Novel Somay’s GLUCAR Index Efficiently Predicts Survival Outcomes in Locally Advanced Pancreas Cancer Patients Receiving Definitive Chemoradiotherapy: A Propensity-Score-Matched Cohort Analysis
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patient Population
2.2. Treatment Protocol
2.3. GLUCAR Index Calculation and Measurement
2.4. Treatment Response Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barros, A.G.; Pulido, C.F.; Machado, M.; Brito, M.J.; Couto, N.; Sousa, O.; Melo, S.A.; Mansinho, H. Treatment optimization of locally advanced and metastatic pancreatic cancer. Int. J. Oncol. 2021, 59, 110. [Google Scholar] [CrossRef] [PubMed]
- Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol. 2016, 22, 9694–9705. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, F.; Formisano, L.; Giardino, A.; Girelli, R.; Servetto, A.; Santaniello, A.; Foschini, F.; Marciano, R.; Mozzillo, E.; Carratù, A.C.; et al. Neoadjuvant treatment in locally advanced pancreatic cancer (LAPC) patients with FOLFIRINOX or gemcitabine NabPaclitaxel: A single-center experience and a literature review. Cancers 2019, 11, 981. [Google Scholar] [CrossRef] [PubMed]
- Hammel, P.; Huguet, F.; van Laethem, J.L.; Goldstein, D.; Glimelius, B.; Artru, P.; Borbath, I.; Bouché, O.; Shannon, J.; André, T.; et al. Effect of chemoradiotherapy vs. chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib: The LAP07 randomized clinical trial. JAMA 2016, 315, 1844–1853. [Google Scholar] [CrossRef] [PubMed]
- Hurt, C.N.; Falk, S.; Crosby, T.; McDonald, A.; Ray, R.; Joseph, G.; Staffurth, J.; Abrams, R.A.; Griffiths, G.; Maughan, T. Mukherjee S-term results and recurrence patterns from SCALOP: A phase II randomised trial of gemcitabine- or capecitabine-based chemoradiation for locally advanced pancreatic cancer. Br. J. Cancer 2017, 116, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M. Pancreatic cancer. N. Engl. J. Med. 2010, 362, 1605–1617. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Hurt, C.N.; Bridgewater, J.; Falk, S.; Cummins, S.; Wasan, H.; Crosby, T.; Jephcott, C.; Roy, R.; Radhakrishna, G.; et al. Gemcitabine-based or capecitabine-based chemoradiotherapy for locally advanced pancreatic cancer (SCALOP): A multicentre, randomised, phase 2 trial. Lancet Oncol. 2013, 14, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Dong, P.; Wang, W.G.; Tian, B.L. Positron emission tomography modalities prevent futile radical resection of pancreatic cancer: A meta-analysis. Int. J. Surg. 2017, 46, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Ma, Q.; Li, J.; Liu, H.; Li, W.; Ma, G.; Xu, Q.; Zhou, S.; Wu, E. High glucose promotes pancreatic cancer cell proliferation via the induction of EGF expression and transactivation of EGFR. PLoS ONE 2011, 6, e27074. [Google Scholar] [CrossRef]
- Sollie, S.; Michaud, D.S.; Sarker, D.; Karagiannis, S.N.; Josephs, D.H.; Hammar, N.; Santaolalla, A.; Walldius, G.; Garmo, H.; Holmberg, L.; et al. Chronic inflammation markers are associated with risk of pancreatic cancer in the Swedish AMORIS cohort study. BMC Cancer 2019, 19, 858. [Google Scholar] [CrossRef]
- Li, D.; Tang, H.; Hassan, M.M.; Holly, E.A.; Bracci, P.M.; Silverman, D.T. Diabetes and risk of pancreatic cancer: A pooled analysis of three large case-control studies. Cancer Causes Control 2011, 22, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Ben, Q.; Xu, M.; Ning, X.; Liu, J.; Hong, S.; Huang, W.; Zhang, H.; Li, Z. Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of cohort studies. Eur. J. Cancer 2011, 47, 1928–1937. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.F.; Lai, S.W.; Li, C.I.; Chen, W.C. Diabetes mellitus correlates with increased risk of pancreatic cancer: A population-based cohort study in Taiwan. J. Gastroenterol. Hepatol. 2012, 27, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.K.; Mazo, A.E.; Goodman, M.; Egnatashvili, V.; Sarmiento, J.M.; Staley, C.A.; Galloway, J.R.; Adsay, N.V.; Jacobs, S.; Kooby, D.A. Preoperative diabetes mellitus and long-term survival after resection of pancreatic adenocarcinoma. Ann. Surg. Oncol. 2010, 17, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, S.S.; Calle, E.E.; Teras, L.R.; Petrelli, J.; Thun, M.J. Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am. J. Epidemiol. 2004, 159, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Li, H.; Gao, C.; Zhao, H.; Wu, S.; Wu, H.; Wang, C.; Shen, Q.; Yin, T. High glucose promotes pancreatic cancer cells to escape from immune surveillance via AMPK-Bmi1-GATA2-MICA/B pathway. J. Exp. Clin. Cancer Res. 2019, 38, 192. [Google Scholar] [CrossRef] [PubMed]
- Topkan, E.; Selek, U.; Pehlivan, B.; Kucuk, A.; Haksoyler, V.; Kilic Durankus, N.; Sezen, D.; Bolukbasi, Y. Prognostic significance of novel pancreas cancer prognostic index in unresectable locally advanced pancreas cancers treated with definitive concurrent chemoradiotherapy. J. Inflamm. Res. 2021, 14, 4433–4444. [Google Scholar] [CrossRef] [PubMed]
- Maloney, S.; Pavlakis, N.; Itchins, M.; Arena, J.; Mittal, A.; Hudson, A.; Colvin, E.; Sahni, S.; Diakos, C.; Chan, D.; et al. The prognostic and predictive role of the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR) as biomarkers in resected pancreatic cancer. J. Clin. Med. 2023, 12, 1989. [Google Scholar] [CrossRef] [PubMed]
- Maloney, S.; Pavlakis, N.; Itchins, M.; Arena, J.; Mittal, A.; Hudson, A.; Colvin, E.; Sahni, S.; Diakos, C.; Chan, D.; et al. Prognostic usefulness of advanced lung cancer inflammation index in locally-advanced pancreatic carcinoma patients treated with radical chemoradiotherapy. Cancer Manag. Res. 2019, 11, 8807–8815. [Google Scholar]
- Neumann, C.C.M.; Schneider, F.; Hilfenhaus, G.; Vecchione, L.; Felsenstein, M.; Ihlow, J.; Geisel, D.; Sander, S.; Pratschke, J.; Stintzing, S.; et al. Inflammation-based prognostic scores in pancreatic cancer patients—A single-center analysis of 1294 patients within the last decade. Cancers 2023, 15, 2367. [Google Scholar] [CrossRef]
- Topkan, E.; Selek, U.; Kucuk, A.; Pehlivan, B. Low Pre-chemoradiotherapyPan-immune-inflammation value (PIV) measures predict better survival outcomes in locally advanced pancreatic adenocarcinomas. J. Inflamm. Res. 2022, 15, 5413–5423. [Google Scholar] [CrossRef]
- Kucuk, A.; Topkan, E.; Selek, U.; Haksoyler, V.; Mertsoylu, H.; Besen, A.A.; Pehlivan, B. High measures of pre-chemoradiotherapy platelet-to-albumin ratio indicates poor prognosis in locally advanced pancreatic cancer patients. Ther. Clin. Risk Manag. 2022, 18, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Haksoyler, V.; Topkan, E. Prognostic utility of prechemoradiotherapy albumin-to-alkaline phosphatase ratio in unresectable locally advanced pancreatic carcinoma patients. Gastroenterol. Res. Pract. 2021, 2021, 6647145. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.; Pyo, J.S.; Son, B.K. Prognostic roles of inflammatory markers in pancreatic cancer: Comparison between the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio. Gastroenterol. Res. Pract. 2018, 2018, 9745601. [Google Scholar] [CrossRef] [PubMed]
- Shirakawa, T.; Makiyama, A.; Shimokawa, M.; Otsuka, T.; Shinohara, Y.; Koga, F.; Ueda, Y.; Nakazawa, J.; Otsu, S.; Komori, A.; et al. C-reactive protein/albumin ratio is the most significant inflammatory marker in unresectable pancreatic cancer treated with FOLFIRINOX or gemcitabine plus nab-paclitaxel. Sci. Rep. 2023, 13, 8815. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Wang, L.; Zheng, S. Prognostic and clinicopathological significance of c-reactive protein to albumin ratio in patients with pancreatic cancer: A meta-analysis. Dose Response 2020, 18, 1559325820931290. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Fan, Y.; Gao, Z. Pretreatment C-reactive protein/albumin ratio for predicting overall survival in pancreatic cancer: A meta-analysis. Medicine 2020, 99, e20595. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Fan, K.; Gong, Y.; Huang, Q.; Yang, C.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; Luo, G.; et al. The CRP/Albumin ratio predicts survival and monitors chemotherapeutic effectiveness in patients with advanced pancreatic cancer. Cancer Manag. Res. 2019, 11, 8781–8788. [Google Scholar] [CrossRef] [PubMed]
- Hajibandeh, S.; Hajibandeh, S.; Romman, S.; Parente, A.; Laing, R.W.; Satyadas, T.; Subar, D.; Aroori, S.; Bhatt, A.; Durkin, D.; et al. Preoperative C-reactive protein-to-albumin ratio and its ability to predict outcomes of pancreatic cancer resection: A systematic review. Biomedicines 2023, 11, 1983. [Google Scholar] [CrossRef]
- Hang, J.; Xue, P.; Yang, H.; Li, S.; Chen, D.; Zhu, L.; Huang, W.; Ren, S.; Zhu, Y.; Wang, L. Pretreatment C-reactive protein to albumin ratio for predicting overall survival in advanced pancreatic cancer patients. Sci. Rep. 2017, 7, 2993. [Google Scholar] [CrossRef]
- Somay, E.; Topkan, E.; Yilmaz, B.; Besen, A.A.; Mertsoylu, H.; Selek, U. Predicting teeth extraction after concurrent chemoradiotherapy in locally advanced nasopharyngeal cancer patients using the novel GLUCAR index. Diagnostics 2023, 13, 3594. [Google Scholar] [CrossRef] [PubMed]
- Topkan, E.; Yavuz, A.A.; Aydin, M.; Onal, C.; Yapar, F.; Yavuz, M.N. Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma. J. Exp. Clin. Cancer Res. 2008, 27, 41. [Google Scholar] [CrossRef]
- Pauli, D.; Seyfarth, M.; Dibbelt, L. The Abbott Architect c8000: Analytical performance and productivity characteristics of a new analyzer applied to general chemistry testing. Clin. Lab. 2005, 51, 31–41. [Google Scholar]
- Oettle, H.; Post, S.; Neuhaus, P.; Gellert, K.; Langrehr, J.; Ridwelski, K.; Schramm, H.; Fahlke, J.; Zuelke, C.; Burkart, C.; et al. Adjuvant chemotherapy with gemcitabine vs. observation in patients undergoing curative-intent resection of pancreatic cancer: A randomized controlled trial. JAMA 2007, 297, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, B.A.; Özdemir, Y.; Colakoglu, T.; Topkan, E. Impact of presence and degree of pretreatment weight loss in locally-advanced pancreatic cancer patients treated with definitive concurrent chemoradiotherapy. Pancreatology 2016, 16, 599–604. [Google Scholar] [CrossRef]
- Ikeda, M.; Okada, S.; Tokuuye, K.; Ueno, H.; Okusaka, T. Prognostic factors in patients with locally advanced pancreatic carcinoma receiving chemoradiotherapy. Cancer 2001, 91, 490–495. [Google Scholar] [CrossRef]
- Afghani, E.; Klein, A.P. Pancreatic adenocarcinoma: Trends in epidemiology, risk factors, and outcomes. Hematol. Oncol. Clin. N. Am. 2022, 36, 879–895. [Google Scholar] [CrossRef]
- Huxley, R.; Ansary-Moghaddam, A.; Berrington de González, A.; Barzi, F.; Woodward, M. Type-II diabetes and pancreatic cancer: A meta-analysis of 36 studies. Br. J. Cancer 2005, 92, 2076–2083. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Andersen, D.K. Diabetes and pancreatic cancer. Endocr. Relat. Cancer 2012, 19, F9–F26. [Google Scholar] [CrossRef]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.A.; Vogiatzi, G.; Papaioannou, S. The role of inflammation in diabetes: Current concepts and future perspectives. Eur. Cardiol. 2019, 14, 50–59. [Google Scholar] [CrossRef]
- Daryabor, G.; Atashzar, M.R.; Kabelitz, D.; Meri, S.; Kalantar, K. The Effects of Type 2 Diabetes Mellitus on Organ Metabolism and the Immune System. Front. Immunol. 2020, 11, 1582. [Google Scholar] [CrossRef] [PubMed]
- Kern, L.; Mittenbuhler, M.J.; Vesting, A.J.; Ostermann, A.L.; Wunderlich, C.M.; Wunderlich, F.T. Obesity-induced TNF alpha and IL-6 signaling: The missing link between obesity and inflammation-driven liver and colorectal cancers. Cancers 2018, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Mantuano, N.R.; Stanczak, M.A.; Oliveira, I.A.; Kirchhammer, N.; Filardy, A.A.; Monaco, G.; Santos, R.C.; Fonseca, A.C.; Fontes, M.; Bastos, C.S., Jr.; et al. Hyperglycemia enhances cancer immune evasion by inducing alternative macrophage polarization through increased O-GlcNAcylation. Cancer Immunol. Res. 2020, 8, 1262–1272. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, Y.; Herrera, M.T.; Soldevila, G.; Garcia-Garcia, L.; Fabián, G.; Pérez-Armendariz, E.M.; Bobadilla, K.; Guzmán-Beltrán, S.; Sada, E.; Torres, M. High glucose concentrations induce TNF-α production through the down-regulation of CD33 in primary human monocytes. BMC Immunol. 2012, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Moganti, K.; Li, F.; Schmuttermaier, C.; Riemann, S.; Klüter, H.; Gratchev, A.; Harmsen, M.C.; Kzhyshkowska, J. Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages. Immunobiology 2017, 222, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Valencia, J.; Garcia-Villa, E.; Arenas-Hernandez, A.; Garcia-Mena, J.; Diaz-Chavez, J.; Gariglio, P. Induction of p53 phosphorylation at Serine 20 by resveratrol is required to activate p53 target genes, restoring apoptosis in MCF-7 cells resistant to cisplatin. Nutrients 2018, 10, 1148. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hayashi, H.; Matsumura, K.; Uemura, N.; Shiraishi, Y.; Sato, H.; Baba, H. Biological and clinical impacts of glucose metabolism in pancreatic ductal adenocarcinoma. Cancers 2023, 15, 498. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Atkin, S.L.; Sahebkar, A.A. A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J. Cell. Physiol. 2019, 234, 1300–1312. [Google Scholar] [CrossRef] [PubMed]
- Rahn, S.; Zimmermann, V.; Viol, F.; Knaack, H.; Stemmer, K.; Peters, L.; Lenk, L.; Ungefroren, H.; Saur, D.; Schäfer, H.; et al. Diabetes as risk factor for pancreatic cancer: Hyperglycemia promotes epithelial-mesenchymal-transition and stem cell properties in pancreatic ductal epithelial cells. Cancer Lett. 2018, 415, 129–150. [Google Scholar] [CrossRef]
- Byrne, F.L.; Martin, A.R.; Kosasih, M.; Caruana, B.T.; Farrell, R. The role of hyperglycemia in endometrial cancer pathogenesis. Cancers 2020, 12, 1191. [Google Scholar] [CrossRef]
- Yuan, T.; Yang, T.; Chen, H.; Fu, D.; Hu, Y.; Wang, J.; Yuan, Q.; Yu, H.; Xu, W.; Xie, X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019, 20, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, H.; Qian, W.; Cheng, L.; Yan, B.; Han, L.; Xu, Q.; Ma, Q.; Ma, J. Hyperglycemia aggravates microenvironment hypoxia and promotes the metastatic ability of pancreatic cancer. Comput. Struct. Biotechnol. J. 2018, 16, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, J.; Han, L.; Xu, Q.; Lei, J.; Duan, W.; Li, W.; Wang, F.; Wu, E.; Ma, Q.; et al. Hyperglycemic tumor microenvironment induces perineural invasion in pancreatic cancer. Cancer Biol. Ther. 2015, 16, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, L.; Chen, X.; Jiang, Z.; Zong, L.; Ma, Q. Hyperglycemia promotes the epithelial-mesenchymal transition of pancreatic Cancer via hydrogen peroxide. Oxidative Med. Cell. Longev. 2016, 2016, 5190314. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Qian, W.; Li, J.; Ma, J.; Chen, X.; Jiang, Z.; Cheng, L.; Duan, W.; Wang, Z.; Wu, Z.; et al. High glucose microenvironment accelerates tumor growth via SREBP1-autophagy axis in pancreatic cancer. J. Exp. Clin. Cancer Res. 2019, 38, 302. [Google Scholar] [CrossRef] [PubMed]
- Don, B.R.; Kaysen, G. Serum albumin: Relationship to inflammation and nutrition. Semin. Dial. 2004, 17, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.J.; Morley, J.E.; Argilés, J.; Bales, C.; Baracos, V.; Guttridge, D.; Jatoi, A.; Kalantar-Zadeh, K.; Lochs, H.; Mantovani, G.; et al. Cachexia: A new definition. Clin. Nutr. 2008, 27, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Haruki, K.; Shiba, H.; Shirai, Y.; Horiuchi, T.; Iwase, R.; Fujiwara, Y.; Furukawa, K.; Misawa, T.; Yanaga, K. The C-reactive protein to albumin ratio predicts long-term outcomes in patients with pancreatic cancer after pancreatic resection. World J. Surg. 2016, 40, 2254–2260. [Google Scholar] [CrossRef]
- Liu, Z.; Jin, K.; Guo, M.; Long, J.; Liu, L.; Liu, C.; Xu, J.; Ni, Q.; Luo, G.; Yu, X. Prognostic value of the CRP/Alb ratio, a novel inflammation-based score in pancreatic cancer. Ann. Surg. Oncol. 2017, 24, 561–568. [Google Scholar] [CrossRef]
- Fu, Y.J.; Li, K.Z.; Bai, J.H.; Liang, Z.Q. C-reactive protein/albumin ratio is a prognostic indicator in Asians with pancreatic cancers: A meta-analysis. Medicine 2019, 98, e18219. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, X.; Contino, G.; Liesa, M.; Sahin, E.; Ying, H.; Bause, A.; Li, Y.; Stommel, J.M.; Dell’antonio, G.; et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011, 25, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Zhan, Y.; Xie, Y.; Du, S.; Chen, Y.; Zeng, Z.; Zhang, Y.; Chen, K.; Wang, Y.; Liang, L.; et al. Integration of glucose and cardiolipin anabolism confers radiation resistance of HCC. Hepatology 2022, 75, 1386–1401. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, H.; Hirotsu, Y.; Amemiya, K.; Amano, H.; Hirose, S.; Oyama, T.; Iimuro, Y.; Kojima, Y.; Mikata, R.; Mochizuki, H.; et al. Liquid biopsy of wash samples obtained via endoscopic ultrasound-guided fine-needle biopsy: Comparison with liquid biopsy of plasma in pancreatic cancer. Diagn. Cytopathol. 2024, 52, 325–331. [Google Scholar] [CrossRef]
Characteristic | All Patients | GLUCAR < 42.8 | GLUCAR ≥ 42.8 | p-Value | PSM Patients | GLUCAR < 42.8 | GLUCAR ≥ 42.8 | p-Value |
---|---|---|---|---|---|---|---|---|
(n = 217) | (n = 86) | (n = 131) | (n = 142) | (n = 71) | (n = 71) | |||
Median age, years (range) | 57 (39–77) | 56 (39–68) | 57 (39–77) | 0.97 | 56 (39–77) | 56 (39–77) | 56 (39–77) | 1.0 |
Age group, n (%) | 0.87 | 0.91 | ||||||
<70 years | 171 (78.8) | 70 (81.4) | 101 (80.6) | 113 (79.6) | 57 (80.3) | 56 (78.9) | ||
≥70 years | 46 (21.2) | 16 (18.6) | 30 (19.4) | 29 (20.4) | 14 (19.7) | 15 (21.1) | ||
Gender, n (%) | 0.41 | 0.68 | ||||||
Female | 51 (23.5) | 22 (25.6) | 29 (22.1) | 24 (16.9) | 13 (18.3) | 11 (15.5) | ||
Male | 166 (76.5) | 64 (74.4) | 102 (77.9) | 118 (83.1) | 58 (81.7) | 60 (84.5) | ||
KPS, n (%) | 0.53 | 1.0 | ||||||
90–100 | 176 (81.1) | 67 (77.9) | 109 (83.2) | 118 (83.1) | 59 (83.1) | 59 (83.1) | ||
70–80 | 41 (18.9) | 19 (22.1) | 22 (16.8) | 24 (16.9) | 12 (16.9) | 12 (16.9) | ||
WL > 5% | 0.02 | 0.83 | ||||||
Absent | 112 (51.6) | 38 (44.2) | 74 (56.4) | 68 (47.9) | 35 (49.3) | 33 (46.5) | ||
Present | 105 (48.4) | 48 (55.8) | 57 (43.6) | 74 (52.1) | 36 (50.7) | 38 (53.5) | ||
Tumor location, n (%) | 0.78 | 0.87 | ||||||
Head | 176 (81.1) | 68 (79.1) | 108 (82.4) | 116 (81.7) | 59 (83.1) | 57 (80.3) | ||
Body/tail | 41 (18.9) | 18 (20.9) | 23 (17.6) | 26 (18.3) | 12 (16.9) | 14 (19.7) | ||
N stage, n (%) | 0.38 | 0.79 | ||||||
0 | 114 (52.5) | 47 (54.6) | 67 (51.1) | 74 (52.1) | 36 (50.7) | 38 (53.5) | ||
1–2 | 103 (47.5) | 39 (45.4) | 64 (48.9) | 68 (47.9) | 35 (49.3) | 33 (46.5) | ||
CA 19-9 status, n (%) | 0.17 | 0.81 | ||||||
≤90 U/mL | 96 (44.2) | 42 (48.8) | 54 (41.2) | 66 (46.5) | 34 (47.9) | 32 (45.1) | ||
>90 U/mL | 121 (55.8) | 44 (51.2) | 77 (58.8) | 76 (53.5) | 37 (52.1) | 39 (54.9) |
Factor | Overall Survival | Progression-Free Survival | ||||
---|---|---|---|---|---|---|
Univariate p-Value | Multivariate p-Value | HR (95% CI) | Univariate p-Value | Multivariate p-Value | HR | |
Age group (<70 vs. ≥70 years) | 0.82 | - | 0.96 (0.88–1.06) | 0.78 | - | 00.96 (0.82–1.18) |
Gender (female vs. male) | 0.53 | - | 0.94 (0.83–1.11) | 0.67 | - | 0.89 (0.72–1.17) |
KPS (90–100 vs. 70–80) | 0.009 | 0.014 | 0.81 (0.66–0.95) | 0.007 | 0.011 | 0.72 (0.56–0.88) |
WL >5% (No vs. Yes) | <0.001 | <0.001 | 0.67 (0.53–0.81) | <0.001 | <0.001 | 0.62 (0.49–0.74) |
Tumor location (H vs. B/T) | 0.73 | - | 0.93 (0.86–1.07) | 0.69 | - | 0.84 (0.64–1.09) |
N-stage (0–1 vs. 2) | 0.004 | 0.007 | 0.76 (0.61–0.87) | 0.004 | 0.005 | 058 (0.39–0.78) |
CA19-9 (<vs. ≥90 U/m/L) | <0.001 | <0.001 | 0.71 (0.51–0.89) | <0.001 | <0.001 | 0.63 (0.49–0.75) |
GLUCAR (<vs. ≥42.8) | <0.001 | <0.001 | 0.24 (0.13–0.37) | <0.001 | <0.001 | 0.32 (0.021–0.44) |
Endpoint | All Patients | KPS | N-Stage | CA 19-9 Status | GLUCAR Index | >5% WL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
90–100 | 70–80 | p-Value | 0–1 | 2 | p-Value | <90 U/m/L | ≥90 U/m/L | p-Value | <42.8 | ≥42.8 | p-Value | Absent | Present | p-Value | ||
n = 142 | (n = 118) | (n = 24) | (n = 74) | (n = 68) | (n = 66) | (n = 76) | (n = 71) | (n = 71) | (n = 68) | (n = 74) | ||||||
PFS | 0.011 | 0.005 | <0.001 | <0.001 | <0.001 | |||||||||||
Median (mos.) | 7.5 | 13.7 | 5.9 | 9.1 | 6.4 | 11.3 | 5.7 | 15.8 | 4.7 | 12.1 | 5.2 | |||||
3-year (%) | 16.8 | 20.5 | 6.8 | 27.1 | 9.8 | 24.5 | 8.3 | 19.4 | 10.2 | 23.4 | 7.9 | |||||
5-year (%) | 12.9 | 14.1 | 0 | 21.2 | 4.9 | 17.1 | 4.8 | 19.4 | 5.1 | 18.2 | 4.9 | |||||
OS | 0.014 | 0.007 | <0.001 | <0.001 | <0.001 | |||||||||||
Median (mos.) | 17.4 | 19.0 | 4.6 | 23.1 | 8.9 | 20.8 | 8.7 | 25.4 | 10.1 | 22.2 | 15.1 | |||||
3-year (%) | 24.7 | 41.7 | 5.6 | 37.2 | 10.9 | 27.4 | 16.9 | 36.8 | 10.8 | 33.7 | 16.8 | |||||
5-year (%) | 10.0 | 14.1 | 0 | 18.9 | 4.2 | 15.7 | 5.4 | 27.3 | 5.4 | 24.2 | 7.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topkan, E.; Senyurek, S.; Kılic Durankus, N.; Ozturk, D.; Selek, U. Novel Somay’s GLUCAR Index Efficiently Predicts Survival Outcomes in Locally Advanced Pancreas Cancer Patients Receiving Definitive Chemoradiotherapy: A Propensity-Score-Matched Cohort Analysis. J. Pers. Med. 2024, 14, 746. https://doi.org/10.3390/jpm14070746
Topkan E, Senyurek S, Kılic Durankus N, Ozturk D, Selek U. Novel Somay’s GLUCAR Index Efficiently Predicts Survival Outcomes in Locally Advanced Pancreas Cancer Patients Receiving Definitive Chemoradiotherapy: A Propensity-Score-Matched Cohort Analysis. Journal of Personalized Medicine. 2024; 14(7):746. https://doi.org/10.3390/jpm14070746
Chicago/Turabian StyleTopkan, Erkan, Sukran Senyurek, Nulifer Kılic Durankus, Duriye Ozturk, and Ugur Selek. 2024. "Novel Somay’s GLUCAR Index Efficiently Predicts Survival Outcomes in Locally Advanced Pancreas Cancer Patients Receiving Definitive Chemoradiotherapy: A Propensity-Score-Matched Cohort Analysis" Journal of Personalized Medicine 14, no. 7: 746. https://doi.org/10.3390/jpm14070746
APA StyleTopkan, E., Senyurek, S., Kılic Durankus, N., Ozturk, D., & Selek, U. (2024). Novel Somay’s GLUCAR Index Efficiently Predicts Survival Outcomes in Locally Advanced Pancreas Cancer Patients Receiving Definitive Chemoradiotherapy: A Propensity-Score-Matched Cohort Analysis. Journal of Personalized Medicine, 14(7), 746. https://doi.org/10.3390/jpm14070746