Effect of Surgeon-Performed Thoracic Paravertebral Block on Postoperative Pain in Adolescent Idiopathic Scoliosis Surgery: A Prospective Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard of Care
2.2. Surgeon-Performed Paravertebral Block
2.3. Outcome Assessments
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Addai, D.; Zarkos, J.; Bowey, A.J. Current concepts in the diagnosis and management of adolescent idiopathic scoliosis. Childs Nerv. Syst. 2020, 36, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wang, S.R.; Qiu, G.X.; Zhang, J.G.; Zhuang, Q.Y. Research progress on the etiology and pathogenesis of adolescent idiopathic scoliosis. Chin. Med. J. 2020, 133, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Borgeat, A.; Blumenthal, S. Postoperative pain management following scoliosis surgery. Curr. Opin. Anaesthesiol. 2008, 21, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Negrini, S.; Donzelli, S.; Aulisa, A.G.; Czaprowski, D.; Schreiber, S.; de Mauroy, J.C.; Diers, H.; Grivas, T.B.; Knott, P.; Kotwicki, T.; et al. 2016 SOSORT guidelines: Orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis Spinal Disord. 2018, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Tambe, A.D.; Panikkar, S.J.; Millner, P.A.; Tsirikos, A.I. Current concepts in the surgical management of adolescent idiopathic scoliosis. Bone Jt. J. 2018, 100, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Mens, R.H.; Bisseling, P.; de Kleuver, M.; van Hooff, M.L. Relevant impact of surgery on quality of life for adolescent idiopathic scoliosis: A registry-based two-year follow-up cohort study. Bone Jt. J. 2022, 104, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Jia, X.; Hai, Y. Posterior minimally invasive scoliosis surgery versus the standard posterior approach for the management of adolescent idiopathic scoliosis: An updated meta-analysis. J. Orthop. Surg. Res. 2022, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Barone, G.; Giudici, F.; Manzini, F.; Pironti, P.; Viganò, M.; Minoia, L.; Archetti, M.; Zagra, A.; Scaramuzzo, L. Adolescent idiopathic scoliosis surgery: Postoperative functional outcomes at 32 years mean follow-up. Children 2023, 11, 52. [Google Scholar] [CrossRef]
- Sung, S.; Chae, H.W.; Lee, H.S.; Kim, S.; Kwon, J.W.; Lee, S.B.; Moon, S.H.; Lee, H.M.; Lee, B.H. Incidence and surgery rate of idiopathic scoliosis: A nationwide database study. Int. J. Environ. Res. Public Health 2021, 18, 8152. [Google Scholar] [CrossRef]
- Young, C.D.; McLuckie, D.; Spencer, A.O. Anaesthetic care for surgical management of adolescent idiopathic scoliosis. BJA Educ. 2019, 19, 232–237. [Google Scholar] [CrossRef]
- Bailey, K.M.; Howard, J.J.; El-Hawary, R.; Chorney, J. Pain trajectories following adolescent idiopathic scoliosis correction: Analysis of predictors and functional outcomes. JBJS Open Access 2021, 6, e20. [Google Scholar] [CrossRef]
- Locke, L.L.; Rhodes, L.N.; Sheffer, B.W. Accelerated protocols in adolescent idiopathic scoliosis surgery. Orthop. Clin. 2023, 54, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Merchant, S.; Chidambaran, V. Postoperative pain management in pediatric spinal fusion surgery for idiopathic scoliosis. Paediatr. Drugs 2020, 22, 575–601. [Google Scholar] [CrossRef]
- Nelson, R.; Shimon, T.; Grimsby, G.M. Pediatric urologic surgery: Reducing opioid use. Paediatr. Drugs 2021, 23, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Pawa, A.; Wojcikiewicz, T.; Barron, A.; El-Boghdadly, K. Paravertebral blocks: Anatomical, practical, and future concepts. Curr. Anesthesiol. Rep. 2019, 9, 263–270. [Google Scholar] [CrossRef]
- Yeung, J.H.; Gates, S.; Naidu, B.V.; Wilson, M.J.; Gao Smith, F. Paravertebral block versus thoracic epidural for patients undergoing thoracotomy. Cochrane Database Syst. Rev. 2016, 2, CD009121. [Google Scholar] [CrossRef]
- Terkawi, A.S.; Tsang, S.; Sessler, D.I.; Terkawi, R.S.; Nunemaker, M.S.; Durieux, M.E.; Shilling, A. Improving analgesic efficacy and safety of thoracic paravertebral block for breast surgery: A mixed-effects meta-analysis. Pain Physician 2015, 18, E757–E780. [Google Scholar] [CrossRef]
- El-Boghdadly, K.; Madjdpour, C.; Chin, K.J. Thoracic paravertebral blocks in abdominal surgery—A systematic review of randomized controlled trials. Br. J. Anaesth. 2016, 117, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Almarzouki, A.F.; Brown, C.A.; Brown, R.J.; Leung, M.H.K.; Jones, A.K.P. Negative expectations interfere with the analgesic effect of safety cues on pain perception by priming the cortical representation of pain in the midcingulate cortex. PLoS ONE 2017, 12, e0180006. [Google Scholar] [CrossRef]
- Erdogan, M.A.; Ozgul, U.; Ucar, M.; Korkmaz, M.F.; Aydogan, M.S.; Ozkan, A.S.; Colak, C.; Durmus, M. Patient-controlled intermittent epidural bolus versus epidural infusion for posterior spinal fusion after adolescent idiopathic scoliosis: Prospective, randomized, double-blinded study. Spine 2017, 42, 882–886. [Google Scholar] [CrossRef]
- Puvanesarajah, V.; Liauw, J.A.; Lo, S.F.; Lina, I.A.; Witham, T.F.; Gottschalk, A. Analgesic therapy for major spine surgery. Neurosurg. Rev. 2015, 38, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Zale, C.L.; McIntosh, A.L. Adolescent idiopathic scoliosis for pediatric providers. Pediatr. Ann. 2022, 51, e364–e369. [Google Scholar] [CrossRef] [PubMed]
- Taenzer, A.H.; Clark, C.J.P.A. Efficacy of postoperative epidural analgesia in adolescent scoliosis surgery: A meta-analysis. Paediatr. Anaesth. 2010, 20, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Slinchenkova, K.; Lee, K.; Choudhury, S.; Sundarapandiyan, D.; Gritsenko, K. A review of the paravertebral block: Benefits and complications. Curr. Pain. Headache Rep. 2023, 27, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Cowie, B.; McGlade, D.; Ivanusic, J.; Barrington, M.J. Ultrasound-guided thoracic paravertebral blockade: A cadaveric study. Anesth. Analg. 2010, 110, 1735–1739. [Google Scholar] [CrossRef] [PubMed]
- Marhofer, D.; Marhofer, P.; Kettner, S.C.; Fleischmann, E.; Prayer, D.; Schernthaner, M.; Lackner, E.; Willschke, H.; Schwetz, P.; Zeitlinger, M. Magnetic resonance imaging analysis of the spread of local anesthetic solution after ultrasound-guided lateral thoracic paravertebral blockade: A volunteer study. Anesthesiology 2013, 118, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Yeying, G.; Liyong, Y.; Yuebo, C.; Yu, Z.; Guangao, Y.; Weihu, M.; Liujun, Z. Thoracic paravertebral block versus intravenous patient-controlled analgesia for pain treatment in patients with multiple rib fractures. J. Int. Med. Res. 2017, 45, 2085–2091. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.P.; Makkar, J.K.; Kuberan, A.; Guffey, R.; Uppal, V. Efficacy of regional anesthesia techniques for postoperative analgesia in patients undergoing major oncologic breast surgeries: A systematic review and network meta-analysis of randomized controlled trials. Can. J. Anaesth. 2022, 69, 527–549. [Google Scholar] [CrossRef] [PubMed]
- Naganuma, M.; Tokita, T.; Sato, Y.; Kasai, T.; Kudo, Y.; Suzuki, N.; Masuda, S.; Nagaya, K. Efficacy of preoperative bilateral thoracic paravertebral block in cardiac surgery requiring full heparinization: A propensity-matched study. J. Cardiothorac. Vasc. Anesth. 2022, 36, 477–482. [Google Scholar] [CrossRef]
- Feray, S.; Lubach, J.; Joshi, G.P.; Bonnet, F.; Van de Velde, M. Prospect guidelines for video-assisted thoracoscopic surgery: A systematic review and procedure-specific postoperative pain management recommendations. Anaesthesia 2022, 77, 311–325. [Google Scholar] [CrossRef]
- Ardon, A.E.; Lee, J.; Franco, C.D.; Riutort, K.T.; Greengrass, R.A. Paravertebral block: Anatomy and relevant safety issues. Korean J. Anesthesiol. 2020, 73, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Page, E.A.; Taylor, K.L. Paravertebral block in paediatric abdominal surgery-a systematic review and meta-analysis of randomized trials. Br. J. Anaesth. 2017, 118, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Liu, H.; Li, Y.; Dai, H.; Wang, Y. Comparison of ultrasound-guided erector spinae plane block and thoracic paravertebral block for postoperative analgesia after laparoscopic nephrectomy: A randomized controlled non-inferiority clinical trial. Minerva Anestesiol. 2023, 89, 520–528. [Google Scholar] [CrossRef]
- Feng, J.; Wang, H.; Peng, L.; Xu, H.; Song, X. Effects of thoracic paravertebral block on postoperative analgesia in infants and small children undergoing ultra-fast track cardiac anesthesia: A randomized controlled trial. J. Cardiothorac. Vasc. Anesth. 2023, 37, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Vecchione, T.; Zurakowski, D.; Boretsky, K. Thoracic paravertebral nerve blocks in pediatric patients: Safety and clinical experience. Anesth. Analg. 2016, 123, 1588–1590. [Google Scholar] [CrossRef]
- Alansary, A.M.; Aziz, M.M.; Elbeialy, M.A.K. Dexamethasone plus bupivacaine versus bupivacaine in bilateral transincisional paravertebral block in lumbar spine surgeries: A randomized controlled trial. Clin. J. Pain. 2023, 39, 458–466. [Google Scholar] [CrossRef]
- Melvin, J.P.; Schrot, R.J.; Chu, G.M.; Chin, K.J. Low thoracic erector spinae plane block for perioperative analgesia in lumbosacral spine surgery: A case series. Can. J. Anaesth. 2018, 65, 1057–1065. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zhang, T.J.; Qu, Z.Y.; Qiu, Y.; Hua, Z. Erector spinae plane block at lower thoracic level for analgesia in lumbar spine surgery: A randomized controlled trial. World J. Clin. Cases 2021, 9, 5126–5134. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhu, J.; Wen, J.; Fu, Q. Ultrasound-guided erector spinae plane block for postoperative short-term outcomes in lumbar spine surgery: A meta-analysis and systematic review. Medicine 2023, 102, e32981. [Google Scholar] [CrossRef]
- Chenesseau, J.; Fourdrain, A.; Pastene, B.; Charvet, A.; Rivory, A.; Baumstarck, K.; Bouabdallah, I.; Trousse, D.; Boulate, D.; Brioude, G.; et al. Effectiveness of surgeon-performed paravertebral block analgesia for minimally invasive thoracic surgery: A randomized clinical trial. JAMA Surg. 2023, 158, 1255–1263. [Google Scholar] [CrossRef]
- Moorthy, A.; Eochagáin, A.N.; Dempsey, E.; Wall, V.; Marsh, H.; Murphy, T.; Fitzmaurice, G.J.; Naughton, R.A.; Buggy, D.J. Postoperative recovery with continuous erector spinae plane block or video-assisted paravertebral block after minimally invasive thoracic surgery: A prospective, randomised controlled trial. Br. J. Anaesth. 2023, 130, e137–e147. [Google Scholar] [CrossRef] [PubMed]
- Bosenberg, A.; Thomas, J.; Lopez, T.; Lybeck, A.; Huizar, K.; Larsson, L.E. The efficacy of caudal ropivacaine 1, 2 and 3 mg × L−1 for postoperative analgesia in children. Paediatr. Anaesth. 2002, 12, 53–58. [Google Scholar] [CrossRef] [PubMed]
Control Group (N = 16) | PVB Group (N = 15) | p Value | |
---|---|---|---|
Demographic data | |||
Age (years) | 14.1 ± 2.6 | 13.7 ± 1.9 | 0.694 |
Female/Male | 11/5 | 11/4 | >0.999 |
Height (cm) | 156.6 ± 11.4 | 160.9 ± 13.0 | 0.332 |
Weight (kg) | 48.4 ± 8.7 | 52.5 ± 14.8 | 0.364 |
Body mass index (kg/m2) | 19.7 ± 2.6 | 20.1 ± 4.1 | 0.764 |
ASA class (I/II/III) | 8/6/2 | 10/3/2 | 0.686 |
Preoperative Cobb angle | 56.5 [51.5–71.0] | 59.0 [55.5–61.5] | 0.566 |
Preoperative bending | 30.9 ± 15.5 | 30.9 ± 16.0 | 0.999 |
Flexibility | 48.8 ± 26.5 | 50.2 ± 23.1 | 0.870 |
Duration of surgery (min) | 249.0 [196.0–354.0] | 273.0 [246.5–300.5] | 0.406 |
Surgical vertebral level during surgery | 8.0 [7.0–13.0] | 11.0 [9.0–11.0] | 0.425 |
Postoperative Cobb angle | 20.2 ± 11.0 | 20.0 ± 9.7 | 0.947 |
Correction rate | 66.6 ± 18.6 | 67.6 ± 13.7 | 0.862 |
Anesthesia duration (min) | 340.0 [300.0–457.5] | 375.0 [340.0–417.5] | 0.313 |
Remifentanil use (mcg) | 2694.6 ± 826.9 | 2856.4 ± 1231.2 | 0.687 |
Propofol use (mg) | 2113.0 [1908.5–2315.0] | 2110.0 [1910.0–3305.5] | 0.478 |
Norepinephrine use (mcg) | 18.5 [4.4–36.0] | 36.2 [24.7–63.5] | 0.163 |
Amount of fluid infused (mL) | 2342.5 ± 794.2 | 2684.7 ± 832.0 | 0.251 |
Amount of bleeding (mL) | 456.4 ± 245.4 | 686.7 ± 336.2 | 0.037 |
Amount of transfusion (mL) | 252.4 ± 254.9 | 394.0 ± 160.4 | 0.077 |
Control Group (N = 16) | PVB Group (N = 15) | p Value | |
---|---|---|---|
Intravenous PCA data | |||
Fentanyl consumption (μg) as background infusion plus boluses via PCA | |||
0–1 h | 20.3 ± 9.9 | 16.5 ± 10.2 | 0.313 |
1–6 h | 78.2 [57.2–92.5] | 96.7 [64.8–130.3] | 0.338 |
6–12 h | 72.5 [49.9–107.5] | 67.7 [51.0–121.3] | 0.859 |
12–24 h | 133.8 [95.5–212.4] | 125.7 [94.1–211.8] | 0.953 |
24–48 h | 282.2 ± 147.7 | 291.8 ± 81.1 | 0.823 |
Number of boluses given via PCA | |||
0–1 h | 2 (1–3) | 1 (0–2) | 0.050 |
1–6 h | 6.6 ± 3.4 | 8.3 ± 4.4 | 0.237 |
6–12 h | 5.0 [2.5–8.0] | 4.0 [1.5–9.5] | 0.983 |
12–24 h | 8.0 [2.5–20.0] | 5.0 [3.0–13.0] | 0.708 |
24–48 h | 13.1 ± 11.9 | 13.7 ± 8.3 | 0.886 |
Number of invalid bolus attempts via PCA | |||
0–1 h | 3.5 [0.0–6.0] | 1.0 [0.0–3.0] | 0.267 |
1–6 h | 3.0 [0.5–11.5] | 1.0 [0.0–10.5] | 0.556 |
6–12 h | 0.0 [0.0–4.0] | 0.0 [0.0–6.0] | 0.982 |
12–24 h | 1.0 [0.0–10.5] | 0.0 [0.0–4.0] | 0.485 |
24–48 h | 1.0 [0.0–3.0] | 0.0 [0.0–3.0] | 0.804 |
Patients receiving rescue analgesics (n) | |||
0–1 h | 13 (81%) | 10 (67%) | 0.433 |
1–6 h | 7 (44%) | 7 (47%) | >0.999 |
6–12 h | 2 (13%) | 5 (33) | 0.220 |
12–24 h | 3 (19%) | 6 (40%) | 0.252 |
24–48 h | 6 (38%) | 10 (67%) | 0.206 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.; Kim, E.J.; Park, J.H.; Park, K.-B.; Choi, Y.S. Effect of Surgeon-Performed Thoracic Paravertebral Block on Postoperative Pain in Adolescent Idiopathic Scoliosis Surgery: A Prospective Randomized Controlled Trial. J. Pers. Med. 2024, 14, 659. https://doi.org/10.3390/jpm14060659
Lee B, Kim EJ, Park JH, Park K-B, Choi YS. Effect of Surgeon-Performed Thoracic Paravertebral Block on Postoperative Pain in Adolescent Idiopathic Scoliosis Surgery: A Prospective Randomized Controlled Trial. Journal of Personalized Medicine. 2024; 14(6):659. https://doi.org/10.3390/jpm14060659
Chicago/Turabian StyleLee, Bora, Eun Jung Kim, Jin Ha Park, Kun-Bo Park, and Yong Seon Choi. 2024. "Effect of Surgeon-Performed Thoracic Paravertebral Block on Postoperative Pain in Adolescent Idiopathic Scoliosis Surgery: A Prospective Randomized Controlled Trial" Journal of Personalized Medicine 14, no. 6: 659. https://doi.org/10.3390/jpm14060659
APA StyleLee, B., Kim, E. J., Park, J. H., Park, K. -B., & Choi, Y. S. (2024). Effect of Surgeon-Performed Thoracic Paravertebral Block on Postoperative Pain in Adolescent Idiopathic Scoliosis Surgery: A Prospective Randomized Controlled Trial. Journal of Personalized Medicine, 14(6), 659. https://doi.org/10.3390/jpm14060659