofac. Implants 2023, 38, 347–356. [Google Scholar] [CrossRef]
- Anitua, E.; Eguia, A.; Staudigl, C.; Alkhraisat, M.H. Clinical performance of additively manufactured subperiosteal implants: A systematic review. Int. J. Implant. Dent. 2024, 10, 4. [Google Scholar] [CrossRef]
- Herce-López, J.; Pingarrón, M.D.C.; Tofé-Povedano, Á.; García-Arana, L.; Espino-Segura-Illa, M.; Sieira-Gil, R.; Rodado-Alonso, C.; Sánchez-Torres, A.; Figueiredo, R. Customized Subperiosteal Implants for the Rehabilitation of Atrophic Jaws: A Consensus Report and Literature Review. Biomimetics 2024, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Tofé-Povedano, A.; Parras-Hernández, J.; Herce-López, J.; Matute-García, D.; González-Moguena, V.A.; Rollón-Mayordomo, A. Design modifications in subperiosteal implants to avoid complications. Presentation of a case series study and literature review. Rev. Esp. Cir. Oral Maxilofac. 2023, 45, 57–63. [Google Scholar]
- Vatteroni, E.; Covani, U.; Menchini Fabris, G.B. The New Generation of Subperiosteal Implants for Patient-Specific Treatment of Atrophic Dental Arches: Literature Review and Two Case Reports. Int. J. Periodontics Restor. Dent. 2023, 43, 735–741. [Google Scholar] [CrossRef]
- Dimitroulis, G.; Gupta, B.; Wilson, I.; Hart, C. The atrophic edentulous alveolus. A preliminary study on a new generation of subperiosteal implants. Oral Maxillofac. Surg. 2023, 27, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Van den Borre, C.; De Neef, B.; Loomans, N.A.J.; Rinaldi, M.; Nout, E.; Bouvry, P.; Naert, I.; Van Stralen, K.J.; Mommaerts, M.Y. Soft Tissue Response and Determination of Underlying Risk Drivers for Recession and Mucositis after AMSJI Implantation in the Maxilla. Int. J. Oral Maxillofac. Implants 2024, 39, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Chochlidakis, K.; Einarsdottir, E.; Tsigarida, A.; Papaspyridakos, P.; Romeo, D.; Barmak, A.B.; Ercoli, C. Survival rates and prosthetic complications of implant fixed complete dental prostheses: An up to 5-year retrospective study. J. Prosthet. Dent. 2020, 124, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Minichetti, J.C. Analysis of HA-coated subperiosteal implants. J. Oral Implantol. 2003, 29, 111–116, discussion 117–119. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, J.L.; Iyer, S. Occlusion and Dental Implants-Where Are We? J. Oral Implantol. 2023, 49, 229–232. [Google Scholar] [CrossRef]
- Brånemark, P.I.; Hansson, B.O.; Adell, R.; Breine, U.; Lindström, J.; Hallén, O.; Ohman, A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand. J. Plast. Reconstr. Surg. Suppl. 1977, 16, 1–132. [Google Scholar]
- Spitznagel, F.A.; Balmer, M.; Wiedemeier, D.B.; Jung, R.E.; Gierthmuehlen, P.C. Clinical outcomes of all-ceramic single crowns and fixed dental prostheses supported by ceramic implants: A systematic review and meta-analyses. Clin. Oral Implants Res. 2022, 33, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Tolstunov, L.; Hamrick, J.F.E.; Broumand, V.; Shilo, D.; Rachmiel, A. Bone Augmentation Techniques for Horizontal and Vertical Alveolar Ridge Deficiency in Oral Implantology. Oral Maxillofac. Surg. Clin. N. Am. 2019, 31, 163–191. [Google Scholar] [CrossRef]
- Sáez-Alcaide, L.M.; González Gallego, B.; Fernando Moreno, J.; Moreno Navarro, M.; Cobo-Vázquez, C.; Cortés-Bretón Brinkmann, J.; Meniz-García, C. Complications associated with vertical bone augmentation techniques in implant dentistry: A systematic review of clinical studies published in the last ten years. J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101574. [Google Scholar] [CrossRef]
- Romanos, G.; Lau, J.; Zhang, Y.; Hou, W.; Delgado-Ruiz, R. Macrogeometry and Bone Density Control Over the Primary Stability of 6-mm Implants: An In Vitro Study. Int. J. Oral Maxillofac. Implants 2021, 36, 322–326. [Google Scholar] [CrossRef]
- Cerea, M.; Dolcini, G.A. Custom-Made Direct Metal Laser Sintering Titanium Subperiosteal Implants: A Retrospective Clinical Study on 70 Patients. BioMed Res. Int. 2018, 2018, 5420391. [Google Scholar] [CrossRef] [PubMed]
- Strappa, E.M.; Memè, L.; Cerea, M.; Roy, M.; Bambini, F. Custom-made additively manufactured subperiosteal implant. Minerva Dent. Oral Sci. 2022, 71, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Corti, A.; Dominici, S.; Pompella, A.; Cerea, M.; Chelucci, E.; Dorocka-Bobkowska, B.; Daniele, S. Biocompatibility of Subperiosteal Dental Implants: Effects of Differently Treated Titanium Surfaces on the Expression of ECM-Related Genes in Gingival Fibroblasts. J. Funct. Biomater. 2023, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.J.; Cheng, A.; Kahn, A.; Aviram, M.; Whitehead, A.J.; Hyzy, S.L.; Clohessy, R.M.; Boyan, B.D.; Schwartz, Z. Novel Osteogenic Ti-6Al-4V Device for Restoration of Dental Function In Patients With Large Bone Deficiencies: Design, Development And Implementation. Sci. Rep. 2016, 6, 20493. [Google Scholar] [CrossRef] [PubMed]
- Block, M.S. Dental Implants: The Last 100 Years. J. Oral Maxillofac. Surg. 2018, 76, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Dal Carlo, L.; Pasqualini, M.; Shulman, M.; Rossi, F.; Comola, G.; Manenti, P.; Candotto, V.; Lauritano, D.; Zampetti, P. Endosseous distal extension (EDE) blade implant technique useful to provide stable pillars in the ipotrophic lower posterior sector: 22 years statistical survey. Int. J. Immunopathol. Pharmacol. 2019, 33, 2058738419838092. [Google Scholar] [CrossRef] [PubMed]
- Mommaerts, M.Y. Evolutionary steps in the design and biofunctionalization of the additively manufactured sub-periosteal jaw implant ‘AMSJI’ for the maxilla. Int. J. Oral Maxillofac. Implants 2019, 48, 108–114. [Google Scholar] [CrossRef]
- Carretero, J.L.C.; Vera, J.L.D.C.P.d.; García, N.M.; Martínez, P.G.; Martínez, M.M.P.; Niño, I.A.; Cuéllar, I.N.; Cuéllar, C.N. Virtual surgical planning and customized subperiosteal titanium maxillary implant (CSTMI) for three dimensional reconstruction and dental implants of maxillary defects after oncological resection: Case series. J. Clin. Med. 2022, 11, 4594. [Google Scholar] [CrossRef] [PubMed]
- De Tapia, B.; Mozas, C.; Valles, C.; Nart, J.; Sanz, M.; Herrera, D. Adjunctive effect of modifying the implant-supported prosthesis in the treatment of peri-implant mucositis. J. Clin. Periodontol. 2019, 46, 1050–1060. [Google Scholar] [CrossRef]
- Peev, S.; Sabeva, E. Subperiosteal implants in treatment of total and partial edentulism-A long term follow up. Int. J. Sci. Res. 2016, 5, 98–99. [Google Scholar]
- Gellrich, N.C.; Rahlf, B.; Zimmerer, R.; Pott, P.C.; Rana, M. A new concept for implant-borne dental rehabilitation; how to overcome the biological weak-spot of conventional dental implants? Head Face Med. 2017, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Surovas, A. A digital workflow for modeling of custom dental implants. 3D Print Med. 2019, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Nemtoi, A.; Covrig, V.; Nemtoi, A.; Stoica, G.; Vatavu, R.; Haba, D.; Zetu, I. Custom-Made Direct Metal Laser Sintering Titanium Subperiosteal Implants in Oral and Maxillofacial Surgery for Severe Bone-Deficient Patients-A Pilot Study. Diagnostics 2022, 12, 2531. [Google Scholar] [CrossRef] [PubMed]
- Mangano, C.; Bianchi, A.; Mangano, F.G.; Dana, J.; Colombo, M.; Solop, I.; Admakin, O. Custom-made 3D printed subperiosteal titanium implants for the prosthetic restoration of the atrophic posterior mandible of elderly patients: A case series. 3D Print Med. 2020, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Mounir, M.; Atef, M.; Abou-Elfetouh, A.; Hakam, M.M. Titanium and polyether ether ketone (PEEK) patient-specific sub-periosteal implants: Two novel approaches for rehabilitation of the severely atrophic anterior maxillary ridge. Int. J. Oral Maxillofac. Surg. 2018, 47, 658–664. [Google Scholar] [CrossRef]
- Stefano, N.; Lorenzo, V. The Use of Digital Sub-Periosteal Implants in Severe Maxillary Atrophies Rehabilitation: A Case Report. J. Head Neck Spine Surg. 2021, 4, 555636. [Google Scholar]
Location | Type | Number of Subperiosteal Structures | Number of Struts |
---|---|---|---|
Maxillary | Full arch | 26 | 3 struts on a hemiarch |
20 | 2 struts on a hemiarch | ||
Partial Uniterminal arch | 2 | 2 struts | |
Mandibular | Partial Biterminal arch | 2 (×2) | 2 struts on a hemiarch |
Partial Uniterminal arch | 9 | 2 struts |
Variables | Number | Percent [%] |
---|---|---|
Gender | ||
Male | 19 | 52.8 |
Female | 17 | 47.2 |
Age (mean ± SD 1) | 61.9 ±11.7 | |
60 years and under | 5 | 13.9 |
Over 60 years | 31 | 86.1 |
Edentulism | ||
Completely or partially edentulous maxilla | 25 | 16.7 |
Partially edentulous mandible | 11 | 13.9 |
Patient-specific implant location | ||
Maxillary | 48 | 78.7 |
Mandibular | 13 | 21.3 |
Variables | Number | Percent [%] |
---|---|---|
Immediate complications | ||
Without complications | 61 | 100 |
Implant survival | 61 | 100 |
Early complications | ||
Without complications | 20 | 32.8 |
Minor complications | 18 | 29.5 |
Major complications with structure removal | 23 | 37.7 |
Implant survival | 38 | 62.3 |
Late complications | ||
Without complications | 12 | 31.6 |
Minor complications | 21 | 55.3 |
Major complications with structure removal | 5 | 13.2 |
Implant survival | 33 | 54.1 |
6-year follow-up | ||
Patient-specific implant success | 12 | 36.4 |
Monitoring the patient-specific implant | 21 | 63.6 |
Implant survival | 33 | 54.1 |
Variables | Early Complications (N, %) | Late Complications (N, %) | 6-Year Follow-up (N, %) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Without | With | p-Value | Without | With | p-Value | Without | With | p-Value | ||
Gender | Male | 7 (36.8%) | 12 (63.2%) | 0.637 | 4 (30.8%) | 9 (69.2%) | 0.459 | 4 (36.4%) | 7 (63.6%) | 0.528 |
Female | 5 (29.4%) | 12 (70.6%) | 5 (45.5%) | 6 (54.5%) | 5 (50%) | 5 (50%) | ||||
Total | 12 (33.3%) | 24 (66.7%) | - | 9 (37.5%) | 15 (62.5%) | - | 9 (42.9%) | 12 (57.1%) | ||
Age | ≤60 years | 2 (40%) | 3 (60%) | 0.733 | 1 (50%) | 1 (50%) | 0.803 | 1 (50%) | 1 (50%) | 0.830 |
>60 years | 10 (32.3%) | 21 (67.7%) | 9 (40.9%) | 13 (59.1%) | 8 (42.1%) | 11 (57.9%) | ||||
Total | 12 (33.3%) | 24 (66.7%) | - | 10 (41.7%) | 14 (58.3%) | 9 (42.9%) | 12 (57.1%) | |||
Location | Maxillary | 16 (33.3%) | 32 (66.7%) | 0.861 | 4 (15.4%) | 22 (84.6%) | 0.002 * | 4 (18.2%) | 18 (81.8%) | 0.002 * |
Mandibular | 4 (30.8%) | 9 (69.2%) | 8 (66.7%) | 4 (33.3%) | 8 (72.7%) | 3 (27.3%) | ||||
Total | 20 (32.8%) | 41 (67.2%) | - | 12 (31.6%) | 26 (68.4%) | 12 (36.4%) | 21 (63.6%) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onică, N.; Budală, D.G.; Baciu, E.-R.; Onică, C.A.; Gelețu, G.L.; Murariu, A.; Balan, M.; Pertea, M.; Stelea, C. Long-Term Clinical Outcomes of 3D-Printed Subperiosteal Titanium Implants: A 6-Year Follow-Up. J. Pers. Med. 2024, 14, 541. https://doi.org/10.3390/jpm14050541
Onică N, Budală DG, Baciu E-R, Onică CA, Gelețu GL, Murariu A, Balan M, Pertea M, Stelea C. Long-Term Clinical Outcomes of 3D-Printed Subperiosteal Titanium Implants: A 6-Year Follow-Up. Journal of Personalized Medicine. 2024; 14(5):541. https://doi.org/10.3390/jpm14050541
Chicago/Turabian StyleOnică, Neculai, Dana Gabriela Budală, Elena-Raluca Baciu, Cezara Andreea Onică, Gabriela Luminița Gelețu, Alice Murariu, Mihail Balan, Mihaela Pertea, and Carmen Stelea. 2024. "Long-Term Clinical Outcomes of 3D-Printed Subperiosteal Titanium Implants: A 6-Year Follow-Up" Journal of Personalized Medicine 14, no. 5: 541. https://doi.org/10.3390/jpm14050541
APA StyleOnică, N., Budală, D. G., Baciu, E. -R., Onică, C. A., Gelețu, G. L., Murariu, A., Balan, M., Pertea, M., & Stelea, C. (2024). Long-Term Clinical Outcomes of 3D-Printed Subperiosteal Titanium Implants: A 6-Year Follow-Up. Journal of Personalized Medicine, 14(5), 541. https://doi.org/10.3390/jpm14050541