Repetitive Transcranial Magnetic Stimulation in Fibromyalgia: Exploring the Necessity of Neuronavigation for Targeting New Brain Regions
Abstract
:1. Introduction
- Generalized pain is present, defined as pain in at least four of the five regions.
- Widespread pain index (WPI) score of ≥ 7 and symptom severity scale (SSS) score of ≥ 5 or WPI of 4–6 and SSS score of ≥ 9.
- Symptoms have been continuous for at least three months.
2. Pathophysiology
- Prefrontal Cortex (PFC): Involved in executive functions such as decision-making, attention, and emotional regulation. Dysfunction in the PFC may contribute to cognitive symptoms commonly experienced by fibromyalgia patients, such as memory problems, difficulty concentrating, and impaired decision-making in response to pain [21,22].
- Motor Cortex (M1): Research using single- and double-pulsed TMS and fMRI has demonstrated decreased inhibition in the motor cortex, changes in connectivity with other brain regions, and altered motor-evoked potentials (MEPs). These findings are associated with symptoms like pain, stiffness, and impaired motor function. FMS patients exhibit an imbalance in motor cortex regulation, characterized by reduced intracortical inhibition and higher resting motor thresholds (rMTs) compared to healthy controls. This dysfunction can be adjusted through non-invasive brain stimulation, which can enhance intracortical inhibition [23,24].
- Anterior Cingulate Cortex (ACC): The ACC plays a crucial role in pain perception, emotion processing, and the integration of cognitive and affective aspects of pain. Abnormal activation of the ACC is commonly observed in fibromyalgia patients during pain-processing tasks, suggesting alterations in the brain’s response to nociceptive stimuli [22,25].
- Amygdala: The amygdala plays a central role in emotion processing, fear conditioning, and the modulation of pain responses. Dysregulation of the amygdala in fibromyalgia patients may contribute to heightened emotional responses to pain stimuli and the development of comorbid mood disorders such as anxiety and depression [22].
- Brainstem: The brainstem contains nuclei involved in pain modulation, including the periaqueductal gray (PAG) and the rostroventromedial medulla (RVM). Dysfunction in brainstem pain-modulatory circuits may contribute to abnormalities in pain inhibition and amplification [28].
- Somatosensory Cortex: The somatosensory cortex is responsible for processing tactile, proprioceptive, and nociceptive information. Altered somatosensory processing in a fibromyalgia patient may result in abnormal pain perception, hypersensitivity to tactile stimuli (allodynia), and exaggerated responses to noxious stimuli (hyperalgesia) [29].
3. Non-Invasive Repetitive Transcranial Magnetic Stimulation of the Brain
3.1. Method Description and Mechanism of Action
3.2. Stimulation Protocols and Investigated Outcomes
3.3. Frequency
3.4. Number of Sessions
3.5. Brain Target Areas
3.6. Outcomes
3.7. Evidences for the Therapeutic Use of rTMS in FMS Patients
3.8. Limitations of rTMS
3.9. FMS Treatment Recommendations
3.10. Future Perspectives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giorgi, V.; Bazzichi, L.; Batticciotto, A.; Pellegrino, G.; Di Franco, M.; Sirotti, S.; Atzeni, F.; Alciati, A.; Salaffi, F.; Sarzi Puttini, P. Fibromyalgia: One Year in Review 2023. Clin. Exp. Rheumatol. 2023, 41, 1205–1213. [Google Scholar] [CrossRef]
- Favretti, M.; Iannuccelli, C.; Di Franco, M. Pain Biomarkers in Fibromyalgia Syndrome: Current Understanding and Future Directions. Int. J. Mol. Sci. 2023, 24, 10443. [Google Scholar] [CrossRef]
- Al Sharie, S.; Varga, S.J.; Al-Husinat, L.; Sarzi-Puttini, P.; Araydah, M.; Bal’awi, B.R.; Varrassi, G. Unraveling the Complex Web of Fibromyalgia: A Narrative Review. Med. Kaunas Lith. 2024, 60, 272. [Google Scholar] [CrossRef] [PubMed]
- Fitzcharles, M.-A.; Cohen, S.P.; Clauw, D.J.; Littlejohn, G.; Usui, C.; Häuser, W. Nociplastic Pain: Towards an Understanding of Prevalent Pain Conditions. Lancet 2021, 397, 2098–2110. [Google Scholar] [CrossRef] [PubMed]
- Popkirov, S.; Enax-Krumova, E.K.; Mainka, T.; Hoheisel, M.; Hausteiner-Wiehle, C. Functional Pain Disorders—More than Nociplastic Pain. NeuroRehabilitation 2020, 47, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, M.; Vlaeyen, J.W.S.; Rief, W.; Barke, A.; Aziz, Q.; Benoliel, R.; Cohen, M.; Evers, S.; Giamberardino, M.A.; Goebel, A.; et al. The IASP Classification of Chronic Pain for ICD-11: Chronic Primary Pain. Pain 2019, 160, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.E.; Minhas, D.; Clauw, D.J.; Lee, Y.C. Identifying and Managing Nociplastic Pain in Individuals with Rheumatic Diseases: A Narrative Review. Arthritis Care Res. 2023, 75, 2215–2222. [Google Scholar] [CrossRef] [PubMed]
- Häuser, W.; Sarzi-Puttini, P.; Fitzcharles, M.-A. Fibromyalgia Syndrome: Under-, over- and Misdiagnosis. Clin. Exp. Rheumatol. 2019, 37 (Suppl. 116), 90–97. [Google Scholar] [PubMed]
- Wolfe, F.; Butler, S.H.; Fitzcharles, M.; Häuser, W.; Katz, R.L.; Mease, P.J.; Rasker, J.J.; Russell, A.S.; Russell, I.J.; Walitt, B. Revised Chronic Widespread Pain Criteria: Development from and Integration with Fibromyalgia Criteria. Scand. J. Pain 2019, 20, 77–86. [Google Scholar] [CrossRef]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.; Goldenberg, D.L.; Häuser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Russell, I.J.; Walitt, B. 2016 Revisions to the 2010/2011 Fi Bromyalgia Diagnostic Criteria. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef]
- Arnold, L.M.; Bennett, R.M.; Crofford, L.J.; Dean, L.E.; Clauw, D.J.; Goldenberg, D.L.; Fitzcharles, M.-A.; Paiva, E.S.; Staud, R.; Sarzi-Puttini, P.; et al. AAPT Diagnostic Criteria for Fibromyalgia. J. Pain 2019, 20, 611–628. [Google Scholar] [CrossRef] [PubMed]
- Berwick, R.; Barker, C.; Goebel, A.; Guideline Development Group. The Diagnosis of Fibromyalgia Syndrome. Clin. Med. 2022, 22, 570–574. [Google Scholar]
- Kleinstäuber, M.; Schröder, A.; Daehler, S.; Pallesen, K.J.; Rask, C.U.; Sanyer, M.; Van den Bergh, O.; Weinreich Petersen, M.; Rosmalen, J.G.M. Aetiological Understanding of Fibromyalgia, Irritable Bowel Syndrome, Chronic Fatigue Syndrome and Classificatory Analogues: A Systematic Umbrella Review. Clin. Psychol. Eur. 2023, 5, e11179. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.H.; Fors, E.A.; Korwisi, B.; Barke, A.; Cameron, P.; Colvin, L.; Richardson, C.; Rief, W.; Treede, R.-D.; IASP Taskforce for the Classification of Chronic Pain. The IASP Classification of Chronic Pain for ICD-11: Applicability in Primary Care. Pain 2019, 160, 83–87. [Google Scholar] [CrossRef]
- Gyorfi, M.; Rupp, A.; Abd-Elsayed, A. Fibromyalgia Pathophysiology. Biomedicines 2022, 10, 3070. [Google Scholar] [CrossRef] [PubMed]
- Bułdyś, K.; Górnicki, T.; Kałka, D.; Szuster, E.; Biernikiewicz, M.; Markuszewski, L.; Sobieszczańska, M. What Do We Know about Nociplastic Pain? Healthcare 2023, 11, 1794. [Google Scholar] [CrossRef] [PubMed]
- Sawaddiruk, P.; Paiboonworachat, S.; Chattipakorn, N.; Chattipakorn, S.C. Alterations of Brain Activity in Fibromyalgia Patients. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2017, 38, 13–22. [Google Scholar] [CrossRef]
- Ricci, M.; Cimini, A.; Grivet Fojaja, M.R.; Ullo, M.; Carabellese, B.; Frantellizzi, V.; Lubrano, E. Novel Approaches in Molecular Imaging and Neuroimaging of Fibromyalgia. Int. J. Mol. Sci. 2022, 23, 15519. [Google Scholar] [CrossRef]
- Warren, H.J.M.; Ioachim, G.; Powers, J.M.; Stroman, P.W. How fMRI Analysis Using Structural Equation Modeling Techniques Can Improve Our Understanding of Pain Processing in Fibromyalgia. J. Pain Res. 2021, 14, 381–398. [Google Scholar] [CrossRef]
- Soldatelli, M.; Franco, Á.d.O.; Picon, F.; Duarte, J.Á.; Scherer, R.; Bandeira, J.; Zortea, M.; Torres, I.L.d.S.; Fregni, F.; Caumo, W. Primary Somatosensory Cortex and Periaqueductal Gray Functional Connectivity as a Marker of the Dysfunction of the Descending Pain Modulatory System in Fibromyalgia. Korean J. Pain 2023, 36, 113–127. [Google Scholar] [CrossRef]
- Feraco, P.; Nigro, S.; Passamonti, L.; Grecucci, A.; Caligiuri, M.E.; Gagliardo, C.; Bacci, A. Neurochemical Correlates of Brain Atrophy in Fibromyalgia Syndrome: A Magnetic Resonance Spectroscopy and Cortical Thickness Study. Brain Sci. 2020, 10, 395. [Google Scholar] [CrossRef] [PubMed]
- Mosch, B.; Hagena, V.; Herpertz, S.; Ruttorf, M.; Diers, M. Neural Correlates of Control over Pain in Fibromyalgia Patients. NeuroImage Clin. 2023, 37, 103355. [Google Scholar] [CrossRef]
- Pacheco-Barrios, K.; Lima, D.; Pimenta, D.; Slawka, E.; Navarro-Flores, A.; Parente, J.; Rebello-Sanchez, I.; Cardenas-Rojas, A.; Gonzalez-Mego, P.; Castelo-Branco, L.; et al. Motor Cortex Inhibition as a Fibromyalgia Biomarker: A Meta-Analysis of Transcranial Magnetic Stimulation Studies. Brain Netw. Modul. 2022, 1, 88–101. [Google Scholar] [CrossRef]
- Argaman, Y.; Granovsky, Y.; Sprecher, E.; Sinai, A.; Yarnitsky, D.; Weissman-Fogel, I. Resting-State Functional Connectivity Predicts Motor Cortex Stimulation-Dependent Pain Relief in Fibromyalgia Syndrome Patients. Sci. Rep. 2022, 12, 17135. [Google Scholar] [CrossRef] [PubMed]
- Mueller, C.; Fang, Y.-H.D.; Jones, C.; McConathy, J.E.; Raman, F.; Lapi, S.E.; Younger, J.W. Evidence of Neuroinflammation in Fibromyalgia Syndrome: A [18F]DPA-714 Positron Emission Tomography Study. Pain 2023, 164, 2285–2295. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.-H.; Kim, H.; Seo, S.; Lee, D.; Lee, J.-Y.; Moon, J.Y.; Cheon, G.J.; Choi, S.-H.; Kang, D.-H. Central Metabolites and Peripheral Parameters Associated Neuroinflammation in Fibromyalgia Patients: A Preliminary Study. Medicine 2023, 102, e33305. [Google Scholar] [CrossRef]
- Mawla, I.; Huang, Z.; Kaplan, C.M.; Ichesco, E.; Waller, N.; Larkin, T.E.; Zöllner, H.J.; Edden, R.A.E.; Harte, S.E.; Clauw, D.J.; et al. Large-Scale Momentary Brain Co-Activation Patterns Are Associated with Hyperalgesia and Mediate Focal Neurochemistry and Cross-Network Functional Connectivity in Fibromyalgia. Pain 2023, 164, 2737–2748. [Google Scholar] [CrossRef]
- Ioachim, G.; Warren, H.J.M.; Powers, J.M.; Staud, R.; Pukall, C.F.; Stroman, P.W. Altered Pain in the Brainstem and Spinal Cord of Fibromyalgia Patients During the Anticipation and Experience of Experimental Pain. Front. Neurol. 2022, 13, 862976. [Google Scholar] [CrossRef]
- Seo, S.; Jung, Y.-H.; Lee, D.; Lee, W.J.; Jang, J.H.; Lee, J.-Y.; Choi, S.-H.; Moon, J.Y.; Lee, J.S.; Cheon, G.J.; et al. Abnormal Neuroinflammation in Fibromyalgia and CRPS Using [11C]-(R)-PK11195 PET. PLoS ONE 2021, 16, e0246152. [Google Scholar] [CrossRef]
- Larkin, T.E.; Kaplan, C.M.; Schrepf, A.; Ichesco, E.; Mawla, I.; Harte, S.E.; Mashour, G.A.; Clauw, D.J.; Harris, R.E. Altered Network Architecture of Functional Brain Communities in Chronic Nociplastic Pain. NeuroImage 2021, 226, 117504. [Google Scholar] [CrossRef]
- Ji, R.-R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018, 129, 343–366. [Google Scholar] [CrossRef]
- Bäckryd, E.; Tanum, L.; Lind, A.-L.; Larsson, A.; Gordh, T. Evidence of Both Systemic Inflammation and Neuroinflammation in Fibromyalgia Patients, as Assessed by a Multiplex Protein Panel Applied to the Cerebrospinal Fluid and to Plasma. J. Pain Res. 2017, 10, 515–525. [Google Scholar] [CrossRef]
- Clauw, D.; Sarzi-Puttini, P.; Pellegrino, G.; Shoenfeld, Y. Is Fibromyalgia an Autoimmune Disorder? Autoimmun. Rev. 2024, 23, 103424. [Google Scholar] [CrossRef]
- Li, C.; Sun, M.; Tian, S. Research Hotspots and Effectiveness of Transcranial Magnetic Stimulation in Pain: A Bibliometric Analysis. Front. Hum. Neurosci. 2022, 16, 887246. [Google Scholar] [CrossRef]
- Cardinal, T.M.; Antunes, L.C.; Brietzke, A.P.; Parizotti, C.S.; Carvalho, F.; De Souza, A.; da Silva Torres, I.L.; Fregni, F.; Caumo, W. Differential Neuroplastic Changes in Fibromyalgia and Depression Indexed by Up-Regulation of Motor Cortex Inhibition and Disinhibition of the Descending Pain System: An Exploratory Study. Front. Hum. Neurosci. 2019, 13, 138. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.P.; André-Obadia, N.; Antal, A.; Ayache, S.S.; Baeken, C.; Benninger, D.H.; Cantello, R.M.; Cincotta, M.; de Carvalho, M.; De Ridder, D.; et al. Evidence-Based Guidelines on the Therapeutic Use of Repetitive Transcranial Magnetic Stimulation (rTMS). Clin. Neurophysiol. 2014, 125, 2150–2206. [Google Scholar] [CrossRef] [PubMed]
- Hodkinson, D.J.; Bungert, A.; Bowtell, R.; Jackson, S.R.; Jung, J. Operculo-Insular and Anterior Cingulate Plasticity Induced by Transcranial Magnetic Stimulation in the Human Motor Cortex: A Dynamic Casual Modeling Study. J. Neurophysiol. 2021, 125, 1180–1190. [Google Scholar] [CrossRef]
- Tikka, S.K.; Siddiqui, M.A.; Garg, S.; Pattojoshi, A.; Gautam, M. Clinical Practice Guidelines for the Therapeutic Use of Repetitive Transcranial Magnetic Stimulation in Neuropsychiatric Disorders. Indian J. Psychiatry 2023, 65, 270–288. [Google Scholar] [CrossRef]
- Jung, J.; Bungert, A.; Bowtell, R.; Jackson, S.R. Modulating Brain Networks with Transcranial Magnetic Stimulation Over the Primary Motor Cortex: A Concurrent TMS/fMRI Study. Front. Hum. Neurosci. 2020, 14, 31. [Google Scholar] [CrossRef]
- Zhu, P.A.; Xie, J.Y.; Liu, H.; Wen, Y.; Shao, Y.J.; Bao, X. Efficacy of High-Frequency Repetitive Transcranial Magnetic Stimulation at 10 Hz in Fibromyalgia: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2023, 104, 151–159. [Google Scholar] [CrossRef]
- Cuenca-Martínez, F.; Sempere-Rubio, N.; Mollà-Casanova, S.; Muñoz-Gómez, E.; Fernández-Carnero, J.; Sánchez-Sabater, A.; Suso-Martí, L. Effects of Repetitive-Transcranial Magnetic Stimulation (rTMS) in Fibromyalgia Syndrome: An Umbrella and Mapping Review. Brain Sci. 2023, 13, 1059. [Google Scholar] [CrossRef]
- Kim, H.; Jung, J.; Park, S.; Joo, Y.; Lee, S.; Lee, S. Effects of Repetitive Transcranial Magnetic Stimulation on the Primary Motor Cortex of Individuals with Fibromyalgia: A Systematic Review and Meta-Analysis. Brain Sci. 2022, 12, 570. [Google Scholar] [CrossRef] [PubMed]
- Argaman, Y.; Granovsky, Y.; Sprecher, E.; Sinai, A.; Yarnitsky, D.; Weissman-Fogel, I. Clinical Effects of Repetitive Transcranial Magnetic Stimulation of the Motor Cortex Are Associated with Changes in Resting-State Functional Connectivity in Patients With Fibromyalgia Syndrome. J. Pain 2022, 23, 595–615. [Google Scholar] [CrossRef] [PubMed]
- Tzabazis, A.; Aparici, C.M.; Rowbotham, M.C.; Schneider, M.B.; Etkin, A.; Yeomans, D.C. Shaped Magnetic Field Pulses by Multi-Coil Repetitive Transcranial Magnetic Stimulation (rTMS) Differentially Modulate Anterior Cingulate Cortex Responses and Pain in Volunteers and Fibromyalgia Patients. Mol. Pain 2013, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Tilbor, E.; Hadar, A.; Portnoy, V.; Ganor, O.; Braw, Y.; Amital, H.; Ablin, J.; Dror, C.; Bloch, Y.; Nitzan, U. TMS in Combination with a Pain Directed Intervention for the Treatment of Fibromyalgia—A Randomized, Double-Blind, Sham-Controlled Trial. J. Psychiatr. Res. 2024, 170, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Maestú, C.; Blanco, M.; Nevado, A.; Romero, J.; Rodríguez-Rubio, P.; Galindo, J.; Bautista Lorite, J.; de las Morenas, F.; Fernández-Argüelles, P. Reduction of Pain Thresholds in Fibromyalgia after Very Low-Intensity Magnetic Stimulation: A Double-Blinded, Randomized Placebo-Controlled Clinical Trial. Pain Res. Manag. 2013, 18, e101–e106. [Google Scholar] [CrossRef] [PubMed]
- Marlow, N.M.; Bonilha, H.S.; Short, E.B. Efficacy of Transcranial Direct Current Stimulation and Repetitive Transcranial Magnetic Stimulation for Treating Fibromyalgia Syndrome: A Systematic Review. Pain Pract. 2013, 13, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Short, E.B.; Borckardt, J.J.; Anderson, B.S.; Frohman, H.; Beam, W.; Reeves, S.T.; George, M.S. Ten Sessions of Adjunctive Left Prefrontal rTMS Significantly Reduces Fibromyalgia Pain: A Randomized, Controlled Pilot Study. Pain 2011, 152, 2477–2484. [Google Scholar] [CrossRef]
- Carretero, B.; Martín, M.J.; Juan, A.; Pradana, M.L.; Martín, B.; Carral, M.; Jimeno, T.; Pareja, A.; Montoya, P.; Aguirre, I.; et al. Low-Frequency Transcranial Magnetic Stimulation in Patients with Fibromyalgia and Major Depression. Pain Med. 2009, 10, 748–753. [Google Scholar] [CrossRef]
- Mhalla, A.; Baudic, S.; de Andrade, D.C.; Gautron, M.; Perrot, S.; Teixeira, M.J.; Attal, N.; Bouhassira, D. Long-Term Maintenance of the Analgesic Effects of Transcranial Magnetic Stimulation in Fibromyalgia. Pain 2011, 152, 1478–1485. [Google Scholar] [CrossRef]
- Passard, A.; Attal, N.; Benadhira, R.; Brasseur, L.; Saba, G.; Sichere, P.; Perrot, S.; Januel, D.; Bouhassira, D. Effects of Unilateral Repetitive Transcranial Magnetic Stimulation of the Motor Cortex on Chronic Widespread Pain in Fibromyalgia. Brain J. Neurol. 2007, 130 Pt 10, 2661–2670. [Google Scholar] [CrossRef] [PubMed]
- Knijnik, L.M.; Dussán-Sarria, J.A.; Rozisky, J.R.; Torres, I.L.S.; Brunoni, A.R.; Fregni, F.; Caumo, W. Repetitive Transcranial Magnetic Stimulation for Fibromyalgia: Systematic Review and Meta-Analysis. Pain Pract. 2016, 16, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Boyer, L.; Dousset, A.; Roussel, P.; Dossetto, N.; Cammilleri, S.; Piano, V.; Khalfa, S.; Mundler, O.; Donnet, A.; Guedj, E. rTMS in Fibromyalgia: A Randomized Trial Evaluating QoL and Its Brain Metabolic Substrate. Neurology 2014, 82, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Kim, D.Y.; Chun, M.H.; Kim, Y.G. The Effect of Repetitive Transcranial Magnetic Stimulation on Fibromyalgia: A Randomized Sham-Controlled Trial with 1-Mo Follow-Up. Am. J. Phys. Med. Rehabil. 2012, 91, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Tekin, A.; Özdil, E.; Güleken, M.D.; İlişer, R.; Bakım, B.; Öncü, J.; Çevik, M.; Kuran, B. Efficacy of High Frequency [10 Hz] Repetitive Transcranial Magnetic Stimulation of the Primary Motor Cortex in Patients with Fibromyalgia Syndrome: A Randomized, Double Blind, Sham-Controlled Trial. J. Musculoskelet. Pain 2014, 22, 20–26. [Google Scholar] [CrossRef]
- Avery, D.H.; Zarkowski, P.; Krashin, D.; Rho, W.-K.; Wajdik, C.; Joesch, J.M.; Haynor, D.R.; Buchwald, D.; Roy-Byrne, P. Transcranial Magnetic Stimulation in the Treatment of Chronic Widespread Pain: A Randomized Controlled Study. J. ECT 2015, 31, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Saltychev, M.; Laimi, K. Effectiveness of Repetitive Transcranial Magnetic Stimulation in Patients with Fibromyalgia: A Meta-Analysis. Int. J. Rehabil. Res. 2017, 40, 11–18. [Google Scholar] [CrossRef]
- Hou, W.H.; Wang, T.Y.; Kang, J.H. The Effects of Add-on Non-Invasive Brain Stimulation in Fibromyalgia: A Meta-Analysis and Meta-Regression of Randomized Controlled Trials. Rheumatology 2016, 55, 1507–1517. [Google Scholar] [CrossRef]
- Yagci, I.; Agirman, M.; Ozturk, D.; Eren, B. Is the Transcranial Magnetic Stimulation an Adjunctive Treatment in Fibromyalgia Patients? Turk. J. Phys. Med. Rehabil. 2014, 60, 206–211. [Google Scholar] [CrossRef]
- Baudic, S.; Attal, N.; Mhalla, A.; Ciampi de Andrade, D.; Perrot, S.; Bouhassira, D. Unilateral Repetitive Transcranial Magnetic Stimulation of the Motor Cortex Does Not Affect Cognition in Patients with Fibromyalgia. J. Psychiatr. Res. 2013, 47, 72–77. [Google Scholar] [CrossRef]
- Conde-Antón, Á.; Hernando-Garijo, I.; Jiménez-Del-Barrio, S.; Mingo-Gómez, M.T.; Medrano-de-la-Fuente, R.; Ceballos-Laita, L. Effects of Transcranial Direct Current Stimulation and Transcranial Magnetic Stimulation in Patients with Fibromyalgia. A Systematic Review. Neurologia 2023, 38, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Fitzgibbon, B.M.; Hoy, K.E.; Knox, L.A.; Guymer, E.K.; Littlejohn, G.; Elliot, D.; Wambeek, L.E.; McQueen, S.; Elford, K.A.; Lee, S.J.; et al. Evidence for the Improvement of Fatigue in Fibromyalgia: A 4-Week Left Dorsolateral Prefrontal Cortex Repetitive Transcranial Magnetic Stimulation Randomized-Controlled Trial. Eur. J. Pain 2018, 22, 1255–1267. [Google Scholar] [CrossRef] [PubMed]
- Altas, E.U.; Askin, A.; Beşiroğlu, L.; Tosun, A. Is High-Frequency Repetitive Transcranial Magnetic Stimulation of the Left Primary Motor Cortex Superior to the Stimulation of the Left Dorsolateral Prefrontal Cortex in Fibromyalgia Syndrome? Somatosens. Mot. Res. 2019, 36, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-M.; Wang, S.-J.; Su, T.-P.; Chen, M.-H.; Hsieh, J.-C.; Ho, S.-T.; Bai, Y.-M.; Kao, N.-T.; Chang, W.-H.; Li, C.-T. Analgesic Effects of Repetitive Transcranial Magnetic Stimulation on Modified 2010 Criteria-Diagnosed Fibromyalgia: Pilot Study. Psychiatry Clin. Neurosci. 2019, 73, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Bilir, I.; Askin, A.; Sengul, I.; Tosun, A. Effects of High-Frequency Neuronavigated Repetitive Transcranial Magnetic Stimulation in Fibromyalgia Syndrome: A Double-Blinded, Randomized Controlled Study. Am. J. Phys. Med. Rehabil. 2021, 100, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Guinot, M.; Maindet, C.; Hodaj, H.; Hodaj, E.; Bachasson, D.; Baillieul, S.; Cracowski, J.-L.; Launois, S. Effects of Repetitive Transcranial Magnetic Stimulation and Multicomponent Therapy in Patients with Fibromyalgia: A Randomized Controlled Trial. Arthritis Care Res. 2021, 73, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, S.; Mattoo, B.; Kumar, U.; Bhatia, R. Repetitive Transcranial Magnetic Stimulation of the Prefrontal Cortex for Fibromyalgia Syndrome: A Randomised Controlled Trial with 6-Months Follow Up. Adv. Rheumatol. 2020, 60, 34. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Alventosa, R.; Inglés, M.; Cortés-Amador, S.; Gimeno-Mallench, L.; Sempere-Rubio, N.; Serra-Añó, P. Effectiveness of High-Frequency Transcranial Magnetic Stimulation and Physical Exercise in Women with Fibromyalgia: A Randomized Controlled Trial. Phys. Ther. 2021, 101, pzab159. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.C.; Guo, Y.H.; Hsieh, P.C.; Lin, Y.C. Efficacy of Repetitive Transcranial Magnetic Stimulation in Fibromyalgia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2021, 10, 4669. [Google Scholar] [CrossRef]
- Choo, Y.J.; Kwak, S.G.; Chang, M.C. Effectiveness of Repetitive Transcranial Magnetic Stimulation on Managing Fibromyalgia: A Systematic Meta-Analysis. Pain Med. 2022, 23, 1272–1282. [Google Scholar] [CrossRef]
- Toh, E.Y.J.; Ng, J.S.P.; McIntyre, R.S.; Tran, B.X.; Ho, R.C.; Ho, C.S.H.; Tam, W.W.S. Repetitive Transcranial Magnetic Stimulation for Fibromyalgia: An Updated Systematic Review and Meta-Analysis. Psychosom. Med. 2022, 84, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Fang, L.; Zhang, J.; Liu, Y.; Wang, G.; Qi, R. Repetitive Transcranial Magnetic Stimulation for Patients with Fibromyalgia: A Systematic Review with Meta-Analysis. Pain Med. 2022, 23, 499–514. [Google Scholar] [CrossRef] [PubMed]
- Molero-Chamizo, A.; Nitsche, M.A.; Barroso, R.T.A.; Bailén, J.R.A.; Palomeque, J.C.G.; Rivera-Urbina, G.N. Non-Invasive Electric and Magnetic Brain Stimulation for the Treatment of Fibromyalgia. Biomedicines 2023, 11, 954. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-C.; Chen, W.-Y.; Su, M.-I.; Tu, Y.-K.; Chiu, C.-C.; Huang, W.-L. Efficacy of Neuromodulation on the Treatment of Fibromyalgia: A Network Meta-Analysis. Gen. Hosp. Psychiatry 2024, 87, 103–123. [Google Scholar] [CrossRef] [PubMed]
- Forogh, B.; Haqiqatshenas, H.; Ahadi, T.; Ebadi, S.; Alishahi, V.; Sajadi, S. Repetitive Transcranial Magnetic Stimulation (rTMS) versus Transcranial Direct Current Stimulation (tDCS) in the Management of Patients with Fibromyalgia: A Randomized Controlled Trial. Neurophysiol. Clin. 2021, 51, 339–347. [Google Scholar] [CrossRef]
- Elghany, S.E.A.; Al Ashkar, D.S.; El-Barbary, A.M.; El Khouly, R.M.; Aboelhawa, M.A.; Nada, D.W.; Darwish, N.F.; Hussein, M.S.; El Rageh, S.; Abo-Zaid, M.H.; et al. Regenerative Injection Therapy and Repetitive Transcranial Magnetic Stimulation in Primary Fibromyalgia Treatment: A Comparative Study. J. Back Musculoskelet. Rehabil. 2019, 32, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, A.; Vergne-Salle, P.; Dumont, J.-C.; Labrunie, A.; Balestrat, P.; Calvet, B.; Girard, M. Effectiveness of Repetitive Transcranial Magnetic Stimulation on Fibromyalgia Patients Responding to a First Repetitive Transcranial Magnetic Stimulation Induction Course After Six Months of Maintenance Treatment: A Randomized Pilot-Controlled Study. Neuromodul. J. Int. Neuromodul. Soc. 2022, 25, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Badr, M.Y.; Ahmed, G.K.; Amer, R.A.; Aref, H.M.; Salem, R.M.; Elmokadem, H.A.; Khedr, E.M. Impact of Repetitive Transcranial Magnetic Stimulation on Cognitive and Psychiatric Dysfunction in Patients with Fibromyalgia: A Double-Blinded, Randomized Clinical Trial. Brain Sci. 2024, 14, 416. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, V.K.; Kumar, A.; Nanda, S.; Chaudhary, S.; Sharma, R.; Kumar, U.; Kumaran, S.S.; Bhatia, R. Effect of Neuronavigated Repetitive Transcranial Magnetic Stimulation on Pain, Cognition and Cortical Excitability in Fibromyalgia Syndrome. Neurol. Sci. 2024, 45, 3421–3433. [Google Scholar] [CrossRef] [PubMed]
- Kankane, A.K.; Pandey, A.K.; Patil, M.R.; Agarwal, A. Role of Repetitive Transcranial Magnetic Stimulation in Treatment of Fibromyalgia: A Randomized Controlled Trial. Ann. Indian Acad. Neurol. 2024, 27, 158. [Google Scholar] [CrossRef]
- Ablin, J.N.; Amital, H.; Ehrenfeld, M.; Aloush, V.; Elkayam, O.; Langevitz, P.; Mevorach, D.; Mader, R.; Sachar, T.; Amital, D.; et al. Guidelines for the diagnosis and treatment of the fibromyalgia syndrome. Harefuah 2013, 152, 742–747. [Google Scholar] [PubMed]
- Fitzcharles, M.-A.M.; Ste-Marie BA, P.A.; Goldenberg, D.L.; Pereira, J.X.; Abbey, S.; Choinière, M.; Ko, G.; Moulin, D.E.; Panopalis, P.; Proulx, J.; et al. 2012 Canadian Guidelines for the Diagnosis and Management of Fibromyalgia Syndrome: Executive Summary. Pain Res. Manag. 2013, 18, 119–126. [Google Scholar] [CrossRef]
- Sommer, C.; Häuser, W.; Alten, R.; Petzke, F.; Späth, M.; Tölle, T.; Uçeyler, N.; Winkelmann, A.; Winter, E.; Bär, K.J. Drug therapy of fibromyalgia syndrome. Systematic review, meta-analysis and guideline. Schmerz 2012, 26, 297–310. [Google Scholar] [CrossRef]
- Macfarlane, G.J.; Kronisch, C.; Atzeni, F.; Häuser, W.; Choy, E.H.; Amris, K.; Branco, J.; Dincer, F.; Leino-Arjas, P.; Longley, K.; et al. EULAR Recommendations for Management of Fibromyalgia. Ann. Rheum. Dis. 2017, 76, e54. [Google Scholar] [CrossRef] [PubMed]
- Kia, S.; Choy, E. Update on Treatment Guideline in Fibromyalgia Syndrome with Focus on Pharmacology. Biomedicines 2017, 5, 20. [Google Scholar] [CrossRef]
- Ariani, A.; Bazzichi, L.; Sarzi-Puttini, P.; Salaffi, F.; Manara, M.; Prevete, I.; Bortoluzzi, A.; Carrara, G.; Scirè, C.A.; Ughi, N.; et al. The Italian Society for Rheumatology Clinical Practice Guidelines for the Diagnosis and Management of Fibromyalgia Best Practices Based on Current Scientific Evidence. Reumatismo 2021, 73, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Kundakci, B.; Hall, M.; Atzeni, F.; Branco, J.; Buskila, D.; Clauw, D.; Crofford, L.J.; Fitzcharles, M.-A.; Georgopoulos, V.; Gerwin, R.D.; et al. International, Multidisciplinary Delphi Consensus Recommendations on Non-Pharmacological Interventions for Fibromyalgia. Semin. Arthritis Rheum. 2022, 57, 152101. [Google Scholar] [CrossRef]
- Sandström, A.; Ellerbrock, I.; Löfgren, M.; Altawil, R.; Bileviciute-Ljungar, I.; Lampa, J.; Kosek, E. Distinct Aberrations in Cerebral Pain Processing Differentiating Patients with Fibromyalgia from Patients with Rheumatoid Arthritis. Pain 2022, 163, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, C.M.; Schrepf, A.; Ichesco, E.; Larkin, T.; Harte, S.E.; Harris, R.E.; Murray, A.D.; Waiter, G.D.; Clauw, D.J.; Basu, N. Association of Inflammation with Pronociceptive Brain Connections in Rheumatoid Arthritis Patients with Concomitant Fibromyalgia. Arthritis Rheumatol. 2020, 72, 41–46. [Google Scholar] [CrossRef]
- Gomez-Arguelles, J.M.; Travesi, B.; Maestu, C. Modification in Pittsburgh Sleep Quality Index after low intensity transcranial magnetic stimulation in patients with fibromyalgia. Clin. Exp. Rheumatol. 2022, 40, 1159–1165. [Google Scholar] [CrossRef]
- Pareja, J.L.; Cáceres, O.; Zambrano, P.; Martín, F.; Berral, F.J.; Blanco, M. Treatment with low-intensity transcranial magnetic stimulation in women with fibromyalgia improves diagnostic variables up to 6 months after treatment completion. Clin. Exp. Rheumatol. 2022, 40, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
Authors (by Year) | No. of RCTs | Conclusion |
---|---|---|
Marlow et al. 2012 [47] | 4 | Pain reduction and improved quality of life/general health (measured by FIQ) were observed with HFrTMS over the left M1, but there were no changes in depressive symptoms. The effects of stimulating the right or left DLPFC on these outcomes remain inconclusive. |
Knijnik et al. 2015 [52] | 5 | In comparison with sham stimulation, rTMS demonstrated a superior effect on the quality of life in patients with FMS 1 month after starting therapy, but the brain region was not specified. These statistically significant changes were not found in depression or pain intensity, irrespective of the target area (left M1 or left or right DLPFC). |
Hou et al. 2016 [58] | 11 | The general conclusion was that rTMS could have an influence on multiple domains in FMS patients, irrespective of the target area. rTMS over the left M1 may better reduce pain, and the stimulation of the DLPFC may improve depression. No clear conclusion can be obtained from this paper since both rTMS and transcranial direct current stimulation (tDCS) were evaluated. |
Saltychev and Laimi 2016 [57] | 8 | The meta-analysis focused solely on the following measure: is there a change in pain severity? It provides moderate evidence suggesting that rTMS is not superior to sham treatment in alleviating pain severity in fibromyalgia patients, regardless of the targeted brain area. However, its impact on other outcomes was not assessed. |
Conde-Antón et al. 2020 [61] | 8 | The findings indicated that HFrTMS over the left M1 significantly impacted pain intensity and overall health in FMS patients, though it did not affect depressive and anxiety symptoms. Additionally, stimulation of the DLPFC showed no significant effects on any of the measured outcomes. |
Su et al. 2021 [69] | 18 | Subgroup analysis (by stimulation site, M1 or DLPFC) showed that rTMS over the M1 area was effective in improving quality of life (FIQ/FIQR score), reducing pain intensity (BPI interference subscale score and MPQ score), and improving depression (BDI score), and rTMS over the DLPFC reduced the FIQ/FIQR score, pain intensity (MPQ score, number of tender points), and depressive symptomatology (HDRS score). Anxiety was improved (evidenced by the HADS scores), and there was no influence on fatigue (FSS score). However, no significant differences were detected between subgroups for any outcomes as the researchers did not specify the target area for each outcome. |
Kim et al. 2021 [42] | 5 | The results showed statistically significant results regarding general health but not pain intensity and depressive symptoms in patients with FMS. Only RCTs with M1 as the target area were evaluated. |
Choo et al. 2022 [70] | 10 | The following outcomes were evaluated: pain, depression, anxiety, and general health. HFrTMS over the M1 had a positive pain-reducing effect immediately, and the patient’s general health improved after 5–12 weeks. However, DLPFC stimulation was not effective in controlling any of the fibromyalgia symptoms. |
Sun et al. 2022 [72] | 14 | The results showed that rTMS relieved pain and enhanced the general health of patients with FMS; however, on the basis of current reports, it did not improve anxiety and depression. Subgroup analysis (HFrTMS over the M1, LFrTMS over the M1, HFrTMS over the DLPFC, and LFrTMS over the DLPFC) showed that LFrTMS in the DLPFC region is the optimal protocol for relieving pain. |
Toh et al. 2022 [71] | 11 | rTMS is more effective than sham in improving pain and quality of life, but it did not demonstrate reductions in depression or anxiety in patients with FMS. Subgroup analysis of the stimulation site showed that M1 stimulation was more effective than sham stimulation in improving quality of life and pain reduction compared to DLPFC stimulation. |
Chamizo et al. 2023 [73] | 7 | The pain-reducing capacity of rTMS when applied over the left M1 was accompanied by an improvement in quality of life. Targeting the left DLPFC yielded moderate impacts on pain intensity, fatigue, and depression. Stimulating the dACC led to decreased pain intensity. |
Zhu et al. 2023 [40] | 7 | HFrTMS (10 Hz) had significant effects on analgesia and improved general health in patients with FMS but did not improve depression. A subgroup analysis of pain reduction based on stimulation at the M1 and DLPFC showed no significant difference. |
Cheng et al. 2024 [74] | 13 | HFrTMS over the M1 led to significant pain reduction and improvement in QoL. |
Martinez et al. 2023 [41] | 11 MA and SR | The results showed that HFrTMS applied on the M1 showed some effect on pain intensity, with a limited quality of evidence. rTMS was shown to be effective in improving general health, with a moderate quality of evidence (irrespective of target area). Finally, rTMS was not shown to be effective in managing depressive symptoms and anxiety, with a limited to moderate quality of evidence. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velickovic, Z.; Radunovic, G. Repetitive Transcranial Magnetic Stimulation in Fibromyalgia: Exploring the Necessity of Neuronavigation for Targeting New Brain Regions. J. Pers. Med. 2024, 14, 662. https://doi.org/10.3390/jpm14060662
Velickovic Z, Radunovic G. Repetitive Transcranial Magnetic Stimulation in Fibromyalgia: Exploring the Necessity of Neuronavigation for Targeting New Brain Regions. Journal of Personalized Medicine. 2024; 14(6):662. https://doi.org/10.3390/jpm14060662
Chicago/Turabian StyleVelickovic, Zoran, and Goran Radunovic. 2024. "Repetitive Transcranial Magnetic Stimulation in Fibromyalgia: Exploring the Necessity of Neuronavigation for Targeting New Brain Regions" Journal of Personalized Medicine 14, no. 6: 662. https://doi.org/10.3390/jpm14060662
APA StyleVelickovic, Z., & Radunovic, G. (2024). Repetitive Transcranial Magnetic Stimulation in Fibromyalgia: Exploring the Necessity of Neuronavigation for Targeting New Brain Regions. Journal of Personalized Medicine, 14(6), 662. https://doi.org/10.3390/jpm14060662