Human Leukocyte Antigen-Allelic Variations May Influence the Age at Cancer Diagnosis in Lynch Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. DNA Samples
2.3. HLA Typing
2.4. Statistical Analysis
3. Results
3.1. Overall Demographic and Clinical Characteristics of the Patients
3.2. Effects of Gender and Cancer Type on Age at Cancer Diagnosis and Incidence Rates in LSVH
3.3. Effects of HLA Alleles on the Age at Cancer Diagnosis in LSVH
3.4. Different HLA Allele Frequencies between LSVH and the Previously Studied South African General Populations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lynch, H.T.; Krush, A.J. Cancer family “G” revisited: 1895–1970. Cancer 1971, 27, 1505–1511. [Google Scholar] [CrossRef]
- Lynch, H.T.; Lynch, P.M.; Lanspa, S.J.; Snyder, C.L.; Lynch, J.F.; Boland, C.R. Review of the Lynch syndrome: History, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin. Genet. 2009, 76, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.T.; de la Chapelle, A. Genetic susceptibility to non-polyposis colorectal cancer. J. Med. Genet. 1999, 36, 801–818. [Google Scholar] [PubMed]
- Talseth-Palmer, B.A.; Wijnen, J.T.; Grice, D.M.; Scott, R.J. Genetic modifiers of cancer risk in Lynch syndrome: A review. Fam. Cancer 2013, 12, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Bucksch, K.; Zachariae, S.; Aretz, S.; Buttner, R.; Holinski-Feder, E.; Holzapfel, S.; Huneburg, R.; Kloor, M.; von Knebel Doeberitz, M.; Morak, M.; et al. Cancer risks in Lynch syndrome, Lynch-like syndrome, and familial colorectal cancer type X: A prospective cohort study. BMC Cancer 2020, 20, 460. [Google Scholar] [CrossRef]
- Dominguez-Valentin, M.; Sampson, J.R.; Seppala, T.T.; Ten Broeke, S.W.; Plazzer, J.P.; Nakken, S.; Engel, C.; Aretz, S.; Jenkins, M.A.; Sunde, L.; et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: Findings from the Prospective Lynch Syndrome Database. Genet. Med. 2020, 22, 15–25. [Google Scholar] [CrossRef]
- Felix, R.; Bodmer, W.; Fearnhead, N.S.; van der Merwe, L.; Goldberg, P.; Ramesar, R.S. GSTM1 and GSTT1 polymorphisms as modifiers of age at diagnosis of hereditary nonpolyposis colorectal cancer (HNPCC) in a homogeneous cohort of individuals carrying a single predisposing mutation. Mutat. Res. 2006, 602, 175–181. [Google Scholar] [CrossRef]
- Stupart, D.A.; Goldberg, P.A.; Algar, U.; Ramesar, R. Cancer risk in a cohort of subjects carrying a single mismatch repair gene mutation. Fam. Cancer 2009, 8, 519–523. [Google Scholar] [CrossRef]
- Ahadova, A.; Witt, J.; Haupt, S.; Gallon, R.; Huneburg, R.; Nattermann, J.; Ten Broeke, S.; Bohaumilitzky, L.; Hernandez-Sanchez, A.; Santibanez-Koref, M.; et al. Is HLA type a possible cancer risk modifier in Lynch syndrome? Int. J. Cancer 2023, 152, 2024–2031. [Google Scholar] [CrossRef]
- Liccardo, R.; De Rosa, M.; Duraturo, F. Same MSH2 Gene Mutation But Variable Phenotypes in 2 Families With Lynch Syndrome: Two Case Reports and Review of Genotype-Phenotype Correlation. Clin. Med. Insights Case Rep. 2018, 11, 1179547617753943. [Google Scholar] [CrossRef]
- Ballhausen, A.; Przybilla, M.J.; Jendrusch, M.; Haupt, S.; Pfaffendorf, E.; Seidler, F.; Witt, J.; Hernandez Sanchez, A.; Urban, K.; Draxlbauer, M.; et al. The shared frameshift mutation landscape of microsatellite-unstable cancers suggests immunoediting during tumor evolution. Nat. Commun. 2020, 11, 4740. [Google Scholar] [CrossRef] [PubMed]
- Holoshitz, J. The quest for better understanding of HLA-disease association: Scenes from a road less travelled by. Discov. Med. 2013, 16, 93–101. [Google Scholar] [PubMed]
- Klein, J.; Sato, A. The HLA system. Second of two parts. N. Engl. J. Med. 2000, 343, 782–786. [Google Scholar] [CrossRef]
- Li, X.C.; Raghavan, M. Structure and function of major histocompatibility complex class I antigens. Curr. Opin. Organ. Transplant. 2010, 15, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Jurtz, V.; Paul, S.; Andreatta, M.; Marcatili, P.; Peters, B.; Nielsen, M. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J. Immunol. 2017, 199, 3360–3368. [Google Scholar] [CrossRef] [PubMed]
- Falk, K.; Rötzschke, O.; Stevanović, S.; Jung, G.; Rammensee, H.G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991, 351, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Bjorkman, P.J.; Saper, M.A.; Samraoui, B.; Bennett, W.S.; Strominger, J.L.; Wiley, D.C. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 1987, 329, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Wysocki, T.; Olesińska, M.; Paradowska-Gorycka, A. Current Understanding of an Emerging Role of HLA-DRB1 Gene in Rheumatoid Arthritis—From Research to Clinical Practice. Cells 2020, 9, 1127. [Google Scholar] [CrossRef]
- Klein, J.; Sato, A. The HLA system. First of two parts. N. Engl. J. Med. 2000, 343, 702–709. [Google Scholar] [CrossRef]
- Chowell, D.; Morris, L.G.T.; Grigg, C.M.; Weber, J.K.; Samstein, R.M.; Makarov, V.; Kuo, F.; Kendall, S.M.; Requena, D.; Riaz, N.; et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 2018, 359, 582–587. [Google Scholar] [CrossRef]
- Naranbhai, V.; Viard, M.; Dean, M.; Groha, S.; Braun, D.A.; Labaki, C.; Shukla, S.A.; Yuki, Y.; Shah, P.; Chin, K.; et al. HLA-A*03 and response to immune checkpoint blockade in cancer: An epidemiological biomarker study. Lancet Oncol. 2022, 23, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, D.; Li, X. HLA-DPB1 and Epstein-Barr virus gp42 protein jointly contribute to the development of Hodgkin lymphoma. Transl. Cancer Res. 2020, 9, 4424–4432. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hildesheim, A. Association Between Human Leukocyte Antigen Class I and II Diversity and Non-virus-associated Solid Tumors. Front. Genet. 2021, 12, 675860. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Huang, C.J.; Huang, Y.H.; Pan, M.H.; Lee, M.H.; Yu, K.J.; Pfeiffer, R.M.; Viard, M.; Yuki, Y.; Gao, X.; et al. HLA Zygosity Increases Risk of Hepatitis B Virus-Associated Hepatocellular Carcinoma. J. Infect. Dis. 2021, 224, 1796–1805. [Google Scholar] [CrossRef]
- Hirata, I.; Murano, M.; Ishiguro, T.; Toshina, K.; Wang, F.Y.; Katsu, K. HLA genotype and development of gastric cancer in patients with Helicobacter pylori infection. Hepatogastroenterology 2007, 54, 990–994. [Google Scholar] [PubMed]
- Chambuso, R.; Ramesar, R.; Kaambo, E.; Denny, L.; Passmore, J.A.; Williamson, A.L.; Gray, C.M. Human Leukocyte Antigen (HLA) Class II -DRB1 and -DQB1 Alleles and the Association with Cervical Cancer in HIV/HPV Co-Infected Women in South Africa. J. Cancer 2019, 10, 2145–2152. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, V.; Zweiniger, C.; Surendranath, V.; Lang, K.; Schofl, G.; Dahl, A.; Winkler, S.; Lange, V.; Bohme, I.; Schmidt, A.H. Dual redundant sequencing strategy: Full-length gene characterisation of 1056 novel and confirmatory HLA alleles. HLA 2017, 90, 79–87. [Google Scholar] [CrossRef]
- Listgarten, J.; Brumme, Z.; Kadie, C.; Xiaojiang, G.; Walker, B.; Carrington, M.; Goulder, P.; Heckerman, D. Statistical resolution of ambiguous HLA typing data. PLoS Comput. Biol. 2008, 4, e1000016. [Google Scholar] [CrossRef]
- Barker, D.J.; Maccari, G.; Georgiou, X.; Cooper, M.A.; Flicek, P.; Robinson, J.; Marsh, S.G.E. The IPD-IMGT/HLA Database. 51(D1):[D1053-d60 pp.]. 2023. Available online: http://www.ebi.ac.uk/ipd/imgt/hla/ (accessed on 5 May 2024).
- Imkeller, K. Immunotation: Tools for Working with Diverse Immune Genes. R Package Version 1.8.0. 2023. Available online: https://bioconductor.org/packages/immunotation/ (accessed on 1 May 2024).
- Cohen, S.A.; Leininger, A. The genetic basis of Lynch syndrome and its implications for clinical practice and risk management. Appl. Clin. Genet. 2014, 7, 147–158. [Google Scholar] [CrossRef]
- Schneider, R.; Schneider, C.; Jakobeit, C.; Furst, A.; Moslein, G. Gender-Specific Aspects of Lynch Syndrome and Familial Adenomatous Polyposis. Viszeralmedizin 2014, 30, 82–88. [Google Scholar] [CrossRef]
- Vasen, H.F.A.; Moslein, G.; Alonso, A.; Bernstein, I.; Bertario, L.; Blanco, I.; Burn, J.; Capella, G.; Engel, C.; Frayling, I.; et al. Guidelines for the clinical management of Lynch syndrome (hereditary non-polyposis cancer). J. Med. Genet. 2007, 44, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Valentin, M.; Haupt, S.; Seppälä, T.T.; Sampson, J.R.; Sunde, L.; Bernstein, I.; Jenkins, M.A.; Engel, C.; Aretz, S.; Nielsen, M.; et al. Mortality by age, gene and gender in carriers of pathogenic mismatch repair gene variants receiving surveillance for early cancer diagnosis and treatment: A report from the prospective Lynch syndrome database. EClinicalMedicine 2023, 58, 101909. [Google Scholar] [CrossRef] [PubMed]
- Bonadona, V.; Bonaïti, B.; Olschwang, S.; Grandjouan, S.; Huiart, L.; Longy, M.; Guimbaud, R.; Buecher, B.; Bignon, Y.J.; Caron, O.; et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA 2011, 305, 2304–2310. [Google Scholar] [CrossRef] [PubMed]
- Tshabalala, M.; Mellet, J.; Vather, K.; Nelson, D.; Mohamed, F.; Christoffels, A.; Pepper, M.S. High Resolution HLA ~A, ~B, ~C, ~DRB1, ~DQA1, and ~DQB1 Diversity in South African Populations. Front. Genet. 2022, 13, 711944. [Google Scholar] [CrossRef] [PubMed]
- Janse van Rensburg, W.J.; de Kock, A.; Bester, C.; Kloppers, J.F. HLA major allele group frequencies in a diverse population of the Free State Province, South Africa. Heliyon 2021, 7, e06850. [Google Scholar] [CrossRef]
- Lombard, Z.; Brune, A.E.; Hoal, E.G.; Babb, C.; Van Helden, P.D.; Epplen, J.T.; Bornman, L. HLA class II disease associations in southern Africa. Tissue Antigens 2006, 67, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Yurgelun, M.B.; Hampel, H. Recent Advances in Lynch Syndrome: Diagnosis, Treatment, and Cancer Prevention. Am. Soc. Clin. Oncol. Educ. Book. 2018, 38, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Ahadova, A.; Seppala, T.T.; Engel, C.; Gallon, R.; Burn, J.; Holinski-Feder, E.; Steinke-Lange, V.; Moslein, G.; Nielsen, M.; Ten Broeke, S.W.; et al. The “unnatural” history of colorectal cancer in Lynch syndrome: Lessons from colonoscopy surveillance. Int. J. Cancer 2021, 148, 800–811. [Google Scholar] [CrossRef]
- Seppala, T.T.; Dominguez-Valentin, M.; Crosbie, E.J.; Engel, C.; Aretz, S.; Macrae, F.; Winship, I.; Capella, G.; Thomas, H.; Hovig, E.; et al. Uptake of hysterectomy and bilateral salpingo-oophorectomy in carriers of pathogenic mismatch repair variants: A Prospective Lynch Syndrome Database report. Eur. J. Cancer 2021, 148, 124–133. [Google Scholar] [CrossRef]
- Hu, J.M.; Liang, W.H.; Qi, C.H.; Wang, X.L.; Pan, X.L.; Qi, L.W.; Shen, X.H.; Li, J.F.; Xie, Y.F.; Pang, L.J.; et al. HLA-DQB1*03 and DRB1*07 alleles increase the risk of cervical cancer among Uighur and Han women in Xinjiang, China. Future Oncol. 2018, 14, 2005–2011. [Google Scholar] [CrossRef]
- Vinokurov, M.A.; Mironov, K.O.; Domonova, E.A.; Romanyuk, T.N.; Popova, A.A.; Akimkin, V.G. The genetic variant rs55986091 HLA-DQB1 is associated with a protective effect against cervical cancer. Front. Oncol. 2023, 13, 1207935. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.B.; Turner, T.R.; Cambridge, C.A.; Marsh, S.G.E.; Mayor, N.P. The novel HLA-DRB1*03:01:01:05 and -DPB1*04:02:01:21 alleles identified in patients with acute leukemia. HLA 2022, 99, 650–652. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.N.; Lin, Z.H.; Jiang, X.J.; Zhan, S.H.; Dong, Q.J.; Wang, Q.; Xuan, S.Y. Specific HLA-DQB1 alleles associated with risk for development of hepatocellular carcinoma: A meta-analysis. World J. Gastroenterol. 2011, 17, 2248–2254. [Google Scholar] [CrossRef] [PubMed]
- Kohno, T.; Kunitoh, H.; Mimaki, S.; Shiraishi, K.; Kuchiba, A.; Yamamoto, S.; Yokota, J. Contribution of the TP53, OGG1, CHRNA3, and HLA-DQA1 genes to the risk for lung squamous cell carcinoma. J. Thorac. Oncol. 2011, 6, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Jackow, C.M.; McHam, J.B.; Friss, A.; Alvear, J.; Reveille, J.R.; Duvic, M. HLA-DR5 and DQB1*03 class II alleles are associated with cutaneous T-cell lymphoma. J. Investig. Dermatol. 1996, 107, 373–376. [Google Scholar] [CrossRef]
- Wu, M.S.; Hsieh, R.P.; Huang, S.P.; Chang, Y.T.; Lin, M.T.; Chang, M.C.; Shun, C.T.; Sheu, J.C.; Lin, J.T. Association of HLA-DQB1*0301 and HLA-DQB1*0602 with different subtypes of gastric cancer in Taiwan. Jpn. J. Cancer Res. 2002, 93, 404–410. [Google Scholar] [CrossRef]
- Magnusson, P.K.E.; Enroth, H.; Eriksson, I.; Held, M.; Nyren, O.; Engstrand, L.; Hansson, L.E.; Gyllensten, U.B. Gastric cancer and human leukocyte antigen: Distinct DQ and DR alleles are associated with development of gastric cancer and infection by Helicobacter pylori. Cancer Res. 2001, 61, 2684–2689. [Google Scholar] [PubMed]
- Cheng, L.; Guo, Y.; Zhan, S.; Xia, P. Association between HLA-DP Gene Polymorphisms and Cervical Cancer Risk: A Meta-Analysis. Biomed. Res. Int. 2018, 2018, 7301595. [Google Scholar] [CrossRef]
- Shi, Y.; Li, L.; Hu, Z.; Li, S.; Wang, S.; Liu, J.; Wu, C.; He, L.; Zhou, J.; Li, Z.; et al. A genome-wide association study identifies two new cervical cancer susceptibility loci at 4q12 and 17q12. Nat. Genet. 2013, 45, 918–922. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, B.; Lin, W.; Xu, Y.; Li, L.; Zhang, Y.; Chen, S.; Lin, Z.; Xu, A. Human leukocyte antigen class II alleles and risk of cervical cancer in China. Hum. Immunol. 2007, 68, 192–200. [Google Scholar] [CrossRef]
- Liang, J.; Xu, A.; Xie, Y.; Awonuga, A.O.; Lin, Z. Some but not all of HLA-II alleles are associated with cervical cancer in Chinese women. Cancer Genet. Cytogenet. 2008, 187, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Pirela, S.E.; Echeverría, M.; Salcedo, P.; Márquez, G.; Carrillo, Z.; Parra, Y.; Cipriani, A.M.; Núñez, J.R.; Álvarez de Mon, M. HLA DRB1*, DQB1*, DPA1*, and DPB1* and their association with the pathogenesis of leukemia in the population of Venezuela. Rev. Alerg. Mex. 2016, 63, 237–251. [Google Scholar] [CrossRef]
- Sivapalan, L.; Anagnostou, V. Genetic variation in antigen presentation and cancer immunotherapy. Immunity 2022, 55, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Seliger, B.; Kloor, M.; Ferrone, S. HLA class II antigen-processing pathway in tumors: Molecular defects and clinical relevance. Oncoimmunology 2017, 6, e1171447. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Xiao, G.; Yan, Y.; Guo, C.; Hu, N.; Shen, S. Bioinformatics analysis of the clinical significance of HLA class II in breast cancer. Medicine 2022, 101, e31071. [Google Scholar] [CrossRef] [PubMed]
- Pastor, D.M.; Schlom, J. Immunology of Lynch Syndrome. Curr. Oncol. Rep. 2021, 23, 96. [Google Scholar] [CrossRef] [PubMed]
- Pande, M.; Amos, C.I.; Osterwisch, D.R.; Chen, J.; Lynch, P.M.; Broaddus, R.; Frazier, M.L. Genetic variation in genes for the xenobiotic-metabolizing enzymes CYP1A1, EPHX1, GSTM1, GSTT1, and GSTP1 and susceptibility to colorectal cancer in Lynch syndrome. Cancer Epidemiol. Biomark. Prev. 2008, 17, 2393–2401. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.T.; Edwards, L.; McLaughlin, J.R.; Green, J.; Younghusband, H.B.; Woods, M.O. Cytochrome P450 17A1 and catechol O-methyltransferase polymorphisms and age at Lynch syndrome colon cancer onset in Newfoundland. Clin. Cancer Res. 2007, 13, 3783–3788. [Google Scholar] [CrossRef]
- Hitchins, M.P.; Lynch, H.T. Dawning of the epigenetic era in hereditary cancer. Clin. Genet. 2014, 85, 413–416. [Google Scholar] [CrossRef]
- Hitchins, M.P.; Rapkins, R.W.; Kwok, C.T.; Srivastava, S.; Wong, J.J.; Khachigian, L.M.; Polly, P.; Goldblatt, J.; Ward, R.L. Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5′UTR. Cancer Cell 2011, 20, 200–213. [Google Scholar] [CrossRef]
- Watson, P.; Ashwathnarayan, R.; Lynch, H.T.; Roy, H.K. Tobacco use and increased colorectal cancer risk in patients with hereditary nonpolyposis colorectal cancer (Lynch syndrome). Arch. Intern. Med. 2004, 164, 2429–2431. [Google Scholar] [CrossRef] [PubMed]
- Pande, M.; Lynch, P.M.; Hopper, J.L.; Jenkins, M.A.; Gallinger, S.; Haile, R.W.; LeMarchand, L.; Lindor, N.M.; Campbell, P.T.; Newcomb, P.A.; et al. Smoking and colorectal cancer in Lynch syndrome: Results from the Colon Cancer Family Registry and the University of Texas M.D. Anderson Cancer Center. Clin. Cancer Res. 2010, 16, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Dashti, S.G.; Buchanan, D.D.; Jayasekara, H.; Ait Ouakrim, D.; Clendenning, M.; Rosty, C.; Winship, I.M.; Macrae, F.A.; Giles, G.G.; Parry, S.; et al. Alcohol Consumption and the Risk of Colorectal Cancer for Mismatch Repair Gene Mutation Carriers. Cancer Epidemiol. Biomark. Prev. 2017, 26, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Botma, A.; Vasen, H.F.; van Duijnhoven, F.J.; Kleibeuker, J.H.; Nagengast, F.M.; Kampman, E. Dietary patterns and colorectal adenomas in Lynch syndrome: The GEOLynch cohort study. Cancer 2013, 119, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Burn, J.; Bishop, D.T.; Chapman, P.D.; Elliott, F.; Bertario, L.; Dunlop, M.G.; Eccles, D.; Ellis, A.; Evans, D.G.; Fodde, R.; et al. A randomized placebo-controlled prevention trial of aspirin and/or resistant starch in young people with familial adenomatous polyposis. Cancer Prev. Res. 2011, 4, 655–665. [Google Scholar] [CrossRef]
Variable | Cancer-Unaffected Controls (LS Carriers) (N = 13) | Cancer-Affected Cases (N = 78) | Total Subjects (N = 91) | * p-Value | |
---|---|---|---|---|---|
Early Diagnosis (≤40) (N = 35) | Late Diagnosis (>40) (N = 43) | ||||
Gender | |||||
Male | 4 (30.8%) | 23 (65.7%) | 19 (44.2%) | 46 | 0.057 |
Female | 9 (69.2%) | 12 (34.3%) | 24 (55.8%) | 45 | |
* Age at diagnosis (years) | |||||
Mean (SD) | 69.2 (5.44) | 31.9 (5.24) | 53.1 (8.31) | ||
Median (min, max) | 68.8 (62.7, 79.1) | 32.0 (17.0–39.4) | 50.0 (39.8–72.3) | ||
Tumor site | |||||
Proximal colon | NA | 24 | 21 | 45 | 0.080 |
Distal colon | NA | 5 | 5 | 10 | 0.726 |
Rectum | NA | 2 | 1 | 3 | 0.441 |
Endometrium | NA | 0 | 8 | 8 | N/A |
Breast | NA | 0 | 3 | 3 | N/A |
Ovary | NA | 1 | 0 | 1 | N/A |
Small intestine | NA | 2 | 3 | 5 | 0.818 |
Bladder | NA | 1 | 0 | 1 | N/A |
Kidney | NA | 0 | 1 | 1 | N/A |
Skin | NA | 0 | 1 | 1 | N/A |
Allele | Unadjusted HR (CI) | p-Value | q-Value | Adjusted HR (CI) | p-Value | q-Value |
---|---|---|---|---|---|---|
HLA-A | ||||||
A*01:01 | 1.31 (0.58–2.96) | 0.515 | 0.890 | 1.78 (0.78–4.10) | 0.173 | 0.384 |
A*02:01 | 1.76 (0.85–3.64) | 0.130 | 0.495 | 1.40 (0.671–2.92) | 0.371 | 0.571 |
A*02:05 | 1.19 (0.46–3.11) | 0.717 | 0.934 | 0.96 (0.37–2.51) | 0.932 | 0.932 |
A*11:01 | 5.08 (1.79–14.40) | 0.002 | 0.043 | 4.14 (1.46–11.76) | 0.008 | 0.062 |
A*23:01 | 1.46 (0.56–3.80) | 0.441 | 0.838 | 1.84 (0.70–4.85) | 0.218 | 0.436 |
A*24:02 | 2.21 (0.95–5.13) | 0.066 | 0.414 | 2.58 (1.11–6.00) | 0.028 | 0.113 |
A*26:01 | 2.23 (0.90–5.54) | 0.084 | 0.414 | 3.32 (1.30–8.48) | 0.012 | 0.062 |
A*29:01 | 1.21 (0.40–3.70) | 0.738 | 0.934 | 1.84 (0.59–5.77) | 0.296 | 0.537 |
A*29:02 | 1.27 (0.49–3.31) | 0.627 | 0.934 | 1.23 (0.47–3.22) | 0.667 | 0.852 |
A*30:01 | 0.83 (0.27–2.53) | 0.737 | 0.934 | 0.81 (0.26–2.52) | 0.722 | 0.852 |
A*30:02 | 1.59 (0.61–4.15) | 0.341 | 0.721 | 1.13 (0.43–2.97) | 0.808 | 0.898 |
A*30:04 | 1.01 (0.33–3.07) | 0.992 | 0.992 | 1.11 (0.36–3.38) | 0.861 | 0.906 |
A*32:01 | 0.60 (0.22–1.67) | 0.327 | 0.721 | 0.44 (0.16–1.23) | 0.117 | 0.334 |
A*33:03 | 2.44 (0.88–6.79) | 0.087 | 0.414 | 3.84 (1.34–11.00) | 0.012 | 0.062 |
A*34:02 | 1.13 (0.41–3.14) | 0.816 | 0.943 | 1.70 (0.60–4.86) | 0.322 | 0.537 |
A*43:01 | 1.52 (0.69–3.36) | 0.298 | 0.721 | 2.04 (0.91–4.59) | 0.083 | 0.275 |
A*68:01 | 0.92 (0.38–2.19) | 0.843 | 0.943 | 0.79 (0.33–1.90) | 0.602 | 0.852 |
A*68:02 | 0.98 (0.32–3.00) | 0.978 | 0.992 | 1.22 (0.40–3.75) | 0.724 | 0.852 |
HLA-A_Binned | 1.56 (0.80–3.06) | 0.193 | 0.610 | 1.67 (0.85–3.28) | 0.134 | 0.336 |
HLA-B | ||||||
B*07:02 | 0.91 (0.39–2.12) | 0.830 | 0.996 | 0.81 (0.37–1.88) | 0.619 | 0.893 |
B*08:01 | 0.75 (0.30–1.90) | 0.542 | 0.996 | 0.87 (0.34–2.22) | 0.771 | 0.900 |
B*13:03 | 1.87 (0.62–5.62) | 0.263 | 0.909 | 2.21 (0.73–6.66) | 0.161 | 0.841 |
B*15:01 | 1.18 (0.43–3.21) | 0.747 | 0.996 | 1.22 (0.45–3.31) | 0.702 | 0.893 |
B*15:03 | 1.03 (0.47–2.27) | 0.933 | 0.996 | 1.31 (0.59–2.94) | 0.506 | 0.885 |
B*15:10 | 1.50 (0.64–3.47) | 0.350 | 0.909 | 1.66 (0.71–3.88) | 0.240 | 0.841 |
B*18:01 | 1.50 (0.68–3.28) | 0.314 | 0.909 | 1.32 (0.60–2.91) | 0.484 | 0.885 |
B*35:01 | 0.76 (0.30–1.93) | 0.561 | 0.996 | 0.69 (0.27–1.75) | 0.432 | 0.885 |
B*47:01 | 1.00 (0.37–2.73) | 0.996 | 0.996 | 0.97 (0.36–2.64) | 0.955 | 0.972 |
B*57:01 | 0.47 (0.16–1.39) | 0.172 | 0.909 | 0.48 (0.16–1.44) | 0.192 | 0.841 |
B*58:01 | 0.97 (0.38–2.48) | 0.956 | 0.996 | 0.82 (0.32–2.10) | 0.681 | 0.893 |
B*58:02 | 1.11 (0.52–2.37) | 0.793 | 0.996 | 1.01 (0.47–2.17) | 0.972 | 0.972 |
HLA-B_Binned | 1.34 (0.78–2.31) | 0.290 | 0.909 | 1.29 (0.75–2.23) | 0.358 | 0.885 |
HLA-C | ||||||
C*02:10 | 0.87 (0.42–1.84) | 0.725 | 0.725 | 0.82 | 0.596 | 0.596 |
C*04:01 | 1.28 (0.78–2.10) | 0.335 | 0.600 | 1.40 | 0.189 | 0.474 |
C*05:01 | 1.76 (0.80–3.84) | 0.158 | 0.600 | 1.43 | 0.378 | 0.478 |
C*07:01 | 1.15 (0.63–2.12) | 0.650 | 0.725 | 1.41 | 0.284 | 0.474 |
C*07:02 | 1.52 (0.72–3.21) | 0.276 | 0.600 | 1.35 | 0.430 | 0.478 |
C*07:04 | 1.63 (0.63–4.21) | 0.316 | 0.600 | 1.74 | 0.253 | 0.474 |
C*16:01 | 1.29 (0.66–2.52) | 0.457 | 0.600 | 1.35 | 0.386 | 0.478 |
C*17:01 | 1.39 (0.58–3.34) | 0.467 | 0.600 | 1.79 | 0.203 | 0.474 |
HLA-C_Binned | 1.55 (0.93–2.60) | 0.096 | 0.600 | 1.57 | 0.085 | 0.426 |
HLA-DRB1 | ||||||
DRB1*01:01 | 0.82 (0.25–2.70) | 0.741 | 0.741 | 0.81 (0.24–2.66) | 0.725 | 0.932 |
DRB1*03:01 | 1.32 (0.73–2.38) | 0.354 | 0.659 | 1.30 (0.72–2.33) | 0.389 | 0.612 |
DRB1*04:01 | 1.18 (0.65–2.14) | 0.594 | 0.659 | 0.99 (0.54–1.81) | 0.964 | 0.964 |
DRB1*10:01 | 3.16 (1.21–8.28) | 0.019 | 0.107 | 3.03 (1.16–7.94) | 0.024 | 0.089 |
DRB1*12:02 | 2.36 (1.14–4.91) | 0.021 | 0.107 | 2.54 (1.22–5.29) | 0.013 | 0.069 |
DRB1*13:01 | 1.27 (0.60–2.72) | 0.532 | 0.659 | 1.12 (0.53–2.41) | 0.762 | 0.932 |
DRB1*13:02 | 1.29 (0.53–3.14) | 0.568 | 0.659 | 1.08 (0.44–2.63) | 0.869 | 0.956 |
DRB1*15:01 | 1.76 (0.95–3.25) | 0.071 | 0.237 | 1.76 (0.95–3.24) | 0.072 | 0.158 |
DRB1*15:03 | 1.70 (0.90–3.22) | 0.100 | 0.251 | 1.94 (1.02–3.69) | 0.043 | 0.118 |
HLA-DRB1_Binned | 1.26 (0.74–2.15) | 0.399 | 0.659 | 1.35 (0.79–2.31) | 0.273 | 0.501 |
HLA-DRB3 | ||||||
DRB3*01:01 | 1.03 (0.58–1.84) | 0.914 | 0.914 | 1.13 (0.63–2.03) | 0.678 | 0.678 |
DRB3*02:02 | 0.81 (0.52–1.27) | 0.369 | 0.531 | 0.79 (0.51–1.24) | 0.310 | 0.516 |
DRB3*03:01 | 1.26 (0.73–2.18) | 0.398 | 0.531 | 1.22 (0.71–2.09) | 0.482 | 0.603 |
HLA-DRB3_Binned | 2.11 (0.52–8.57) | 0.299 | 0.531 | 2.70 (0.65–11.10) | 0.170 | 0.424 |
HLA-DRB4 | ||||||
DRB4*01:01 | 0.79 (0.52–1.20) | 0.271 | 0.463 | 0.75 (0.49–1.14) | 0.177 | 0.249 |
DRB4*01:03 | 0.85 (0.55–1.32) | 0.463 | 0.463 | 0.77 (0.49–1.20) | 0.249 | 0.249 |
HLA-DRB5 | ||||||
DRB5*01:01 | 1.30 (0.78–2.17) | 0.306 | 0.613 | 1.48 (0.88–2.48) | 0.135 | 0.202 |
HLA-DRB5_Binned | 0.92 (0.23–3.71) | 0.905 | 0.905 | 1.02 (0.25–4.15) | 0.973 | 0.973 |
HLA-DQA1 | ||||||
DQA1*01:01 | 0.62 (0.34–1.15) | 0.132 | 0.444 | 0.65 (0.35–1.19) | 0.163 | 0.386 |
DQA1*01:03 | 0.71 (0.33–1.52) | 0.374 | 0.534 | 0.64 (0.30–1.37) | 0.247 | 0.386 |
DQA1*01:10 | 2.40 (0.73–7.89) | 0.149 | 0.444 | 2.08 (0.63– 6.86) | 0.229 | 0.386 |
DQA1*02:01 | 0.60 (0.36–0.99) | 0.045 | 0.444 | 0.59 (0.36–0.97) | 0.039 | 0.212 |
DQA1*03:01 | 0.80 (0.37–1.72) | 0.571 | 0.635 | 0.65 (0.30–1.42) | 0.281 | 0.386 |
DQA1*03:02 | 0.75 (0.43–1.29) | 0.299 | 0.499 | 0.69 (0.40–1.20) | 0.189 | 0.386 |
DQA1*04:01 | 0.84 (0.20–3.49) | 0.814 | 0.814 | 0.92 (0.22–3.84) | 0.913 | 0.913 |
DQA1*04:03 | 0.47 (0.11–1.95) | 0.296 | 0.499 | 0.48 (0.12–2.01) | 0.316 | 0.387 |
DQA1*05:01 | 0.71 (0.43–1.17) | 0.178 | 0.444 | 0.73 (0.44–1.21) | 0.220 | 0.386 |
DQA1*06:01 | 1.25 (0.61–2.59) | 0.541 | 0.635 | 1.34 (0.65–2.77) | 0.431 | 0.474 |
HLA-DQB1 | ||||||
DQB1*02:01 | 0.74 (0.42–1.30) | 0.298 | 0.537 | 0.74 (0.42–1.30) | 0.291 | 0.485 |
DQB1*02:02 | 0.66 (0.40–1.09) | 0.106 | 0.456 | 0.67 (0.40–1.10) | 0.114 | 0.380 |
DQB1*03:01 | 0.97 (0.57–1.65) | 0.902 | 0.902 | 0.95 (0.56–1.63) | 0.858 | 0.858 |
DQB1*03:02 | 0.60 (0.33–1.07) | 0.086 | 0.456 | 0.55 (0.30–0.99) | 0.045 | 0.224 |
DQB1*04:02 | 0.75 (0.30–1.92) | 0.553 | 0.647 | 0.69 (0.27–1.77) | 0.445 | 0.635 |
DQB1*05:01 | 0.80 (0.42–1.54) | 0.512 | 0.647 | 0.84 (0.44–1.62) | 0.605 | 0.756 |
DQB1*06:03 | 0.77 (0.30–1.95) | 0.575 | 0.647 | 0.82 (0.32–2.10) | 0.680 | 0.756 |
DQB1*06:04 | 0.57 (0.20–1.61) | 0.291 | 0.537 | 0.48 (0.17–1.36) | 0.167 | 0.417 |
HLA-DQB1_Binned | 0.61 (0.31–1.20) | 0.152 | 0.456 | 0.65 (0.33–1.29) | 0.219 | 0.438 |
HLA-DPA1 | ||||||
DPA1*01:04 | 0.63 (0.25–1.56) | 0.313 | 0.439 | 0.66 (0.27–1.65) | 0.375 | 0.522 |
DPA1*02:01 | 0.76 (0.47–1.24) | 0.277 | 0.439 | 0.77 (0.47–1.26) | 0.304 | 0.522 |
DPA1*02:02 | 1.13 (0.76–1.68) | 0.548 | 0.548 | 1.07 (0.72–1.60) | 0.723 | 0.723 |
DPA1*02:07 | 0.54 (0.20–1.50) | 0.238 | 0.439 | 0.65 (0.23–1.80) | 0.404 | 0.522 |
DPA1*03:01 | 1.23 (0.69–2.17) | 0.486 | 0.548 | 1.24 (0.70–2.20) | 0.457 | 0.522 |
DPA1*04:01 | 1.84 (0.79–4.28) | 0.156 | 0.439 | 2.26 (0.96–5.33) | 0.062 | 0.247 |
HLA-DPA1_Binned | 0.22 (0.03–1.58) | 0.131 | 0.439 | 0.19 (0.03–1.39) | 0.102 | 0.273 |
HLA-DPB1 | ||||||
DPB1*02:01 | 1.14 (0.62–2.12) | 0.672 | 0.928 | 1.35 (0.72–2.53) | 0.36 | 0.844 |
DPB1*02:02 | 1.13 (0.50–2.54) | 0.771 | 0.943 | 1.02 (0.45– 2.30) | 0.96 | 0.986 |
DPB1*03:01 | 1.27 (0.66–2.44) | 0.481 | 0.928 | 1.26 (0.65–2.43) | 0.49 | 0.844 |
DPB1*04:01 | 0.89 (0.51–1.55) | 0.675 | 0.928 | 0.88 (0.50–1.54) | 0.66 | 0.877 |
DPB1*04:02 | 2.84 (1.18–6.80) | 0.020 | 0.108 | 3.37 (1.39–8.16) | 0.01 | 0.043 |
DPB1*05:01 | 1.64 (0.64–4.20) | 0.302 | 0.928 | 1.57 (0.61–4.02) | 0.35 | 0.844 |
DPB1*105:01 | 1.14 (0.70–1.86) | 0.588 | 0.928 | 1.19 (0.73–1.94) | 0.48 | 0.844 |
DPB1*13:01 | 0.94 (0.39–2.23) | 0.886 | 0.975 | 0.93 (0.39–2.21) | 0.86 | 0.986 |
DPB1*15:01 | 0.99 (0.39–2.54) | 0.986 | 0.986 | 0.99 (0.39–2.54) | 0.99 | 0.986 |
DPB1*558:01 | 0.57 (0.17–1.84) | 0.346 | 0.928 | 0.72 (0.22–2.38) | 0.59 | 0.877 |
HLA-DPB1_Binned | 2.54 (1.33–4.82) | 0.004 | 0.049 | 2.30 (1.21–4.38) | 0.01 | 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndou, L.; Chambuso, R.; Valley-Omar, Z.; Rebello, G.; Algar, U.; Goldberg, P.; Boutall, A.; Ramesar, R. Human Leukocyte Antigen-Allelic Variations May Influence the Age at Cancer Diagnosis in Lynch Syndrome. J. Pers. Med. 2024, 14, 575. https://doi.org/10.3390/jpm14060575
Ndou L, Chambuso R, Valley-Omar Z, Rebello G, Algar U, Goldberg P, Boutall A, Ramesar R. Human Leukocyte Antigen-Allelic Variations May Influence the Age at Cancer Diagnosis in Lynch Syndrome. Journal of Personalized Medicine. 2024; 14(6):575. https://doi.org/10.3390/jpm14060575
Chicago/Turabian StyleNdou, Lutricia, Ramadhani Chambuso, Ziyaad Valley-Omar, George Rebello, Ursula Algar, Paul Goldberg, Adam Boutall, and Raj Ramesar. 2024. "Human Leukocyte Antigen-Allelic Variations May Influence the Age at Cancer Diagnosis in Lynch Syndrome" Journal of Personalized Medicine 14, no. 6: 575. https://doi.org/10.3390/jpm14060575
APA StyleNdou, L., Chambuso, R., Valley-Omar, Z., Rebello, G., Algar, U., Goldberg, P., Boutall, A., & Ramesar, R. (2024). Human Leukocyte Antigen-Allelic Variations May Influence the Age at Cancer Diagnosis in Lynch Syndrome. Journal of Personalized Medicine, 14(6), 575. https://doi.org/10.3390/jpm14060575