Exploring Inflammatory Parameters in Lung Cancer Patients: A Retrospective Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Criteria for Participant Selection in the Study
- Patients undergoing surgical treatment for lung cancer.
- Patients with histopathological diagnoses of either adenocarcinoma or squamous cell carcinoma, categorized as subtypes of NSCLC.
- Tumor limited to a single lobe, followed by lobectomy.
- Patients undergoing surgical treatment during the specified timeframe
2.2. Data Collection and Prognostic Evaluation Parameters
- Lymphocyte (Lym);
- Monocyte (Mon);
- Neutrophil (Neu);
- Platelet (Pla).
- LMR (lymphocyte/monocyte ratio) = Lym/Mon;
- NLR (neutrophil/lymphocyte ratio) = Neu/Lym;
- PLR (platelet/lymphocyte ratio) = Pla/Lym;
- SII (Systemic Immune Inflammation Index) = (Neu × Pla)/Lym;
- AISI (Aggregate Index of Systemic Inflammation) = (Neu × Mon × Pla)/Lym;
- SIRI (Systemic Inflammation Response Index) = (Mon × Pla)/Lym.
2.3. Statistical Analysis
3. Results
3.1. Key Information
3.2. Stage of Disease and Outcomes
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Global Cancer Observatory. Available online: https://gco.iarc.who.int/en (accessed on 22 April 2024).
- Riely, G.J.; Wood, D.E.; Ettinger, D.S.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; et al. Non-Small Cell Lung Cancer, Version 4.2024. J. Natl. Compr. Cancer Netw. 2024, 22, 249–274. [Google Scholar] [CrossRef] [PubMed]
- de Ruiter, J.C.; van der Noort, V.; van Diessen, J.N.A.; Smit, E.F.; Damhuis, R.A.M.; Hartemink, K.J. The optimal treatment for patients with stage I non-small cell lung cancer: Minimally invasive lobectomy versus stereotactic ablative radiotherapy—A nationwide cohort study. Lung Cancer 2024, 191, 107792. [Google Scholar] [CrossRef]
- Rajaram, R.; Huang, Q.; Li, R.Z.; Chandran, U.; Zhang, Y.; Amos, T.B.; Wright, G.W.; Ferko, N.C.; Kalsekar, I. Recurrence-Free Survival in Patients With Surgically Resected Non-Small Cell Lung Cancer: A Systematic Literature Review and Meta-Analysis. Chest 2024, 165, 1260–1270. [Google Scholar] [CrossRef]
- Ma, Z.; Men, Y.; Liu, Y.; Bao, Y.; Liu, Q.; Yang, X.; Wang, J.; Deng, L.; Zhai, Y.; Bi, N.; et al. Preoperative CT-based radiomic prognostic index to predict the benefit of postoperative radiotherapy in patients with non-small cell lung cancer: A multicenter study. Cancer Imaging 2024, 24, 61. [Google Scholar] [CrossRef]
- Garassino, M.C.; Torri, V. Neoadjuvant or Perioperative Approach in Lung Cancer. N. Engl. J. Med. 2024, 390, 1816–1818. [Google Scholar] [CrossRef]
- Galdiero, M.R.; Garlanda, C.; Jaillon, S.; Marone, G.; Mantovani, A. Tumor associated macrophages and neutrophils in tumor progression. J. Cell Physiol. 2013, 228, 1404–1412. [Google Scholar] [CrossRef]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Shoji, F.; Kozuma, Y.; Toyokawa, G.; Yamazaki, K.; Takeo, S. Complete Blood Cell Count-Derived Inflammatory Biomarkers in Early-Stage Non-Small-Cell Lung Cancer. Ann. Thorac. Cardiovasc. Surg. 2020, 26, 248–255. [Google Scholar] [CrossRef]
- Lan, H.; Zhou, L.; Chi, D.; Zhou, Q.; Tang, X.; Zhu, D.; Yue, J.; Liu, B. Preoperative platelet to lymphocyte and neutrophil to lymphocyte ratios are independent prognostic factors for patients undergoing lung cancer radical surgery: A single institutional cohort study. Oncotarget 2017, 8, 35301–35310. [Google Scholar] [CrossRef]
- Paliogiannis, P.; Ginesu, G.C.; Tanda, C.; Feo, C.F.; Fancellu, A.; Fois, A.G.; Mangoni, A.A.; Sotgia, S.; Carru, C.; Porcu, A.; et al. Inflammatory cell indexes as preoperative predictors of hospital stay in open elective thoracic surgery. ANZ J. Surg. 2018, 88, 616–620. [Google Scholar] [CrossRef]
- Shen, Y.-J.; Qian, L.-Q.; Ding, Z.-P.; Luo, Q.-Q.; Zhao, H.; Xia, W.-Y.; Fu, Y.-Y.; Feng, W.; Zhang, Q.; Yu, W.; et al. Prognostic Value of Inflammatory Biomarkers in Patients With Stage I Lung Adenocarcinoma Treated With Surgical Dissection. Front. Oncol. 2021, 11, 711206. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, W.; Zhang, X.; Yu, X.; Xi, K.; Wen, Y.; Wang, G.; Feng, X.; Zhang, L. Prognostic significance of combined preoperative platelet-to-lymphocyte ratio and lymphocyte-to-monocyte ratio in patients undergoing surgery with stage IB non-small-cell lung cancer. Cancer Manag. Res. 2018, 10, 5411–5422. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Xu, R.; Lu, T.; Zhao, J.; Zhang, P.; Qu, L.; Zhang, S.; Guo, J.; Zhang, L. The MLR, NLR, PLR and D-dimer are associated with clinical outcome in lung cancer patients treated with surgery. BMC Pulm. Med. 2022, 22, 104. [Google Scholar] [CrossRef]
- Lv, X.; Xu, B.; Zou, Q.; Han, S.; Feng, Y. Clinical application of common inflammatory and nutritional indicators before treatment in prognosis evaluation of non-small cell lung cancer: A retrospective real-world study. Front. Med. 2023, 10, 1183886. [Google Scholar] [CrossRef]
- Shi, Z.; Zheng, D.; Tang, X.; Du, Y. Correlation of immune inflammatory indices and nutritional risk index with prognosis in patients with non-small cell lung cancer. Am. J. Transl. Res. 2023, 15, 4100–4109. [Google Scholar]
- Zhai, B.; Chen, J.; Wu, J.; Yang, L.; Guo, X.; Shao, J.; Xu, H.; Shen, A. Predictive value of the hemoglobin, albumin, lymphocyte, and platelet (HALP) score and lymphocyte-to-monocyte ratio (LMR) in patients with non-small cell lung cancer after radical lung cancer surgery. Ann. Transl. Med. 2021, 9, 976. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Xu, W.; Wang, H.; Huang, Y.; Che, G. Prognostic value of a novel scoring system using inflammatory response biomarkers in non-small cell lung cancer: A retrospective study. Thorac. Cancer 2019, 10, 1402–1411. [Google Scholar] [CrossRef]
- Łochowski, M.; Łochowska, B.; Chałubińska-Fendler, J.; Zawadzka, I.; Rębowski, M.; Kozak, J. Prognostic Factors Determining Survival of Patients Operated for Non-Small Cell Lung Cancer with Consideration Given to Morphological Parameters of Blood. Cancer Manag. Res. 2021, 13, 479–487. [Google Scholar] [CrossRef]
- Liu, D.; Jin, J.; Zhang, L.; Li, L.; Song, J.; Li, W. The Neutrophil to Lymphocyte Ratio May Predict Benefit from Chemotherapy in Lung Cancer. Cell Physiol. Biochem. 2018, 46, 1595–1605. [Google Scholar] [CrossRef]
- Chua, W.; Charles, K.A.; Baracos, V.E.; Clarke, S.J. Neutrophil/lymphocyte ratio predicts chemotherapy outcomes in patients with advanced colorectal cancer. Br. J. Cancer 2011, 104, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Bian, D.J.H.; Sabri, S.; Abdulkarim, B.S. Interactions between COVID-19 and Lung Cancer: Lessons Learned during the Pandemic. Cancers 2022, 14, 3598. [Google Scholar] [CrossRef] [PubMed]
- Lombrea, A.; Romanescu, M.; Jianu, N.; Andor, M.; Suciu, M.; Man, D.E.; Danciu, C.; Dehelean, C.A.; Buda, V. Sex-Related Differences in the Pharmacological Response in SARS-CoV-2 Infection, Dyslipidemia, and Diabetes Mellitus: A Narrative Review. Pharmaceuticals 2023, 16, 853. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Templeton, A.J.; Mcnamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Pang, Z.; Shen, H.; Ni, Y.; Du, J.; Liu, Q. The Prognostic Value of PLR in Lung Cancer, a Meta-analysis Based on Results from a Large Consecutive Cohort. Sci. Rep. 2016, 6, 34823. [Google Scholar] [CrossRef] [PubMed]
- Ginesu, G.C.; Paliogiannis, P.; Feo, C.F.; Cossu, M.L.; Scanu, A.M.; Fancellu, A.; Fois, A.G.; Zinellu, A.; Perra, T.; Veneroni, S.; et al. Inflammatory Indexes as Predictive Biomarkers of Postoperative Complications in Oncological Thoracic Surgery. Curr. Oncol. 2022, 29, 3425–3432. [Google Scholar] [CrossRef] [PubMed]
- Sarraf, K.M.; Belcher, E.; Raevsky, E.; Nicholson, A.G.; Goldstraw, P.; Lim, E. Neutrophil/lymphocyte ratio and its association with survival after complete resection in non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2009, 137, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Pinedo, H.M.; Verheul, H.M.; D‘Amato, R.J.; Folkman, J. Involvement of platelets in tumour angiogenesis? Lancet 1998, 352, 1775–1777. [Google Scholar] [CrossRef]
- Malhotra, J.; Malvezzi, M.; Negri, E.; La Vecchia, C.; Boffetta, P. Risk factors for lung cancer worldwide. Eur. Respir. J. 2016, 48, 889–902. [Google Scholar] [CrossRef]
- Moreno, C.; Ureña, A.; Macia, I.; Rivas, F.; Déniz, C.; Muñoz, A.; Serratosa, I.; Poltorak, V.; Moya-Guerola, M.; Masuet-Aumatell, C.; et al. The Influence of Preoperative Nutritional and Systemic Inflammatory Status on Perioperative Outcomes following Da Vinci Robot-Assisted Thoracic Lung Cancer Surgery. J. Clin. Med. 2023, 12, 554. [Google Scholar] [CrossRef]
- Zheng, K.; Liu, X.; Ji, W.; Lu, J.; Cui, J.; Li, W. The Efficacy of Different Inflammatory Markers for the Prognosis of Patients with Malignant Tumors. J. Inflamm. Res. 2021, 14, 5769–5785. [Google Scholar] [CrossRef]
- Jeganathan, V.; Knight, S.; Bricknell, M.; Ridgers, A.; Wong, R.; Brazzale, D.J.; Ruehland, W.R.; Rahman, M.A.; Leong, T.L.; McDonald, C.F. Impact of smoking status and chronic obstructive pulmonary disease on pulmonary complications post lung cancer surgery. PLoS ONE 2022, 17, e0266052. [Google Scholar] [CrossRef]
- Lee, B.M.; Rodríguez, A.; Mena, G.; Gottumukkala, V.; Mehran, R.J.; Rice, D.C.; Feng, L.; Yu, J.; Cata, J.P. Platelet-to-Lymphocyte Ratio and Use of NSAIDs During the Perioperative Period as Prognostic Indicators in Patients With NSCLC Undergoing Surgery. Cancer Control 2016, 23, 284–294. [Google Scholar] [CrossRef]
- Caliri, A.W.; Tommasi, S.; Besaratinia, A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108365. [Google Scholar] [CrossRef]
- Li, S.; Yang, Z.; Du, H.; Zhang, W.; Che, G.; Liu, L. Novel systemic inflammation response index to predict prognosis after thoracoscopic lung cancer surgery: A propensity score-matching study. ANZ J. Surg. 2019, 89, E507–E513. [Google Scholar] [CrossRef]
- Multhoff, G.; Molls, M.; Radons, J. Chronic inflammation in cancer development. Front. Immunol. 2012, 2, 98. [Google Scholar] [CrossRef]
- Woodard, G.A.; Jones, K.D.; Jablons, D.M. Lung Cancer Staging and Prognosis. Cancer Treat. Res. 2016, 170, 47–75. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, L.; Zhang, B.; Zhang, L.; Wang, C. Prognostic value of platelet to lymphocyte ratio in non-small cell lung cancer: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 22618. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, J.; Wang, X.; Gu, L.; Pei, H.; Kuai, S.; Zhang, Y.; Shang, Z. Prognostic value of the neutrophil to lymphocyte ratio in lung cancer: A meta-analysis. Clinics 2015, 70, 524–530. [Google Scholar] [CrossRef]
- Li, W.; Ma, G.; Wu, Q.; Deng, Y.; Liu, Y.; Wang, J. Prognostic value of lymphocyte-to-monocyte ratio among Asian lung cancer patients: A systematic review and meta-analysis. Oncotarget 2017, 8, 110606–110613. [Google Scholar] [CrossRef] [PubMed]
- Qiang, G.; Liang, C.; Xiao, F.; Yu, Q.; Tian, Y.; Shi, B.; Liu, Y.; Liu, D.; Song, Z.; Wen, H. Prognostic significance of platelet-to-lymphocyte ratio in non-small-cell lung cancer: A meta-analysis. Onco Targets Ther. 2016, 9, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Loehrer, A.P.; Chen, L.; Wang, Q.; Colla, C.H.; Wong, S.L. Rural Disparities in Lung Cancer-directed Surgery: A Medicare Cohort Study. Ann. Surg. 2023, 277, e657–e663. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shi, Y.; Shi, Y.; Cao, M.; Zhang, L.; Wu, Y.; Xu, Y.; Wang, K.; Weng, X. The Prognostic Value and Potential Mechanism of Tumor-Nutrition-Inflammation Index and Genes in Patients with Advanced Lung Cancer. Int. J. Clin. Pract. 2023, 2023, 8893670. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhou, K.; Wang, M.; Lin, R.; Fan, J.; Che, G. Degree of pulmonary fissure completeness can predict postoperative cardiopulmonary complications and length of hospital stay in patients undergoing video-assisted thoracoscopic lobectomy for early-stage lung cancer. Interact. Cardiovasc. Thorac. Surg. 2018, 26, 25–33. [Google Scholar] [CrossRef]
- Van Schil, P.E. Surgery for non-small cell lung cancer. Lung Cancer 2001, 34 (Suppl. 2), S127–S132. [Google Scholar] [CrossRef]
Characteristic | All, n = 187 | Smokers, n = 66 | Non-Smokers, n = 121 | p-Value |
---|---|---|---|---|
Age (years, M ± SD) | 60.43 ± 9.3 | 58.41 ± 8.73 | 61.54 ± 9.45 | 0.025 |
Gender, men | 116 (62%) | 48 (72.7%) | 68 (56.2%) | 0.026 |
Rural | 71(38%) | 27 (40.9%) | 44 (36.4%) | 0.54 |
Tumor location | 0.054 | |||
Right lung | ||||
Upper lobe | 31 (16.6%) | 17 (25.8%) | 14 (11.6%) | |
Middle lobe | 12 (6.4%) | 2 (3%) | 10 (8.3%) | |
Lower lobe | 50 (26.7%) | 20 (30.3%) | 30 (24.8%) | |
Left lung | ||||
Upper lobe | 51 (27.3%) | 15 (22.7%) | 36 (29.8%) | |
Lower lobe | 43 (23%) | 12 (18.2%) | 31 (25.6%) | |
Air leak | 62 (33.2%) | 28 (42.2%) | 34 (28.1%) | 0.047 |
Stage | 0.635 | |||
I A1 | 2 (1.1%) | 1 (1.5%) | 1 (0.8%) | |
I A2 | 22 (11.8%) | 7 (10.6%) | 15 (12.4%) | |
I A3 | 20 (10.7%) | 6 (9.1%) | 14 (11.6%) | |
I B | 33 (17.6%) | 8 (12.1%) | 25 (20.7%) | |
II A | 25 (13.4%) | 11 (16.7%) | 14 (11.6%) | |
II B | 43 (23%) | 19 (28.8%) | 24 (19.8%) | |
III A | 23 (12.3%) | 6 (9.1%) | 17 (14.0%) | |
III B | 6 (3.2%) | 3 (4.5%) | 3 (2.5%) | |
pT | 0.778 | |||
1a | 4 (2.1%) | 1 (1.5%) | 3 (2.5%) | |
1b | 24 (12.8%) | 8 (12.1%) | 16 (13.2%) | |
1c | 26 (13.9%) | 9 (13.6%) | 17 (14%) | |
2a | 44 (23.5%) | 11 (16.7%) | 33 (27.3%) | |
2b | 34 (18.2%) | 15 (22.7%) | 19 (15.7%) | |
3 | 29 (15.5%) | 12 (18.2%) | 17 (14%) | |
4 | 13 (7%) | 5 (7.6%) | 8 (6.6%) | |
pN | 0.672 | |||
0 | 131 (75.3%) | 45 (73.8%) | 86 (76.1%) | |
1 | 29 (16.7%) | 12 (19.7%) | 17 (15%) | |
2 | 14 (8%) | 4 (6.6%) | 10 (8.8%) | |
Tumor size (cm, M ± SD) | 3.59 ± 1.85 | 3.93 ± 209 | 3.41 ± 1.69 | 0.105 |
Tumor type | 0.019 | |||
Adenocarcinoma | 112 (59.9%) | 32 (48.5%) | 80 (66.1%) | |
Squamous cell carcinoma | 75 (40.1%) | 34 (51.5%) | 41 (33.9%) | |
Duration of surgery (min., M ± SD) | 262.6 ± 71.36 | 266.58 ± 73.43 | 260.41 ± 71.202 | 0.672 |
Hospitalization (days, M ± SD) | 14.95 ± 6.84 | 15.38 ± 6.91 | 14.72 ± 6.82 | 0.53 |
Post-surgery (days, M ± SD) | 11.13 ± 5.79 | 11.88 ± 5.77 | 10.72 ± 5.79 | 0.192 |
Marker | All, n = 187 | Smokers, n = 66 | Non-Smokers, n = 121 | p-Value |
---|---|---|---|---|
Lymphocytes | 2334 ± 2023 | 2307 ± 672 | 2349 ± 2469 | 0.861 |
Monocytes | 607 ± 281 | 675 ± 272 | 569 ± 280 | 0.013 |
Platelets | 280,671 ± 94,565 | 296,424 ± 90,036 | 272,078 ± 96,223 | 0.087 |
Neutrophils | 5627 ± 2260 | 6382 ± 2162 | 5165 ± 2203 | 0.001 |
NLR | 2.53 ± 1.73 | 2.89 ± 1.49 | 2.33 ± 1.82 | 0.025 |
LMR | 4.56 ± 3.69 | 3.92 ± 1.92 | 4.91 ± 4.32 | 0.033 |
PLR | 144.33 ± 72.59 | 137.17 ± 148.24 | 148.24 ± 80.63 | 0.268 |
AISI | 502.16± 531.22 | 621.85 ± 518.35 | 436.86 ± 528.85 | 0.022 |
SIRI | 84.91 ± 58.64 | 90.07 ± 44.11 | 82.09 ± 65.22 | 0.322 |
SII | 761.19 ± 702.92 | 883.91 ± 642.48 | 694.8 ± 727.79 | 0.07 |
Ratio | Stage I | Stage II | Stage III | p-Value |
---|---|---|---|---|
NLR | 2.16 ± 1.29 | 2.75 ± 1.78 | 3.21 ± 2.4 | 0.012 |
PLR | 123.83 ± 56.5 | 156.61 ± 82.76 | 176.57 ± 80.34 | 0.001 |
AISI | 392.25 ± 352.32 | 639.56 ± 647.16 | 557.04 ± 623.76 | 0.02 |
SIRI | 72.16 ± 40.79 | 101.98 ± 73.53 | 88.65 ± 57.27 | 0.01 |
SII | 604.36 ± 471.99 | 894.67 ± 826.49 | 966.26 ± 897.91 | 0.015 |
Ratio | T1-T2 | T3-T4 | p-Value |
---|---|---|---|
NLR | 2.26 ± 1.4 | 3.52 ± 2.33 | 0.002 |
PLR | 135.23 ± 64.27 | 177.48 ± 93.28 | 0.001 |
AISI | 443.87 ± 443.94 | 744.2 ± 731.9 | 0.015 |
SIRI | 80.15 ± 55.83 | 106.72 ± 66.63 | 0.023 |
SII | 660.19 ± 549.77 | 1148.8 ± 1016 | 0.004 |
Marker | All, n = 187 | Air Leaks, n = 62 | No Air Leaks, n = 125 | p-Value |
---|---|---|---|---|
NLR | 2.53 ± 1.73 | 2.48 ± 1.43 | 2.55 ± 1.87 | 0.795 |
PLR | 144.33 ± 72.59 | 149.31 ± 66.1 | 141.87 ± 75.74 | 0.511 |
AISI | 502.16± 531.22 | 570.3 ± 563.55 | 468.35 ± 513.4 | 0.218 |
SIRI | 84.91 ± 58.64 | 97.31 ± 68.33 | 78.76 ± 52.41 | 0.041 |
SII | 761.19 ± 702.92 | 804.02 ± 714.53 | 739.95 ± 699.02 | 0.559 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feier, C.V.I.; Muntean, C.; Faur, A.M.; Gaborean, V.; Petrache, I.A.; Cozma, G.V. Exploring Inflammatory Parameters in Lung Cancer Patients: A Retrospective Analysis. J. Pers. Med. 2024, 14, 552. https://doi.org/10.3390/jpm14060552
Feier CVI, Muntean C, Faur AM, Gaborean V, Petrache IA, Cozma GV. Exploring Inflammatory Parameters in Lung Cancer Patients: A Retrospective Analysis. Journal of Personalized Medicine. 2024; 14(6):552. https://doi.org/10.3390/jpm14060552
Chicago/Turabian StyleFeier, Catalin Vladut Ionut, Calin Muntean, Alaviana Monique Faur, Vasile Gaborean, Ioan Adrian Petrache, and Gabriel Veniamin Cozma. 2024. "Exploring Inflammatory Parameters in Lung Cancer Patients: A Retrospective Analysis" Journal of Personalized Medicine 14, no. 6: 552. https://doi.org/10.3390/jpm14060552
APA StyleFeier, C. V. I., Muntean, C., Faur, A. M., Gaborean, V., Petrache, I. A., & Cozma, G. V. (2024). Exploring Inflammatory Parameters in Lung Cancer Patients: A Retrospective Analysis. Journal of Personalized Medicine, 14(6), 552. https://doi.org/10.3390/jpm14060552