Diagnosis, Prevention, and Management of Fetal Growth Restriction (FGR)
Abstract
:1. Introduction
2. Pathophysiology
2.1. Insufficient Trophoblastic Penetration
2.2. Immune Reactions
2.3. Biochemical Factors
2.4. Apoptotic Pathways
3. Categories of Fetal Growth Restriction
4. Causes of Fetal Growth Restriction
4.1. Maternal Factors
4.1.1. Maternal Age
4.1.2. Race and Socioeconomic Class
4.1.3. Behavioral and Environmental Factor
4.1.4. Assisted Reproductive Techniques
4.1.5. Medical History
4.2. Factors Related to the Placenta
4.3. Genetic Factors
5. Prenatal Diagnosis of Fetal Growth Restriction
6. Monitoring Fetal Growth Restriction
7. Prophylactic Administration of Corticosteroids and Magnesium Sulfate
8. Delivery Processing Time
9. Effects of Fetal Growth Restriction
10. Prevention of Fetal Growth Restriction
11. Management
11.1. Monitoring the Fetal Well-Being
11.2. Doppler
11.3. Management Based on Gestational Age and Doppler Findings
- <24 Weeks:
- ○
- Detailed fetal anatomy scan.
- ○
- Consider referral to maternal–fetal medicine specialist.
- ○
- Discuss prognosis with parents.
- 24–32 Weeks:
- ○
- Normal Doppler: Continue monitoring with ultrasounds every 2 weeks.
- ○
- Abnormal Doppler:
- ○
- Absent or reversed end-diastolic flow (AREDF) in umbilical artery: Monitor twice weekly with NST/BPP and Doppler studies.
- ○
- Middle cerebral artery (MCA) Doppler: Consider delivery if MCA pulsatility index (PI) < 5th percentile.
- 32–37 Weeks:
- ○
- Normal Doppler: Continue monitoring with ultrasounds every 2 weeks.
- ○
- Abnormal Doppler:
- ○
- Absent or reversed end-diastolic flow: Consider delivery at 32–34 weeks.
- ○
- Middle cerebral artery Doppler: Consider delivery if MCA PI < 5th percentile.
- >37 Weeks:
- ○
- Normal or Abnormal Doppler: Consider delivery if fetal growth has plateaued or there is evidence of fetal compromise.
- Interventions
- ○
- Maternal Interventions:
- ○
- Recommend cessation of smoking and control of maternal diseases (e.g., hypertension and diabetes).
- ○
- Consider aspirin for women at high risk of preeclampsia.
- Fetal Interventions:
- ○
- Antenatal corticosteroids for lung maturity if delivery before 34 weeks is anticipated.
- ○
- Magnesium sulfate for neuroprotection if delivery before 32 weeks is anticipated.
- Delivery Planning
- ○
- Timing of Delivery: Individualize based on Doppler findings, fetal condition, and gestational age.
- ○
- Mode of Delivery:
- ▪
- Vaginal delivery preferred if no contraindications.
- ▪
- Consider cesarean delivery for severe FGR with abnormal Doppler findings or if fetal distress is present.
12. The Role of Cerebroplacental Ratio
13. Future Therapeutic Targets of Fetal Growth Restriction
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dapkekar, P.; Bhalerao, A.; Kawathalkar, A.; Vijay, N. Risk Factors Associated With Intrauterine Growth Restriction: A Case-Control Study. Cureus 2023, 15, e40178. [Google Scholar] [CrossRef]
- Covarrubias, A.; Aguilera-Olguín, M.; Carrasco-Wong, I.; Pardo, F.; Díaz-Astudillo, P.; Martín, S.S. Feto-placental Unit: From Development to Function. Adv. Exp. Med. Biol. 2023, 1428, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Cindrova-Davies, T.; Sferruzzi-Perri, A.N. Human placental development and function. Semin. Cell Dev. Biol. 2022, 131, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Wu, Z.; Huang, Z.; Hao, X.; Wang, S.; Deng, J.; Yin, Y.; Tan, C. Nox2 impairs VEGF-A-induced angiogenesis in placenta via mitochondrial ROS-STAT3 pathway. Redox Biol. 2021, 45, 102051. [Google Scholar] [CrossRef]
- Kang, M.; Blenkiron, C.; Chamley, L.W. The biodistribution of placental and fetal extracellular vesicles during pregnancy following placentation. Clin. Sci. 2023, 137, 385–399. [Google Scholar] [CrossRef] [PubMed]
- Yoshizato, T.; Satoh, S. Morphological and functional evaluation of normal and abnormal fetal growth by ultrasonography. J. Med. Ultrason. 2009, 36, 105–117. [Google Scholar] [CrossRef]
- Zhang, J.; Merialdi, M.; Platt, L.D.; Kramer, M.S. Defining Normal and Abnormal Fetal Growth: Promises and Challenges. Am. J. Obstet. Gynecol. 2010, 202, 522–528. [Google Scholar] [CrossRef]
- Bulmer, J.N.; Innes, B.A.; Robson, S.C.; Lash, G.E. Transient loss of endothelial cells in human spiral artery remodelling during early pregnancy: Challenging the dogma. Placenta 2020, 101, 230–233. [Google Scholar] [CrossRef]
- Schrey-Petersen, S.; Stepan, H. Anti-angiogenesis and Preeclampsia in 2016. Curr. Hypertens. Rep. 2017, 19, 6. [Google Scholar] [CrossRef]
- Grzeszczak, K.; Łanocha-Arendarczyk, N.; Malinowski, W.; Ziętek, P.; Kosik-Bogacka, D. Oxidative Stress in Pregnancy. Biomolecules 2023, 13, 1768. [Google Scholar] [CrossRef] [PubMed]
- Barak, O.; Lovelace, T.; Chu, T.; Cao, Z.; Sadovsky, E.; Mouillet, J.F.; Ouyang, Y.; Benos, P.V.; Sadovsky, Y. Defining trophoblast injury patterns in the transcriptomes of dysfunctional placentas. Placenta 2023, 143, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Crocker, I.P.; Tansinda, D.M.; Baker, P.N. Altered cell kinetics in cultured placental villous explants in pregnancies complicated by pre-eclampsia and intrauterine growth restriction. J. Pathol. 2004, 204, 11–18. [Google Scholar] [CrossRef]
- Nikuei, P.; Rajaei, M.; Roozbeh, N.; Mohseni, F.; Poordarvishi, F.; Azad, M.; Haidari, S. Diagnostic accuracy of sFlt1/PlGF ratio as a marker for preeclampsia. BMC Pregnancy Childbirth 2020, 20, 80. [Google Scholar] [CrossRef]
- Heazell, A.E.; Crocker, I.P. Live and let die—Regulation of villous trophoblast apoptosis in normal and abnormal pregnancies. Placenta 2008, 29, 772–783. [Google Scholar] [CrossRef]
- Albrecht, E.D.; Pepe, G.J. Regulation of Uterine Spiral Artery Remodeling: A Review. Reprod. Sci. 2020, 27, 1932–1942. [Google Scholar] [CrossRef]
- Šantić, K.; Biljan, B.; Kos, M.; Serdarušić, I.; Rajc, J.; Kardum, D. Placental Findings in Infants Gestational Age < 34 Weeks and Impact on Short-Term Outcomes. J. Mother Child 2023, 27, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Guettler, J.; Forstner, D.; Gauster, M. Maternal platelets at the first trimester maternal-placental interface—Small players with great impact on placenta development. Placenta 2022, 125, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Oyen, M.L.; Burton, G.J. Villous Tree Model with Active Contractions for Estimating Blood Flow Conditions in the Human Placenta. Open Biomed. Eng. J. 2017, 11, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, B.; Frank, H.-G.; Kingdom, J.C.P.; Reister, F.; Kaufmann, P. Villous cytotrophoblast regulation of the syncytial apoptotic cascade in the human placenta. Histochem. Cell Biol. 1998, 110, 495–508. [Google Scholar] [CrossRef]
- Chang, K.-J.; Seow, K.-M.; Chen, K.-H. Preeclampsia: Recent Advances in Predicting, Preventing, and Managing the Maternal and Fetal Life-Threatening Condition. Int. J. Environ. Res. Public Health 2023, 20, 2994. [Google Scholar] [CrossRef]
- Benirschke, K.; Kaufmann, P.; Baergen, R. Pathology of the Human; Placenta; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Das, M.; Xu, B. Phosphatidylserine efflux and intercellular fusion in a BeWo model of human villous cytotrophoblast. Placenta 2004, 25, 396–407. [Google Scholar] [CrossRef]
- Huppertz, B.; Kingdom, J.C. Apoptosis in the trophoblast–role of apoptosis in placental morphogenesis. J. Soc. Gynecol. Investig. 2004, 11, 353–362. [Google Scholar] [CrossRef]
- Alison, M.R.; Sarraf, C.E. Apoptosis: A gene-directed programme of cell death. J. R. Coll. Physicians Lond. 1992, 26, 25–35. [Google Scholar] [PubMed]
- Chourdakis, E.; Oikonomou, N.; Fouzas, S.; Hahalis, G.; Karatza, A.A. Preeclampsia Emerging as a Risk Factor of Cardiovascular Disease in Women. High Blood Press. Cardiovasc. Prev. 2021, 28, 103–114. [Google Scholar] [CrossRef]
- Mayhew, T.; Leach, L.; McGee, R.; Ismail, W.W.; Myklebust, R.; Lammiman, M. Proliferation, differentiation and apoptosis in villous trophoblast at 13–41 weeks of gestation (including observations on annulate lamellae and nuclear pore complexes). Placenta 1999, 20, 407–422. [Google Scholar] [CrossRef]
- Fox, R.; Kitt, J.; Leeson, P.; Aye, C.Y.L.; Lewandowski, A.J. Preeclampsia: Risk Factors, Diagnosis, Management, and the Cardiovascular Impact on the Offspring. J. Clin. Med. 2019, 8, 1625. [Google Scholar] [CrossRef]
- Ishihara, N.; Matsuo, H.; Murakoshi, H.; Laoag-Fernandez, J.B.; Samoto, T.; Maruo, T. Increased apoptosis in the syncytiotrophoblast in human term placentas complicated by either preeclampsia or intrauterine growth retardation. Am. J. Obstet. Gynecol. 2002, 186, 158–166. [Google Scholar] [CrossRef]
- Athapathu, H.; Jayawardana, M.; Senanayaka, L. A study of the incidence of apoptosis in the human placental cells in the last weeks of pregnancy. J. Obstet. Gynaecol. 2003, 23, 515–517. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, N. Gestational Diabetes Mellitus and Preeclampsia: Correlation and Influencing Factors. Front. Cardiovasc. Med. 2022, 9, 831297. [Google Scholar] [CrossRef]
- Crocker, I.P.; Cooper, S.; Ong, S.C.; Baker, P.N. Differences in apoptotic susceptibility of cytotrophoblasts and syncytiotrophoblasts in normal pregnancy to those complicated with preeclampsia and intrauterine growth restriction. Am. J. Pathol. 2003, 162, 637–643. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, L. Uteroplacental Circulation in Normal Pregnancy and Preeclampsia: Functional Adaptation and Maladaptation. Int. J. Mol. Sci. 2021, 22, 8622. [Google Scholar] [CrossRef]
- Sovio, U.; Gaccioli, F.; Cook, E.; Charnock-Jones, D.S.; Smith, G.C.S. Association between adverse pregnancy outcome and placental biomarkers in the first trimester: A prospective cohort study. BJOG Int. J. Obstet. Gynaecol. 2023, 131, 823–831. [Google Scholar] [CrossRef]
- Desoye, G.; Carter, A.M. Fetoplacental oxygen homeostasis in pregnancies with maternal diabetes mellitus and obesity. Nat. Rev. Endocrinol. 2022, 18, 593–607. [Google Scholar] [CrossRef]
- Soleymanlou, N.; Wu, Y.; Wang, J.X.; Todros, T.; Ietta, F.; Jurisicova, A.; Post, M.; Caniggia, I. A novel Mtd splice isoform is responsible for trophoblast cell death in pre-eclampsia. Cell Death Differ. 2005, 12, 441–452. [Google Scholar] [CrossRef]
- Soleymanlou, N.; Jurisicova, A.; Wu, Y.; Chijiiwa, M.; Ray, J.E.; Detmar, J.; Todros, T.; Zamudio, S.; Post, M.; Caniggia, I. Hypoxic switch in mitochondrial myeloid cell leukemia factor-1/Mtd apoptotic rheostat contributes to human trophoblast cell death in preeclampsia. Am. J. Pathol. 2007, 171, 496–506. [Google Scholar] [CrossRef]
- Hung, T.H.; Skepper, J.N.; Charnock-Jones, D.S.; Burton, G.J. Hypoxia-reoxygenation: A potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Circ. Res. 2002, 90, 1274–1281. [Google Scholar] [CrossRef]
- Hung, T.H.; Chen, S.F.; Liou, J.D.; Hsu, J.J.; Li, M.J.; Yeh, Y.L.; Hsieh, T.T. Bax, Bak and mitochondrial oxidants are involved in hypoxia-reoxygenation-induced apoptosis in human placenta. Placenta 2008, 29, 565–583. [Google Scholar] [CrossRef]
- Levy, R.; Smith, S.D.; Yusuf, K.; Huettner, P.C.; Kraus, F.T.; Sadovsky, Y.; Nelson, D. Trophoblast apoptosis from pregnancies complicated by fetal growth restriction is associated with enhanced p53 expression. Am. J. Obstet. Gynecol. 2002, 186, 1056–1061. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, H.; Wu, B.; Ning, W.; Chen, Y.; Chen, Y. Correlation between elevated maternal serum alpha-fetoprotein and ischemic placental disease: A retrospective cohort study. Clin. Exp. Hypertens. 2023, 45, 2175848. [Google Scholar] [CrossRef]
- Hammond, E.M.; Giaccia, A.J. The role of p53 in hypoxia-induced apoptosis. Biochem. Biophys. Res. Commun. 2005, 331, 718–725. [Google Scholar] [CrossRef]
- Leung, D.N.; Smith, S.C.; To, K.; Sahota, D.S.; Baker, P.N. Increased placental apoptosis in pregnancies complicated by preeclampsia. Am. J. Obstet. Gynecol. 2001, 184, 1249–1250. [Google Scholar] [CrossRef]
- Głowska-Ciemny, J.; Szmyt, K.; Kuszerska, A.; Rzepka, R.; von Kaisenberg, C.; Kocyłowski, R. Fetal and Placental Causes of Elevated Serum Alpha-Fetoprotein Levels in Pregnant Women. J. Clin. Med. 2024, 13, 466. [Google Scholar] [CrossRef]
- Austgulen, R.; Isaksen, C.V.; Chedwick, L.; Romundstad, P.; Vatten, L.; Craven, C. Pre-eclampsia: Associated with increased syncytial apoptosis when the infant is small-for-gestational-age. J. Reprod. Immunol. 2004, 61, 39–50. [Google Scholar] [CrossRef]
- Brownbill, P.; Edwards, D. Mechanisms of alphafetoprotein transfer in the perfused human placental cotyledon from uncomplicated pregnancy. J. Clin. Investig. 1995, 96, 2220–2226. [Google Scholar] [CrossRef]
- Raguema, N.; Moustadraf, S.; Bertagnolli, M. Immune and Apoptosis Mechanisms Regulating Placental Development and Vascularization in Preeclampsia. Front. Physiol. 2020, 11, 98. [Google Scholar] [CrossRef]
- Dong, N.; Gu, H.; Liu, D.; Wei, X.; Ma, W.; Ma, L.; Liu, Y.; Wang, Y.; Jia, S.; Huang, J.; et al. Complement factors and alpha-fetoprotein as biomarkers for noninvasive prenatal diagnosis of neural tube defects. Ann. N. Y Acad. Sci. 2020, 1478, 75–91. [Google Scholar] [CrossRef]
- Brownbill, P.; Mahendran, D. Denudations as paracellular routes for alphafetoprotein and creatinine across the human syncytiotrophoblast. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R677–R683. [Google Scholar] [CrossRef]
- Ryter, S.W.; Kim, H.P.; Hoetzel, A.; Park, J.W.; Nakahira, K.; Wang, X.; Choi, A.M. Mechanisms of cell death in oxidative stress. Antioxid. Redox Signal. 2007, 9, 49–89. [Google Scholar] [CrossRef]
- Furuhashi, M. New insights into purine metabolism in metabolic diseases: Role of xanthine oxidoreductase activity. Am. J. Physiol.-Endocrinol. Metab. 2020, 319, E827–E834. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.H.; Burton, G.J. Hypoxia and reoxygenation: A possible mechanism for placental oxidative stress in preeclampsia. Taiwan. J. Obstet. Gynecol. 2006, 45, 189–200. [Google Scholar] [CrossRef]
- Komsa-Penkova, R.; Krumova, S.; Langari, A.; Giosheva, I.; Gartcheva, L.; Danailova, A.; Topalova, L.; Stoyanova, T.; Strijkova, V.; Savov, A.; et al. Blood Plasma Calorimetric Profiles of Women with Preeclampsia: Effect of Oxidative Stress. Antioxidants 2023, 12, 1032. [Google Scholar] [CrossRef] [PubMed]
- Yung, H.W.; Calabrese, S.; Hynx, D.; Hemmings, B.A.; Cetin, I.; Charnock-Jones, D.S.; Burton, G.J. Evidence of placental translation inhibition and endoplasmic reticulum stress in the etiology of human intrauterine growth restriction. Am. J. Pathol. 2008, 173, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.; Yung, H.W.; Cindrova-Davies, T.; Charnock-Jones, D.S. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 2009, 23, S43–S48. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Mao, D.; Holers, V.M.; Palanca, B.; Cheng, A.M.; Molina, H. A critical role for murine complement regulator crry in fetomaternal tolerance. Science 2000, 287, 498–501. [Google Scholar] [CrossRef] [PubMed]
- Baschat, A.A. Fetal responses to placental insufficiency: An update. BJOG 2004, 111, 1031–1041. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, F.C.; Lubchenco, L.O. A practical classification of newborn infants by weight and gestational age. J. Pediatr. 1967, 71, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Lees, C.C.; Stampalija, T.; Baschat, A.A.; da Silva Costa, F.; Ferrazzi, E.; Figueras, F.; Hecher, K.; Kingdom, J.; Poon, L.C.; Salomon, L.J.; et al. ISUOG Practice Guidelines: Diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet. Gynecol. 2020, 56, 298–312. [Google Scholar] [CrossRef] [PubMed]
- Leon-Martinez, D.; Lundsberg, L.S.; Culhane, J.; Zhang, J.; Son, M.; Reddy, U.M. Fetal growth restriction and small for gestational age as predictors of neonatal morbidity: Which growth nomogram to use? Am. J. Obstet. Gynecol. 2023, 229, e1–e678. [Google Scholar] [CrossRef] [PubMed]
- Wollmann, H.A. Intrauterine growth restriction: Definition and etiology. Horm Res 1998, 49, 1. [Google Scholar] [CrossRef]
- Yawno, T.; Sutherland, A.E.; Pham, Y.; Castillo-Melendez, M.; Jenkin, G.; Miller, S.L. Fetal Growth Restriction Alters Cerebellar Development in Fetal and Neonatal Sheep. Front Physiol. 2019, 10, 560. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, R.; Zheng, Q.; Wu, L.H.; Yin, X.; Zheng, J.; Xie, H.N. Frontal lobe development in fetuses with growth restriction by using ultrasound: A case-control study. BMC Pregnancy Childbirth 2022, 22, 861. [Google Scholar] [CrossRef] [PubMed]
- Gordijn, S.J.; Beune, I.M.; Ganzevoort, W. Building consensus and standards in fetal growth restriction studies. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 49, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Zeitlin, J.; Szamotulska, K.; Drewniak, N.; Mohangoo, A.; Chalmers, J.; Sakkeus, L.; Irgens, L.; Gatt, M.; Gissler, M.; Blondel, B.; et al. Preterm birth time trends in Europe: A study of 19 countries. BJOG 2013, 120, 1356–1365. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.; Lee, A.C.; Kozuki, N. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: A pooled country analysis. Lancet 2013, 382, 417–425. [Google Scholar] [CrossRef] [PubMed]
- de Onis, M.; Blössner, M.; Villar, J. Levels and patterns of intrauterine growth retardation in developing countries. Eur. J. Clin. Nutr. 1998, 52, S5–S15. [Google Scholar] [PubMed]
- Ohuma, E.O.; Moller, A.B.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Lavin, T.; et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: A systematic analysis. Lancet 2023, 402, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Ergaz, Z.; Avgil, M.; Ornoy, A. Intrauterine growth restriction-etiology and consequences: What do we know about the human situation and experimental animal models? Reprod. Toxicol. 2005, 20, 301–322. [Google Scholar] [CrossRef] [PubMed]
- Marzouk, A.; Filipovic-Pierucci, A.; Baud, O.; Tsatsaris, V.; Ego, A.; Charles, M.-A.; Goffinet, F.; Evain-Brion, D.; Durand-Zaleski, I. Prenatal and postnatal cost of small for gestational age infants: A national study. BMC Health Serv. Res. 2017, 17, 221. [Google Scholar] [CrossRef] [PubMed]
- Goisis, A.; Remes, H.; Barclay, K.; Martikainen, P.; Myrskylä, M. Advanced Maternal Age and the Risk of Low Birth Weight and Preterm Delivery: A Within-Family Analysis Using Finnish Population Registers. Am. J. Epidemiol. 2017, 186, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Aldous, M.B.; Edmonson, M.B. Maternal age at first childbirth and risk of low birth weight and preterm delivery in Washington State. JAMA 1993, 270, 2574–2575. [Google Scholar] [CrossRef]
- Xi, C.; Luo, M.; Wang, T.; Wang, Y.; Wang, S.; Guo, L.; Lu, C. Association between maternal lifestyle factors and low birth weight in preterm and term births: A case-control study. Reprod. Health 2020, 17, 93. [Google Scholar] [CrossRef] [PubMed]
- Berghella, V. Prevention of recurrent fetal growth restriction. Obstet Gynecol. 2007, 110, 904–912. [Google Scholar] [CrossRef] [PubMed]
- David, C.; Gabriellie, S.; Pilu, G. The head to abdomen circumference ratio: A reappraisal. Ultrasound Obstet. Gynecol. 1995, 5, 256–259. [Google Scholar] [CrossRef] [PubMed]
- van der Vlugt, E.R.; Verburg, P.E.; Leemaqz, S.Y.; McCowan, L.M.E.; Poston, L.; Kenny, L.C.; Myers, J.; Walker, J.J.; Dekker, G.A.; Roberts, C.T.; et al. Sex- and growth-specific characteristics of small for gestational age infants: A prospective cohort study. Biol Sex Differ. 2020, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Galan, H.L.; Rigano, S.; Radaelli, T.; Cetin, I.; Bozzo, M.; Chyu, J.; Hobbins, J.C.; Ferrazzi, E. Reduction of subcutaneous mass, but not lean mass, in normal fetuses in Denver, Colorado. Am. J. Obstet Gynecol. 2001, 185, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Mortola, J.P.; Frappell, P.B.; Aguero, L.; Armstrong, K. Birth weight and altitude: A study in Peruvian communities. J. Pediatr. 2000, 136, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Kametas, N.A.; McAuliffe, F.; Krampl, E.; Chambers, J.; Nicolaides, K.H. Maternal cardiac function during pregnancy at high altitude. BJOG 2004, 111, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.M.; Baird, J.; Cooper, C.; Crozier, S.R.; Godfrey, K.M.; Geary, M.; Inskip, H.M.; Hayes, C.B. The Effects of Different Smoking Patterns in Pregnancy on Perinatal Outcomes in the Southampton Women’s Survey. Int. J. Environ. Res. Public Health 2020, 17, 7991. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.O.; Hatch, M.C.; Mills, J. Maternal smoking, alcohol drinking, caffeine consumption, and fetal growth: Results from a prospective study. Epidemiology 1995, 6, 115–120. [Google Scholar] [CrossRef]
- Lassi, Z.S.; Imam, A.M.; Dean, S.V.; Bhutta, Z.A. Preconception care: Caffeine, smoking, alcohol, drugs and other environmental chemical/radiation exposure. Reprod Health. 2014, 11, S6. [Google Scholar] [CrossRef]
- Wouldes, T.A.; Lester, B.M. Opioid, methamphetamine, and polysubstance use: Perinatal outcomes for the mother and infant. Front. Pediatr. 2023, 11, 1305508. [Google Scholar] [CrossRef] [PubMed]
- Kelty, E.; Preen, D.B. Risk Factors Associated with the Occurrence of Neonatal Opioid Withdrawal Syndrome: A Review. CNS Drugs 2019, 33, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Prins, J.R.; Schoots, M.H.; Wessels, J.I.; Campmans-Kuijpers, M.J.E.; Navis, G.J.; van Goor, H.; Robertson, S.A.; van der Beek, E.M.; Sobrevia, L.; Gordijn, S.J. The influence of the dietary exposome on oxidative stress in pregnancy complications. Mol. Aspects Med. 2022, 87, 101098. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, D.V.; Whitehead, N.; Helms, K.; Barfield, W.; Ahluwalia, I.B. Birth outcomes of intended pregnancies among women who used assisted reproductive technology, ovulation stimulation, or no treatment. Fertil. Steril. 2011, 96, 314–320.e2. [Google Scholar] [CrossRef] [PubMed]
- Frusca, T.; Todros, T.; Lees, C.; Bilardo, C.M. Outcome in early-onset fetal growth restriction is best combining computerized fetal heart rate analysis with ductus venosus Doppler: Insights from the Trial of Umbilical and Fetal Flow in Europe. TRUFFLE Investigators. Am. J. Obstet Gynecol. 2018, 218, S783–S789. [Google Scholar] [CrossRef] [PubMed]
- Baschat, A.A. Planning management and delivery of the growth-restricted fetus. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 49, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Steller, J.G.; Gumina, D.; Driver, C.; Peek, E.; Galan, H.L.; Reeves, S.; Hobbins, J.C. Patterns of Brain Sparing in a Fetal Growth Restriction Cohort. J. Clin. Med. 2022, 11, 4480. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians and Gynecologists. Intrauterine Growth Restriction. Practice Bulletin No. 12, 2000, Washington DC. Available online: http://www.acog.org (accessed on 25 December 2012).
- Baschat, A.A.; Galan, H.L.; Gabbe, S.G. Intrauterine growth restriction. In Obstetrics Normal and Problem Pregnancies; Gabbe, S.G., Neibyl, J.R., Simpson, J.L., Eds.; Elsevier: Philadelphia, PA, USA, 2012; pp. 706–741. [Google Scholar]
- Klatsky, P.C.; Tran, N.D.; Caughey, A.B.; Fujimoto, V.Y. Fibroids and reproductive outcomes: A systematic literature review from conception to delivery. Am. J. Obstet. Gynecol. 2008, 198, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Cooney, M.J.; Benson, C.B.; Doubilet, P.M. Outcome of pregnancies in women with uterine duplication anomalies. J. Clin. Ultrasound 1998, 26, 3–6. [Google Scholar] [CrossRef]
- Kim, M.A.; Kim, H.S.; Kim, Y.H. Reproductive, Obstetric and Neonatal Outcomes in Women with Congenital Uterine Anomalies: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 4797. [Google Scholar] [CrossRef]
- Khader, Y.S.; Ta’ani, Q. Periodontal diseases and the risk of preterm birth and low birth weight: A meta-analysis. J. Periodontol. 2005, 76, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Shibata, M.; Ogawa, K.; Kanazawa, S.; Kawasaki, M.; Morisaki, N.; Mito, A.; Sago, H.; Horikawa, R.; Arata, N. Association of maternal birth weight with the risk of low birth weight and small-for-gestational-age in offspring: A prospective single-center cohort study. PLoS ONE 2021, 16, e0251734. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Santolaya-Forgas, J. Current concepts of fetal growth restriction: Part I. Causes, classification, and pathophysiology. Obstet. Gynecol. 1998, 92, 1044–1055. [Google Scholar] [CrossRef] [PubMed]
- Nardozza, L.M.; Araujo Júnior, E.; Barbosa, M.M.; Caetano, A.C.; Lee, D.J.; Moron, A.F. Fetal growth restriction: Current knowledge to the general Obs/Gyn. Arch. Gynecol. Obstet. 2012, 286, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, A.; Browning Carmo, K.; James-Nunez, K.; Gordon, A. Growth and risk of adverse neurodevelopmental outcome in infants with congenital surgical anomalies: A systematic review. Pediatr. Surg. Int. 2022, 39, 3. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, N.; Berghella, V. Non-placental causes of intrauterine growth restriction. Semin Perinatol. 2008, 32, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Wendel, G.D. Cytomegalovirus, genital herpes, rubella, syphilis and toxoplasmosis. In Protocols for High-Risk Pregnancies: An Evidence-Based Approach, 5th ed.; Queenan, J.T., Hobbins, J.C., Spong, C.Y., Eds.; Wiley-Blackwell: Oxford, UK, 2010. [Google Scholar]
- Adanu, R.M.K. Malaria in pregnancy. In Protocols for High-Risk Pregnancies: An Evidence-Based Approach, 5th ed.; Queenan, J.T., Hobbins, J.C., Spong, C.Y., Eds.; Wiley-Blackwell: Oxford, UK, 2010. [Google Scholar]
- Divon, M.Y.; Weiner, Z. Ultrasound in twin pregnancy. Semin. Perinatol. 1995, 19, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Michalopoulos, S.; Tsikouras, P.; Varlami, V.; Lambrinos, D.; Bothou, A.; Nikolettos, K.; Papanikolopoulou, S.; Marinos, G.; Iatrakis, G.; Nikolettos, N. Retrospective Study of the Correlation Between Twin Pregnancies and Perinatal Outcome in Association to the Impact of Preterm Birth. Mater. Socio-Medica 2023, 35, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.; Chauhan, S.P.; Abuhamad, A.Z. Discordant twins: Diagnosis, evaluation and management. Am. J. Obstet. Gynecol. 2012, 206, 10–20. [Google Scholar] [CrossRef]
- Debere, M.K.; Haile Mariam, D.; Ali, A.; Mekasha, A.; Chan, G.J. Factors associated with small-for-gestational-age births among preterm babies born <2000 g: A multifacility cross-sectional study in Ethiopia. BMJ Open 2022, 12, e064936. [Google Scholar] [CrossRef] [PubMed]
- Cappelletti, M.; Giannelli, S.; Martinelli, A.; Cetin, I.; Colombo, E.; Calcaterra, F.; Mavilio, D.; Della Bella, S. Lack of activation of peripheral blood dendritic cells in human pregnancies complicated by intrauterine growth restriction. Placenta 2013, 34, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Wilkins-Haug, L.; Roberts, D.J.; Morton, C.C. Confined placental mosaicism and intrauterine growth retardation: A case control analysis of placentas at delivery. Am. J. Obstet. Gynecol. 1995, 172, 44e50. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-P.; Tsai, C.; Lin, M.-H.; Chern, S.-R.; Chen, S.-W.; Lai, S.-T.; Chen, W.-L.; Pan, C.-W.; Wang, W. Application of non-invasive prenatal testing in late gestation in a pregnancy associated with intrauterine growth restriction and trisomy 22 confined placental mosaicism. Taiwan. J. Obstet. Gynecol. 2017, 56, 691–693. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Benirschke, K.; Marutsuka, K.; Yano, Y.; Hatakeyama, K.; Iwakiri, T.; Yamada, N.; Kodama, Y.; Sameshima, H.; Ikenoue, T.; et al. Associations of intrauterine growth restriction with placental pathological factors, maternal factors and fetal factors; clinicopathological findings of 257 Japanese cases. Histol. Histopathol. 2013, 28, 127–132. [Google Scholar] [PubMed]
- Murthi, P.; Doherty, V.L.; Said, J.M.; Donath, S.; Brennecke, S.P.; Kalionis, B. Homeobox gene ESX1L expression is decreased in human pre-term idiopathic fetal growth restriction. MHR Basic Sci. Reprod. Med. 2006, 12, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Chelbi, S.T.; Wilson, M.L.; Veillard, A.C.; Ingles, S.A.; Zhang, J.; Mondon, F.; Gascoin-Lachambre, G.; Doridot, L.; Mignot, T.M.; Rebourcet, R.; et al. Genetic and epigenetic mechanisms collaborate to control SERPINA3 expression and its association with placental diseases. Hum. Mol. Genet. 2012, 21, 1968–1978. [Google Scholar] [CrossRef] [PubMed]
- Gremlich, S.; Damnon, F.; Reymondin, D.; Braissant, O.; Schittny, J.C.; Baud, D.; Gerber, S.; Roth-Kleiner, M. The long non-coding RNA NEAT1 is increased in IUGR placentas, leading to potential new hypotheses of IUGR origin/development. Placenta 2014, 35, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Vrachnis, N.; Kalampokas, E.; Sifakis, S.; Vitoratos, N.; Kalampokas, T.; Botsis, D.; Iliodromiti, Z. Placental growth factor (PlGF): A key to optimizing fetal growth. J. Matern. -Fetal Neonatal Med. 2013, 26, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Hromadnikova, I.; Kotlabova, K.; Doucha, J.; Dlouha, K.; Krofta, L. Absolute and relative quantification of placenta-specific micrornas in maternal circulation with placental insufficiency-related complications. J. Mol. Diagn. 2012, 14, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Börzsönyi, B.; Demendi, C.; Rigó JJr Szentpéteri, I.; Rab, A.; Joó, J.G. The regulation of apoptosis in intrauterine growth restriction: A study of Bcl-2 and Bax gene expression in human placenta. J. Matern. -Fetal Neonatal Med. 2013, 26, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Murki, S.; Sharma, D. Intrauterine Growth Retardation—A Review Article. J. Neonatal. Biol. 2014, 3, 135. [Google Scholar] [CrossRef]
- Börzsönyi, B.; Demendi, C.; Nagy, Z.; Tóth, K.; Csanád, M.; Pajor, A.; Rig, J., Jr.; Joó, J.G. Gene expression patterns of insulin-like growth factor 1, insulin-like growth factor 2 and insulin-like growth factor binding protein 3 in human placenta from pregnancies with intrauterine growth restriction. J Perinat Med. 2011, 39, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Rab, A.; Szentpéteri, I.; Kornya, L.; Börzsönyi, B.; Demendi, C.; Joó, J.G. Placental gene expression patterns of epidermal growth factor in intrauterine growth restriction. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 170, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Nezar, M.A.; el-Baky, A.M.; Soliman, O.A.; Abdel-Hady, H.A.; Hammad, A.M.; Al-Haggar, M.S. Endothelin-1 and leptin as markers of intrauterine growth restriction. Indian J. Pediatr. 2009, 76, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Sapantzoglou, I.; Vlachos, D.-E.; Papageorgiou, D.; Varthaliti, A.; Rodolaki, K.; Daskalaki, M.A.; Psarris, A.; Pergialiotis, V.; Stavros, S.; Daskalakis, G.; et al. Maternal Blood Adipokines and Their Association with Fetal Growth: A Meta-Analysis of the Current Literature. J. Clin. Med. 2024, 13, 1667. [Google Scholar] [CrossRef] [PubMed]
- Malamitsi-Puchner, A.; Briana, D.D.; Boutsikou, M.; Kouskouni, E.; Hassiakos, D.; Gourgiotis, D. Perinatal circulating visfatin levels in intrauterine growth restriction. Pediatrics 2007, 119, e1314–e1318. [Google Scholar] [CrossRef] [PubMed]
- Nasri, K.; Mehrabi, M.; Bayani, M.; Almasi-Hashiani, A. Maternal saliva visfatin level in term and preterm labor: A case control study. PLoS ONE 2023, 18, e0288786. [Google Scholar] [CrossRef]
- Grandone, E.; Margaglione, M.; Colaizzo, D.; Pavone, G.; Paladini, D.; Martinelli, P.; Di Minno, G. Lower birth-weight in neonates of mothers carrying factor V G1691A and factor II A(20210) mutations. Haematologica 2002, 87, 177–181. [Google Scholar] [PubMed]
- Samfireag, M.; Potre, O.; Potre, C.; Moleriu, R.-D.; Petre, I.; Borsi, E.; Hoinoiu, T.; Petre, I.; Popoiu, T.-A.; Iurciuc, S.; et al. Maternal and Newborn Characteristics-A Comparison between Healthy and Thrombophilic Pregnancy. Life 2023, 13, 2082. [Google Scholar] [CrossRef]
- Caliebe, J.; Broekman, S.; Boogaard, M.; Bosch, C.A.; Ruivenkamp, C.A.; Oostdijk, W.; Kant, S.G.; Binder, G.; Ranke, M.B.; Wit, J.M.; et al. IGF1, IGF1R and SHOX mutation analysis in short children born small for gestational age and short children with normal birth size (idiopathic short stature). Horm. Res. Paediatr. 2012, 77, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, Y.; Higaki, K.; Fukushima, T.; Hakuno, F.; Nagaishi, J.; Hanaki, K.; Nanba, E.; Takahashi, S.; Kanzaki, S. Novel missense mutation in the IGF-I receptor L2 domain results in intrauterine and postnatal growth retardation. Clin. Endocrinol. 2012, 77, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Iliodromiti, S.; Mackay, D.F.; Smith, G.C.; Pell, J.P.; Sattar, N.; Lawlor, D.A.; Nelson, S.M. Customised and Noncustomised Birth Weight Centiles and Prediction of Stillbirth and Infant Mortality and Morbidity: A Cohort Study of 979,912 Term Singleton Pregnancies in Scotland. PLoS Med. 2017, 14, e1002228. [Google Scholar] [CrossRef] [PubMed]
- Figueras, F.; Gardosi, J. Intrauterine growth restriction: New concepts in antenatal surveillance, diagnosis, and management. Am. J. Obstet. Gynecol. 2011, 204, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Levytska, K.; Higgins, M.; Keating, S.; Melamed, N.; Walker, M.; Sebire, N.J.; Kingdom, J.C. Placental Pathology in Relation to Uterine Artery Doppler Findings in Pregnancies with Severe Intrauterine Growth Restriction and Abnormal Umbilical Artery Doppler Changes. Am. J. Perinatol. 2017, 34, 451–457. [Google Scholar] [PubMed]
- Kiserud, T.; Kessler, J.; Ebbing, C.; Rasmussen, S. Ductus venosus shunting in growth-restricted fetuses and the effect of umbilical circulatory compromise. Ultrasound Obstet. Gynecol. 2006, 28, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzi, E.; Lees, C.; Acharya, G. The controversial role of the ductus venosus in hypoxic human fetuses. Acta Obstet.; et Gynecol. Scand. 2019, 98, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Manning, F.A.; Snijders, R.; Harman, C.R.; Nicolaides, K.; Menticoglou, S.; Morrison, I. Fetal biophysical profile score: VI. Correlation with antepartum umbilical venous fetal pH. Am. J. Obstet. Gynecol. 1993, 169, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Lees, C.C.; Romero, R.; Stampalija, T.; Dall’asta, A.; DeVore, G.R.; Prefumo, F.; Frusca, T.; Visser, G.H.; Hobbins, J.C.; Baschat, A.A.; et al. Clinical Opinion: The diagnosis and management of suspected fetal growth restriction: An evidence-based approach. Am. J. Obstet. Gynecol. 2022, 226, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, S.; Bednarek-Je¸drzejek, M.; Ksel, J.; Tousty, P.; Kwiatkowska, E.; Cymbaluk, A.; Rzepka, R.; Chudecka-Głaz, A.; Dołe¸gowska, B.; Torbe, A. sFlt-1/PlGF and Doppler ultrasound parameters in SGA pregnancies with confirmed neonatal birth weight below 10th percentile. Pregnancy Hypertens 2018, 14, 79–85. [Google Scholar] [CrossRef]
- Herraiz I, Quezada MS, Rodriguez-Calvo J, Gomez-Montes E, Longitudinal change of sFlt-1/PlGF ratio in singleton pregnancy with early-onset fetal growth restriction. Ultrasound Obs. Gynecol 2018, 52, 631–663. [CrossRef]
- Gulmezoglu, A.M.; Hofmeyr, G.J. Betamimetics for suspected impaired fetal growth. Cochrane Database Syst. Rev. 2001, CD000036. [Google Scholar] [CrossRef]
- East, C.E.; Biro, M.A.; Fredericks, S.; Lau, R. Support during pregnancy for women at increased risk of low birthweight babies. Cochrane Database Syst. Rev. 2019, 4, CD000198. [Google Scholar] [CrossRef] [PubMed]
- Say, L.; Gulmezoglu, A.M.; Hofmeyr, G.J. Maternal oxygen administration for suspected impaired fetal growth. Cochrane Database Syst. Rev. 2003, CD000137. [Google Scholar] [CrossRef]
- Royal College of Obstetricians and Gynaecologists. Small-for-Gestational-Age Fetus, Investigation and Management (Green-top Guideline No. 31). 2013. Available online: https://www.rcog.org.uk/globalassets/documents/guidelines/gtg_31.pdf (accessed on 6 June 2024).
- Ferrazzi, E.; Bozzo, M.; Rigano, S. Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet. Gynecol. 2002, 19, 140–146. [Google Scholar] [CrossRef]
- Cosmi, E.; Ambrosini, G.; D’Antona, D.; Saccardi, C.; Mari, G. Doppler, cardiotocography, and biophysical profile changes in growth-restricted fetuses. Obstet. Gynecol. 2005, 106, 1240–1245. [Google Scholar] [CrossRef] [PubMed]
- Severi, F.M.; Bocchi, C.; Visentin, A.; Falco, P.; Cobellis, L.; Florio, P.; Zagonari, S.; Pilu, G. Uterine and fetal cerebral Doppler predict the outcome of third-trimester small-for-gestational age fetuses with normal umbilical artery Doppler. Ultrasound Obstet. Gynecol. 2002, 19, 225–228. [Google Scholar] [CrossRef]
- Hershkovitz, R.; Kingdom, J.C.; Geary, M.; Rodeck, C.H. Fetal cerebral blood flow redistribution in late gestation: Identification of compromise in small fetuses with normal umbilical artery Doppler. Ultrasound Obstet. Gynecol. 2000, 15, 209–212. [Google Scholar] [CrossRef]
- Hecher, K.; Bilardo, C.M.; Stigter, R.H.; Ville, Y.; Hackelöer, B.J.; Kok, H.J.; Senat, M.V.; Visser, G.H.A. Monitoring of fetuses with intrauterine growth restriction: A longitudinal study. Ultrasound Obstet. Gynecol. 2001, 18, 564–570. [Google Scholar] [CrossRef]
- Dixit, S.; Dixit, N.A.; Rawat, A.; Bajpai, A.; Alelyani, M.; Sabah, Z.U.; Raghuwanshi, S. Color Doppler ultrasound in high-low risk pregnancies and its relationship to fetal outcomes: A cross-sectional study. Front. Pediatr. 2024, 11, 1221766. [Google Scholar] [CrossRef] [PubMed]
- Crimmins, S.; Desai, A.; Block-Abraham, D.; Berg, C.; Gembruch, U.; Baschat, A.A. A comparison of Doppler and biophysical findings between liveborn and stillborn growth-restricted fetuses. Am. J. Obstet. Gynecol 2014, 211, 669.e1–669.e10. [Google Scholar] [CrossRef]
- Hecher, K.; Snijders, R.; Campbell, S.; Nicolaides, K. Fetal venous, intracardiac, and arterial blood flow measurements in intrauterine growth retardation: Relationship with fetal blood gases. Am. J. Obstet. Gynecol. 1995, 173, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Suekane, T.; Tachibana, D.; Kurihara, Y.; Yokoi, N.; Seo, N.; Kitada, K.; Tahara, M.; Hamuro, A.; Misugi, T.; Nakano, A.; et al. Time interval analysis of ductus venosus and cardiac cycles in relation with umbilical artery pH at birth in fetal growth restriction. BMC Pregnancy Childbirth 2021, 21, 671. [Google Scholar] [CrossRef] [PubMed]
- Baschat, A.A.; Gembruch, U.; Weiner, C.P.; Harman, C.R. Qualitative venous Doppler waveform analysis improves prediction of critical perinatal outcomes in premature growth-restricted fetuses. Ultrasound Obstet. Gynecol. 2003, 22, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Rubin, J.M.; Fowlkes, J.B.; Pinter, S.Z.; Treadwell, M.C.; Kripfgans, O.D. Umbilical Vein Pulse Wave Spectral Analysis: A Possible Method for Placental Assessment Through Evaluation of Maternal and Fetal Flow Components. J. Ultrasound Med. 2022, 41, 2445–2457. [Google Scholar] [CrossRef] [PubMed]
- Baschat, A.A.; Galan, H.L.; Bhide, A.; Berg, C.; Kush, M.L.; Oepkes, D.; Thilaganathan, B.; Gembruch, U.; Harman, C.R. Doppler and biophysical assessment in growth restricted fetuses: Distribution of test results. Ultrasound Obstet. Gynecol. 2006, 27, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Tsikouras, P.; Oikonomou, E.; Bothou, A.; Kyriakou, D.; Nalbanti, T.; Andreou, S.; Daniilidis, A.; Peitsidis, P.; Nikolettos, K.; Iatrakis, G.; et al. Labor management and neonatal outcomes in cardiotocography categories II and III (Review). Med. Int. 2024, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Pattison, N.; McCowan, L. Cardiotocography for antepartum fetal assessment. Cochrane Database Syst. Rev. 2000, CD001068. [Google Scholar] [CrossRef]
- McCowan, L.M.; Figueras, F.; Anderson, N.H. Evidence-based national guidelines for the management of suspected fetal growth restriction: Comparison, consensus, and controversy. Am. J. Obstet. Gynecol 2018, 218, S855–S868. [Google Scholar] [CrossRef] [PubMed]
- Magann, E.F.; Haram, K.; Ounpraseuth, S.; Mortensen, J.H.; Spencer, H.J.; Morrison, J.C. Use of antenatal corticosteroids in special circumstances: A comprehensive review. Acta Obstet. Gynecol. Scand 2017, 96, 395–409. [Google Scholar] [CrossRef]
- Stockley, E.L.; Ting, J.Y.; Kingdom, J.C.; McDonald, S.D.; Barrett, J.F.; Synnes, A.R.; Monterrosa, L.; Shah, P.S. Canadian Neonatal Network; Canadian Neonatal Follow-up Network; Canadian Preterm Birth Network Investigators. Intrapartum magnesium sulfate is associated with neuroprotection in growth-restricted fetuses. Am. J. Obstet. Gynecol 2018, 219, 606.e1–606.e8. [Google Scholar] [CrossRef]
- Bilardo, C.M.; Hecher, K.; Visser, G.H.A.; Papageorghiou, A.T.; Marlow, N.; Thilaganathan, B.; Van Wassenaer-Leemhuis, A.; Todros, T.; Marsal, K.; Frusca, T.; et al. Severe fetal growth restriction at 26–32 weeks: Key messages from the TRUFFLE study. Ultrasound Obstet. Gynecol. 2017, 50, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Figueras, F.; Gratacos, E. Stage-based approach to the management of fetal growth restriction. Prenat. Diagn. 2014, 34, 655–659. [Google Scholar] [CrossRef]
- Savchev, S.; Figueras, F.; Gratacos, E. Survey on the current trends in managing intrauterine growth restriction. Fetal Diagn. Ther. 2014, 36, 129–135. [Google Scholar] [CrossRef]
- Jarvis, S.; Glinianaia, S.V.; Torrioli, M.-G.; Platt, M.-J.; Miceli, M.; Jouk, P.-S.; Johnson, A.; Hutton, J.; Hemming, K.; Hagberg, G.; et al. Cerebral palsy and intrauterine growth in single births: European collaborative study. Lancet 2003, 362, 1106–1111. [Google Scholar] [CrossRef] [PubMed]
- Burri, P.H. Structural aspects of postnatal lung development—Alveolar formation and growth. Biol. Neonate. 2006, 89, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Bose, C.; Van Marter, L.J.; Laughon, M.; O’Shea, T.M.; Allred, E.N.; Karna, P.; Ehrenkranz, R.A.; Boggess, K.; Leviton, A. Fetal growth restriction and chronic lung disease among infants born before the 28th week of gestation. Pediatrics 2009, 124, e450–e458. [Google Scholar] [CrossRef]
- Eriksson, L.; Haglund, B.; Odlind, V.; Altman, M.; Ewald, U.; Kieler, H. Perinatal conditions related to growth restriction and inflammation are associated with an increased risk of bronchopulmonary dysplasia. Acta Paediatr. 2015, 104, 259–263. [Google Scholar] [CrossRef]
- Tröger, B.; Göpel, W.; Faust, K. Risk for late-onset blood-culture proven sepsis in very-low-birth weight infants born small for gestational age: A large multicenter study from the German Neonatal Network. Pediatr. Infect. Dis. J. 2014, 33, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, D.; Weaver, L.; Tobin, R.; Henderson, S.; Beeram, M.; Newell-Rogers, M.K.; Perger, L. Intrauterine growth restriction and prematurity influence regulatory T cell development in newborns. J. Pediatr. Surg. 2014, 49, 727–732. [Google Scholar] [CrossRef]
- March, M.I.; Gupta, M.; Modest, A.M.; Wu, L.; Hacker, M.R.; Martin, C.R.; Rana, S. Maternal risk factors for neonatal necrotizing enterocolitis. J. Matern. -Fetal Neonatal Med. 2015, 28, 1285–1290. [Google Scholar] [CrossRef]
- Barker, D.J. Adult consequences of fetal growth restriction. Clin. Obstet. Gynecol. 2006, 49, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Banister, C.E.; Koestler, D.C.; Maccani, M.A.; Padbury, J.F.; Houseman, E.A.; Marsit, C.J. Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics 2011, 6, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Zanardo, V.; Visentin, S.; Trevisanuto, D.; Bertin, M.; Cavallin, F.; Cosmi, E. Fetal aortic wall thickness: A marker of hypertension in IUGR children? Hypertens. Res. 2013, 36, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Bacchetta, J.; Harambat, J.; Dubourg, L.; Guy, B.; Liutkus, A.; Canterino, I.; Kassaï, B.; Putet, G.; Cochat, P. Both extrauterine and intrauterine growth restriction impair renal function in children born very preterm. Kidney Int. 2009, 76, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.L.; Huppi, P.S.; Mallard, C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J. Physiol. 2016, 594, 807–823. [Google Scholar] [CrossRef] [PubMed]
- Murray, E.; Fernandes, M.; Fazel, M.; Kennedy, S.H.; Villar, J.; Stein, A. Differential effect of intrauterine growth restriction on childhood neurodevelopment: A systematic review. BJOG 2015, 122, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Bickle Graz, M.; Tolsa, J.-F.; Fischer Fumeaux, C.J. Being small for gestational age: Does it matter for the neurodevelopment of premature infants? A cohort study. PLoS ONE 2015, 10, e0125769. [Google Scholar] [CrossRef]
- Korzeniewski, S.J.; Allred, E.N.; Joseph, R.M.; Heeren, T.; Kuban, K.C.; O’shea, T.M.; Leviton, A. Neurodevelopment at Age 10 Years of Children Born <28 Weeks With Fetal Growth Restriction. Pediatrics 2017, 140, 140. [Google Scholar]
- Baschat, A.A. Neurodevelopment after fetal growth restriction. Fetal Diagn. Ther. 2014, 36, 136–142. [Google Scholar] [CrossRef]
- Olivier, P.; Baud, O.; Bouslama, M.; Evrard, P.; Gressens, P.; Verney, C. Moderate growth restriction: Deleterious and protective effects on white matter damage. Neurobiol. Dis. 2007, 26, 253–263. [Google Scholar] [CrossRef]
- Guellec, I.; Lapillonne, A.; Marret, S.; Picaud, J.-C.; Mitanchez, D.; Charkaluk, M.-L.; Fresson, J.; Arnaud, C.; Flamand, C.; Cambonie, G.; et al. Effect of Intra- and Extrauterine Growth on Long-Term Neurologic Outcomes of Very Preterm Infants. J. Pediatr. 2016, 175, 93–99.e1. [Google Scholar] [CrossRef] [PubMed]
- Figueras, F.; Cruz-Martinez, R.; Sanz-Cortes, M. Neurobehavioral outcomes in preterm, growth-restricted infants with and without prenatal advanced signs of brain-sparing. Ultrasound Obstet. Gynecol. 2011, 38, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Andrade, E.; Figueroa-Diesel, H.; Jansson, T.; Rangel-Nava, H.; Gratacos, E. Changes in regional fetal cerebral blood flow perfusion in relation to hemodynamic deterioration in severely growth-restricted fetuses. Ultrasound Obstet. Gynecol. 2008, 32, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Padilla, N.; Falcón, C.; Sanz-Cortés, M.; Figueras, F.; Bargallo, N.; Crispi, F.; Eixarch, E.; Arranz, A.; Botet, F.; Gratacós, E. Differential effects of intrauterine growth restriction on brain structure and development in preterm infants: A magnetic resonance imaging study. Brain Res. 2011, 1382, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Fung, C.; Ke, X.; Brown, A.S.; Yu, X.; McKnight, R.A.; Lane, R.H. Uteroplacental insufficiency alters rat hippocampal cellular phenotype in conjunction with ErbB receptor expression. Pediatr. Res. 2012, 72, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Padilla, N.; Fransson, P.; Donaire, A.; Figueras, F.; Arranz, A.; Sanz-Cortés, M.; Tenorio, V.; Bargallo, N.; Junqué, C.; Lagercrantz, H.; et al. Intrinsic functional connectivity in preterm infants with fetal growth restriction evaluated at 12 months Corrected Age. Cereb. Cortex. 2017, 27, 4750–4758. [Google Scholar] [CrossRef] [PubMed]
- Poudel, R.; McMillen, I.C.; Dunn, S.L.; Zhang, S.; Morrison, J.L. Impact of chronic hypoxemia on blood flow to the brain, heart, and adrenal gland in the late-gestation IUGR sheep fetus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R151–R162. [Google Scholar] [CrossRef] [PubMed]
- Favrais, G.; van de Looij, Y.; Fleiss, B.; Ramanantsoa, N.; Bonnin, P.; Stoltenburg-Didinger, G.; Lacaud, A.; Saliba, E.; Dammann, O.; Gallego, J.; et al. Systemic inflammation disrupts the developmental program of white matter. Ann. Neurol. 2011, 70, 550–565. [Google Scholar] [CrossRef]
- Rideau, B.N.A.; Pham, H. Transcriptomic regulations in oligodendroglial and microglial cells related to brain damage following fetal growth restriction. Glia 2016, 64, 2306–2320. [Google Scholar] [CrossRef]
- Leviton, A.; Fichorova, R.N.; O’shea, T.M.; Kuban, K.; Paneth, N.; Dammann, O.; Allred, E.N. Two-hit model of brain damage in the very preterm newborn: Small for gestational age and postnatal systemic inflammation. Pediatr. Res. 2013, 73, 362–370. [Google Scholar] [CrossRef]
- Colella, M.; Frérot, A.; Novais, A.R.B.; Baud, O. Neonatal and Long-Term Consequences of Fetal Growth Restriction. Curr. Pediatr. Rev. 2018, 14, 212–218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhutta, Z.A.; Das, J.K.; Rizvi, A.; Gaffey, M.F.; Walker, N.; Horton, S.; Webb, P.; Lartey, A.; Black, R.E.; Lancet Nutrition Interventions Review Group, the Maternal and Child Nutrition Study Group. Evidence-based interventions for improvement of maternal and child nutrition: What can be done and at what cost? Lancet 2013, 382, 452–477, Erratum in: Lancet 2013, 382, 396. [Google Scholar] [CrossRef] [PubMed]
- Groom, K.M.; David, A.L. The role of aspirin, heparin, and other interventions in the prevention and treatment of fetal growth restriction. Am. J. Obstet. Gynecol. 2018, 218, S829–S840. [Google Scholar] [CrossRef] [PubMed]
- Haider, B.A.; Bhutta, Z.A. Multiple-micronutrient supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2012, 11, CD004905. [Google Scholar] [PubMed]
- Rumbold, A.; Ota, E.; Nagata, C.; Shahrook, S.; Crowther, C.A. Vitamin C supplementation in pregnancy. Cochrane Database Syst Rev. 2015, 9, CD004072. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.S.; Kakuma, R. Energy and protein intake in pregnancy. Cochrane Database Syst. Rev. 2003, 4, CD000032, Update in: Cochrane Database Syst. Rev. 2012, 9, CD000032. [Google Scholar] [CrossRef] [PubMed]
- Ota, E.; Tobe-Gai, R.; Mori, R.; Farrar, D. Antenatal dietary advice and supplementation to increase energy and protein intake. Cochrane Database Syst. Rev. 2012, 9, CD000032. [Google Scholar] [CrossRef]
- Garner, P.; Gulmezoglu, A.M. Drugs for preventing malaria inpregnant women. Cochrane Database Syst. Rev 2009, 4, CD000169. [Google Scholar]
- Roberge, S.; Nicolaides, K.; Demers, S.; Hyett, J.; Chaillet, N.; Bujold, E. The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: Systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2017, 216, 110–120.e6. [Google Scholar] [CrossRef]
- Meher, S.; Duley, L.; Hunter, K.; Askie, L. Antiplatelet therapy before or after 16 weeks’ gestation for preventing preeclampsia: An individual participant data meta-analysis. Am. J. Obstet. Gynecol. 2017, 216, 121–128.e2. [Google Scholar] [CrossRef]
- McCowan, L.M. Evidence-based guidelines for the management of suspected fetal growth restriction: Comparison and convergence. Am. J. Obstet. Gynecol. 2017, 218, S855–S868. [Google Scholar] [CrossRef] [PubMed]
- Greer, I.A.; Nelson-Piercy, C. Low-molecular-weight heparins for thromboprophylaxis and treatment of venous thromboembolism in pregnancy: A systematic review of safety and efficacy. Blood 2005, 106, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Di Simone, N.; Di Nicuolo, F.; Sanguinetti, M.; Ferrazzani, S.; D’Alessio, M.; Castellani, R.; Bompiani, A.; Caruso, A. Low-molecular weight heparin induces in vitro trophoblast invasiveness: Role of matrix metalloproteinases and tissue inhibitors. Placenta 2007, 28, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Yinon, Y.; Ben Meir, E.; Margolis, L.; Lipitz, S.; Schiff, E.; Mazaki-Tovi, S.; Simchen, M. Low molecular weight heparin therapy during pregnancy is associated with elevated circulatory levels of placental growth factor. Placenta 2015, 36, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Pusayapaibul, P.; Manonai, J.; Tangshewinsirikul, C. Factors influencing parental decisions to terminate pregnancies following prenatal diagnoses of major fetal anomalies at Ramathibodi Hospital, Bangkok, Thailand. BMC Pregnancy Childbirth 2022, 22, 480. [Google Scholar] [CrossRef] [PubMed]
- Figueras, F.; Caradeux, J.; Crispi, F.; Eixarch, E.; Peguero, A.; Gratacos, E. Diagnosis and surveillance of late-onset fetal growth restriction. Am. J. Obstet. Gynecol. 2018, 218, S790–S802.e1. [Google Scholar] [CrossRef] [PubMed]
- Caradeux, J.; Martinez-Portilla, R.J.; Peguero, A.; Sotiriadis, A.; Figueras, F. Diagnostic performance of third-trimester ultrasound for the prediction of late-onset fetal growth restriction: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2019, 220, 449–459.e19. [Google Scholar] [CrossRef] [PubMed]
- Roma, E.; Arnau, A.; Berdala, R.; Bergos, C.; Montesinos, J.; Figueras, F. Ultrasound screening for fetal growth restriction at 36 vs 32 weeks’ gestation: A randomized trial (ROUTE). Ultrasound Obstet. Gynecol. 2015, 46, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Mappa, I.; Bitsadze, V.; Słodki, M.; Khizroeva, J.; Makatsariya, A.; D’Antonio, F. Role of Doppler ultrasound at time of diagnosis of late-onset fetal growth restriction in predicting adverse perinatal outcome: Prospective cohort study. Ultrasound Obstet. Gynecol. 2020, 55, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Fetal Growth Restriction. ACOG Practice Bulletin, Number 227. Obstet. Gynecol. 2021, 137, e16–e28. [Google Scholar] [CrossRef] [PubMed]
- Akolekar, R.; Syngelaki, A.; Gallo, D.M.; Poon, L.C.; Nicolaides, K.H. Umbilical and fetal middle cerebral artery Doppler at 35-37 weeks’ gestation in the prediction of adverse perinatal outcome. Ultrasound Obstet. Gynecol. 2015, 46, 82–92. [Google Scholar] [CrossRef]
- Ropacka-Lesiak, M.; Korbelak, T.; Åšwider-Musielak, J.; Breborowicz, G. Cerebroplacental ratio in prediction of adverse perinatal outcome and fetal heart rate disturbances in uncomplicated pregnancy at 40 weeks and beyond. Arch. Med. Sci. 2015, 11, 142. [Google Scholar] [CrossRef]
- Karlsen, H.O.; Ebbing, C.; Rasmussen, S.; Kiserud, T.; Johnsen, S.L. Use of conditional centiles of middle cerebral artery pulsatility index and cerebroplacental ratio in the prediction of adverse perinatal outcomes. Acta Obstet. Gynecol. Scand. 2016, 95, 690–696. [Google Scholar] [CrossRef]
- Morales-RosellÃ, J.; Khalil, A.; Morlando, M.; Bhide, A.; Papageorghiou, A.; Thilaganathan, B. Poor neonatal acid-base status in term fetuses with low cerebroplacental ratio. Ultrasound Obstet. Gynecol. 2015, 45, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, P. Umbilical cord pH, blood gases, and lactate at birth: Normal values, interpretation, and clinical utility. Am. J. Obstet. Gynecol. 2023, 228, S1222–S1240. [Google Scholar] [CrossRef] [PubMed]
- Morales-Roselló, J.; Khalil, A.; Morlando, M.; Papageorghiou, A.; Bhide, A.; Thilaganathan, B. Changes in fetal Doppler indices as a marker of failure to reach growth potential at term. Ultrasound Obstet. Gynecol. 2014, 43, 303–310. [Google Scholar] [CrossRef]
- D’antonio, F.; Patel, D.; Chandrasekharan, N.; Thilaganathan, B.; Bhide, A. Role of cerebroplacental ratio for fetal assessment in prolonged pregnancy. Ultrasound Obstet. Gynecol. 2013, 42, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Monteith, C.; Flood, K.; Mullers, S.; Unterscheider, J.; Breathnach, F.; Daly, S. Evaluation of normalization of cerebro-placental ratio as a potential predictor for adverse outcome in SGA fetuses. Am. J. Obstet. Gynecol. 2017, 216, 285. [Google Scholar] [CrossRef] [PubMed]
- Flatley, C.; Greer, R.; Kumar, S. Magnitude of change in fetal cerebroplacental ratio in third trimester and risk of adverse pregnancy outcome. Ultrasound Obstet. Gynecol. 2017, 50, 514–519. [Google Scholar] [CrossRef]
- Morales-Roselló, J.; Khalil, A.; Alberola-Rubio, J.; Hervas-Marín, D.; Morlando, M.; Bhide, A.; Papageorghiou, A.; Perales-Marín, A.; Thilaganathan, B. Neonatal acid-base status in term fetuses: Mathematical models investigating cerebroplacental ratio and birth weight. Fetal. Diagnos Ther. 2015, 38, 55–60. [Google Scholar] [CrossRef]
Normal Small Fetus | Small Fetus Due to Placental Insufficiency | Small Fetus Due to Congenital Abnormality/Aneuploidy | |
---|---|---|---|
Fetal anatomy | Normal | Normal | Abnormal |
Amniotic fluid | Normal | Reduced | Reduced or increased |
Uterine artery pulsatility index | Normal | Increased | Normal |
Umbilical artery pulsatility index | Normal | Increased | Possibly abnormal |
Middle Cerebral Artery pulsatility index | Normal | Reduced | Normal |
Ductus venosus a-wave | Normal | Abnormal | Possibly abnormal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsikouras, P.; Antsaklis, P.; Nikolettos, K.; Kotanidou, S.; Kritsotaki, N.; Bothou, A.; Andreou, S.; Nalmpanti, T.; Chalkia, K.; Spanakis, V.; et al. Diagnosis, Prevention, and Management of Fetal Growth Restriction (FGR). J. Pers. Med. 2024, 14, 698. https://doi.org/10.3390/jpm14070698
Tsikouras P, Antsaklis P, Nikolettos K, Kotanidou S, Kritsotaki N, Bothou A, Andreou S, Nalmpanti T, Chalkia K, Spanakis V, et al. Diagnosis, Prevention, and Management of Fetal Growth Restriction (FGR). Journal of Personalized Medicine. 2024; 14(7):698. https://doi.org/10.3390/jpm14070698
Chicago/Turabian StyleTsikouras, Panagiotis, Panos Antsaklis, Konstantinos Nikolettos, Sonia Kotanidou, Nektaria Kritsotaki, Anastasia Bothou, Sotiris Andreou, Theopi Nalmpanti, Kyriaki Chalkia, Vlasis Spanakis, and et al. 2024. "Diagnosis, Prevention, and Management of Fetal Growth Restriction (FGR)" Journal of Personalized Medicine 14, no. 7: 698. https://doi.org/10.3390/jpm14070698
APA StyleTsikouras, P., Antsaklis, P., Nikolettos, K., Kotanidou, S., Kritsotaki, N., Bothou, A., Andreou, S., Nalmpanti, T., Chalkia, K., Spanakis, V., Iatrakis, G., & Nikolettos, N. (2024). Diagnosis, Prevention, and Management of Fetal Growth Restriction (FGR). Journal of Personalized Medicine, 14(7), 698. https://doi.org/10.3390/jpm14070698