Recommendations for the Application of Sex and Gender Medicine in Preclinical, Epidemiological and Clinical Research
Abstract
:1. Introduction
- Formulate hypotheses on the effects that sex/gender may have on a given phenomenon included in the study;
- Identify whether sex/gender differences have already been described in the literature;
- Assess whether sex/gender should be considered as an independent variable, a modifier or a confounding factor and what the reason is;
- Evaluate/calculate the statistical power of the sample size to be used in the analyses;
- Collect and analyze sex/gender-disaggregated data;
- Consider whether it is necessary to validate data in other studies using independent cohorts stratified for sex and gender;
- Ensure that in the final scientific paper, the differences between sex/gender are reported in Tables and Figures and are used to obtain conclusions.
2. Factors Underlying Sex and Gender Differences
2.1. Genetic and Epigenetic Factors
2.2. Hormonal Factors
2.3. Microbiota Composition and Metabolites
2.4. Immunity and Inflammation
2.5. Environmental, Socio-Cultural, and Ethnic Factors
2.6. Behavioral and Psychological Factors
3. Preclinical Studies
3.1. In Vitro and Ex Vivo Studies: Cells Have a Sex
3.2. Cell Cultures and Media
3.3. In Vivo Studies on Experimental Animals
3.4. The Role of Gonadal Hormones after Puberty in Animal Models-Based Studies
4. Epidemiological Studies and Issues from a Sex and Gender Perspective
Sex and Gender Dimensions in Epidemiological Studies
5. Sex and Gender Pitfalls in Clinical Studies and Trials
Sex-Specific Biomarkers
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greaves, L.; Ritz, S.A. Sex, Gender and Health: Mapping the Landscape of Research and Policy. Int. J. Environ. Res. Public. Health 2022, 19, 2563. [Google Scholar] [CrossRef] [PubMed]
- Schiebinger, L.; Klinge, I. Gendered Innovation in Health and Medicine. In Sex-Specific Analysis of Cardiovascular Function; Kerkhof, P.L.M., Miller, V.M., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2018; Volume 1065, pp. 643–654. [Google Scholar] [CrossRef]
- Bartz, D.; Chitnis, T.; Kaiser, U.B.; Rich-Edwards, J.W.; Rexrode, K.M.; Pennell, P.B.; Goldstein, J.M.; O’Neal, M.A.; LeBoff, M.; Behn, M.; et al. Clinical Advances in Sex- and Gender-Informed Medicine to Improve the Health of All: A Review. JAMA Intern. Med. 2020, 180, 574. [Google Scholar] [CrossRef] [PubMed]
- Wijchers, P.J.; Festenstein, R.J. Epigenetic Regulation of Autosomal Gene Expression by Sex Chromosomes. Trends Genet. 2011, 27, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Asjadi, K.; Hubbard, L.; Kendall, K.; Pardiñas, A.F.; Jermy, B.; Lewis, C.M.; Baune, B.T.; Boomsma, D.I.; Hamilton, S.P.; et al. Examining Sex Differences in Neurodevelopmental and Psychiatric Genetic Risk in Anxiety and Depression. PLoS ONE 2021, 16, e0248254. [Google Scholar] [CrossRef]
- Grant, O.A.; Wang, Y.; Kumari, M.; Zabet, N.R.; Schalkwyk, L. Characterising Sex Differences of Autosomal DNA Methylation in Whole Blood Using the Illumina EPIC Array. Clin. Epigenet 2022, 14, 62. [Google Scholar] [CrossRef] [PubMed]
- Spoletini, I.; Vitale, C.; Malorni, W.; Rosano, G.M.C. Sex Differences in Drug Effects: Interaction with Sex Hormones in Adult Life. In Sex and Gender Differences in Pharmacology; Regitz-Zagrosek, V., Ed.; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2013; Volume 214, pp. 91–105. [Google Scholar] [CrossRef]
- Nabhan, A.F.; Mburu, G.; Elshafeey, F.; Magdi, R.; Kamel, M.; Elshebiny, M.; Abuelnaga, Y.G.; Ghonim, M.; Abdelhamid, M.H.; Ghonim, M.; et al. Women’s Reproductive Span: A Systematic Scoping Review. Human Reprod. Open 2022, 2022, hoac005. [Google Scholar] [CrossRef]
- Núñez, F.; Maraver, M.J.; Colzato, L.S. Sex Hormones as Cognitive Enhancers? J. Cogn. Enhanc. 2020, 4, 228–233. [Google Scholar] [CrossRef]
- Walther, A.; Waldvogel, P.; Noser, E.; Ruppen, J.; Ehlert, U. Emotions and Steroid Secretion in Aging Men: A Multi-Study Report. Front. Psychol. 2017, 29, 1722. [Google Scholar] [CrossRef]
- Maiorino, M.I.; Bellastella, G.; Casciano, O.; Petrizzo, M.; Gicchino, M.; Caputo, M.; Sarnataro, A.; Giugliano, D.; Esposito, K. Gender-Differences in Glycemic Control and Diabetes Related Factors in Young Adults with Type 1 Diabetes: Results from the METRO Study. Endocrine 2018, 61, 240–247. [Google Scholar] [CrossRef]
- Taneja, V. Sex Hormones Determine Immune Response. Front. Immunol. 2018, 9, 1931. [Google Scholar] [CrossRef]
- Vásárhelyi, B.; Mészáros, K.; Karvaly, G.; Patócs, A. Focusing on tissue biomarkers. Estrogens as key players in the immune response and autoimmunity. Orv. Hetil. 2015, 156, 2070–2076. [Google Scholar] [CrossRef] [PubMed]
- Csaba, G. Hormonal Imprinting: The First Cellular-level Evidence of Epigenetic Inheritance and its Present State. Curr. Genom. 2019, 20, 409–418. [Google Scholar] [CrossRef]
- Csaba, G. The Biological Basis and Clinical Significance of Hormonal Imprinting, an Epigenetic Process. Clin. Epigenet 2011, 2, 187–196. [Google Scholar] [CrossRef]
- Roy, J.R.; Chakraborty, S.; Chakraborty, T.R. Estrogen-like Endocrine Disrupting Chemicals Affecting Puberty in Humans—A Review. Med. Sci. Monit. 2009, 15, RA137–RA145. [Google Scholar] [PubMed]
- Verma, R.; Balhara, Y.S.; Gupta, C. Gender Differences in Stress Response: Role of Developmental and Biological Determinants. Ind. Psychiatry J. 2011, 20, 4. [Google Scholar] [CrossRef] [PubMed]
- Iwata, M.; Ota, K.T.; Duman, R.S. The Inflammasome: Pathways Linking Psychological Stress, Depression, and Systemic Illnesses. Brain Behav. Immun. 2013, 31, 105–114. [Google Scholar] [CrossRef]
- Kivimäki, M.; Steptoe, A. Effects of Stress on the Development and Progression of Cardiovascular Disease. Nat. Rev. Cardiol. 2018, 15, 215–229. [Google Scholar] [CrossRef]
- Dragano, N.; Siegrist, J.; Nyberg, S.T.; Lunau, T.; Fransson, E.I.; Alfredsson, L.; Bjorner, J.B.; Borritz, M.; Burr, H.; Erbel, R.; et al. Effort–Reward Imbalance at Work and Incident Coronary Heart Disease: A Multicohort Study of 90,164 Individuals. Epidemiology 2017, 28, 619–626. [Google Scholar] [CrossRef]
- Albert, P.R. Why Is Depression More Prevalent in Women? J. Psychiatry Neurosci. 2015, 40, 219–221. [Google Scholar] [CrossRef]
- Bucciarelli, V.; Caterino, A.L.; Bianco, F.; Caputi, C.G.; Salerni, S.; Sciomer, S.; Maffei, S.; Gallina, S. Depression and Cardiovascular Disease: The Deep Blue Sea of Women’s Heart. Trends Cardiovasc. Med. 2020, 30, 170–176. [Google Scholar] [CrossRef]
- Gafarov, V.V.; Panov, D.O.; Gromova, E.A.; Gagulin, I.V.; Gafarova, A.V. The Influence of Depression on Risk Development of Acute Cardiovascular Diseases in the Female Population Aged 25–64 in Russia. Int. J. Circumpolar Health 2013, 72, 21223. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lee, S.H.; Pae, C. Gender differences in anxiety and depressive symptomatology determined by network analysis in panic disorder. J. Affect. Disord. 2023, 15, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Senoo, K.; Kaneko, H.; Ueno, K.; Suzuki, Y.; Okada, A.; Fujiu, K.; Jo, T.; Takeda, N.; Morita, H.; Kamiya, K.; et al. Sex Differences in the AssociationBetween Depression and IncidentCardiovascular Disease. JACC 2024, 4, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Waqar, A.; Jain, A.; Joseph, C.; Srivastava, K.; Ochuba, O.; Alkayyali, T.; Poudel, S. Cardioprotective Role of Estrogen in Takotsubo Cardiomyopathy. Cureus 2022, 14, e22845. [Google Scholar] [CrossRef]
- Samad, Z.; Boyle, S.; Ersboll, M.; Vora, A.N.; Zhang, Y.; Becker, R.C.; Williams, R.; Kuhn, C.; Ortel, T.L.; Rogers, J.G.; et al. Sex Differences in Platelet Reactivity and Cardiovascular and Psychological Response to Mental Stress in Patients with Stable Ischemic Heart Disease. J. Am. Coll. Cardiol. 2014, 64, 1669–1678. [Google Scholar] [CrossRef]
- Campesi, I.; Racagni, G.; Franconi, F. Just a Reflection: Does Drug Repurposing Perpetuate Sex-Gender Bias in the Safety Profile? Pharmaceuticals 2021, 14, 730. [Google Scholar] [CrossRef]
- Wright, M.R.; von Wright, J.; Frankenhaeuser, M. Relationships Between Sex-Related Psychological Characteristics during Adolescence and Catecholamine Excretion during Achievement Stress. Psychophysiology 1981, 18, 362–370. [Google Scholar] [CrossRef]
- Kirschbaum, C.; Wüst, S.; Faig, H.G.; Hellhammer, D.H. Heritability of Cortisol Responses to Human Corticotropin-Releasing Hormone, Ergometry, and Psychological Stress in Humans. J. Clin. Endocrinol. Metab. 1992, 75, 1526–1530. [Google Scholar] [CrossRef]
- Oyola, M.G.; Handa, R.J. Hypothalamic–Pituitary–Adrenal and Hypothalamic–Pituitary–Gonadal Axes: Sex Differences in Regulation of Stress Responsivity. Stress 2017, 20, 476–494. [Google Scholar] [CrossRef]
- Leistner, C.; Menke, A. Hypothalamic–Pituitary–Adrenal Axis and Stress. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 175, pp. 55–64. [Google Scholar] [CrossRef]
- Garsetti, D.E.; Sahay, K.; Wang, Y.; Rogers, M.B. Sex and the Basal mRNA Synthesis Machinery. WIREs RNA 2023, 14, e1765. [Google Scholar] [CrossRef]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.-C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome Definition Re-Visited: Old Concepts and New Challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Mueller, S.; Saunier, K.; Hanisch, C.; Norin, E.; Alm, L.; Midtvedt, T.; Cresci, A.; Silvi, S.; Orpianesi, C.; Verdenelli, M.C.; et al. Differences in Fecal Microbiota in Different European Study Populations in Relation to Age, Gender, and Country: A Cross-Sectional Study. Appl. Environ. Microbiol. 2006, 72, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Unno, T.; Kim, B.-Y.; Park, M.-S. Sex Differences in Gut Microbiota. World J. Mens. Health 2020, 38, 48. [Google Scholar] [CrossRef]
- Vemuri, R.; Sylvia, K.E.; Klein, S.L.; Forster, S.C.; Plebanski, M.; Eri, R.; Flanagan, K.L. The Microgenderome Revealed: Sex Differences in Bidirectional Interactions between the Microbiota, Hormones, Immunity and Disease Susceptibility. Semin. Immunopathol. 2019, 41, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, H.; Hird, S.M.; Chen, M.-H.; Xu, W.; Maas, K.; Cong, X. Sex Differences in Gut Microbial Development of Preterm Infant Twins in Early Life: A Longitudinal Analysis. Front. Cell. Infect. Microbiol. 2021, 11, 671074. [Google Scholar] [CrossRef]
- Rosser, E.C.; de Gruijter, N.M.; Matei, D.E. Mini-Review: Gut-Microbiota and the Sex-Bias in Autoimmunity—Lessons Learnt From Animal Models. Front. Med. 2022, 16, 910561. [Google Scholar] [CrossRef]
- Markle, J.G.M.; Frank, D.N.; Mortin-Toth, S.; Robertson, C.E.; Feazel, L.M.; Rolle-Kampczyk, U.; von Bergen, M.; McCoy, K.D.; Macpherson, A.J.; Danska, J.S. Sex Differences in the Gut Microbiome Drive Hormone-Dependent Regulation of Autoimmunity. Science 2013, 339, 1084–1088. [Google Scholar] [CrossRef]
- Holingue, C.; Budavari, A.C.; Rodriguez, K.M.; Zisman, C.R.; Windheim, G.; Fallin, M.D. Sex Differences in the Gut-Brain Axis: Implications for Mental Health. Curr. Psychiatry Rep. 2020, 22, 83. [Google Scholar] [CrossRef]
- Klein, S.L. Sex Influences Immune Responses to Viruses, and Efficacy of Prophylaxis and Treatments for Viral Diseases. Bioessays 2012, 34, 1050–1059. [Google Scholar] [CrossRef]
- Lasrado, N.; Jia, T.; Massilamany, C.; Franco, R.; Illes, Z.; Reddy, J. Mechanisms of Sex Hormones in Autoimmunity: Focus on EAE. Biol. Sex. Differ. 2020, 11, 50. [Google Scholar] [CrossRef]
- Ortona, E.; Pierdominici, M.; Rider, V. Editorial: Sex Hormones and Gender Differences in Immune Responses. Front. Immunol. 2019, 10, 1076. [Google Scholar] [CrossRef] [PubMed]
- McCombe, P. The Short and Long-Term Effects of Pregnancy on Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. J. Clin. Med. 2018, 7, 494. [Google Scholar] [CrossRef] [PubMed]
- Carter, M. Gender Socialization and Identity Theory. Social. Sci. 2014, 3, 242–263. [Google Scholar] [CrossRef]
- Varela-Mato, V.; Cancela, J.M.; Ayan, C.; Martín, V.; Molina, A. Lifestyle and Health among Spanish University Students: Differences by Gender and Academic Discipline. Int. J. Environ. Res. Public. Health 2012, 9, 2728–2741. [Google Scholar] [CrossRef]
- McGill, H.C.; McMahan, C.A.; Gidding, S.S. Preventing Heart Disease in the 21st Century: Implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Study. Circulation 2008, 117, 1216–1227. [Google Scholar] [CrossRef]
- Maierà, E.; Pagnotta, F.P. Gender Identity in the Contemporary Age: It Is Often a Suffered Conquest. Psychiatr. Danub. 2022, 34 (Suppl. 8), 50–55. [Google Scholar]
- Bacigalupe, A.; Martín, U. Gender Inequalities in Depression/Anxiety and the Consumption of Psychotropic Drugs: Are We Medicalising Women’s Mental Health? Scand. J. Public Health 2021, 49, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Regitz-Zagrosek, V. Sex and Gender Differences in Health: Science & Society Series on Sex and Science. EMBO Rep. 2012, 13, 596–603. [Google Scholar] [CrossRef]
- Fitz-James, M.H.; Cavalli, G. Molecular Mechanisms of Transgenerational Epigenetic Inheritance. Nat. Rev. Genet. 2022, 23, 325–341. [Google Scholar] [CrossRef]
- Jäncke, L. Sex/Gender Differences in Cognition, Neurophysiology, and Neuroanatomy. F1000Research 2018, 7, 805. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, H.; Zheng, T.; Chang, Y.; Luo, Y. Females Are More Sensitive to Opponent’s Emotional Feedback: Evidence From Event-Related Potentials. Front. Hum. Neurosci. 2018, 12, 275. [Google Scholar] [CrossRef] [PubMed]
- Taras, M.A.; Pellegrini, A. Sex/Gender Psychological Differences in the Adult Diabetic Patient and How a Child’s Response to Chronic Disease Varies with Age and Can Be Influenced by Technology. Diabetology 2021, 2, 19. [Google Scholar] [CrossRef]
- Di Tella, M.; Miti, F.; Ardito, R.B.; Adenzato, M. Social Cognition and Sex: Are Men and Women Really Different? Personal. Individ. Differ. 2020, 162, 110045. [Google Scholar] [CrossRef]
- Kuehner, C. Why Is Depression More Common among Women than among Men? Lancet Psychiatry 2017, 4, 146–158. [Google Scholar] [CrossRef]
- Hentschel, T.; Heilman, M.E.; Peus, C.V. The Multiple Dimensions of Gender Stereotypes: A Current Look at Men’s and Women’s Characterizations of Others and Themselves. Front. Psychol. 2019, 10, 11. [Google Scholar] [CrossRef]
- Becker, J.B.; Arnold, A.P.; Berkley, K.J.; Blaustein, J.D.; Eckel, L.A.; Hampson, E.; Herman, J.P.; Marts, S.; Sadee, W.; Steiner, M.; et al. Strategies and Methods for Research on Sex Differences in Brain and Behavior. Endocrinology 2005, 146, 1650–1673. [Google Scholar] [CrossRef]
- Buoncervello, M.; Marconi, M.; Carè, A.; Piscopo, P.; Malorni, W.; Matarrese, P. Preclinical Models in the Study of Sex Differences. Clin. Sci. 2017, 131, 449–469. [Google Scholar] [CrossRef]
- Musuamba, F.T.; Bursi, R.; Manolis, E.; Karlsson, K.; Kulesza, A.; Courcelles, E.; Boissel, J.-P.; Lesage, R.; Crozatier, C.; Voisin, E.M.; et al. Verifying and Validating Quantitative Systems Pharmacology and In Silico Models in Drug Development: Current Needs, Gaps, and Challenges. CPT Pharmacomet. Syst. Pharmacol. 2020, 9, 195–197. [Google Scholar] [CrossRef]
- Wakefield, L.; Agarwal, S.; Tanner, K. Preclinical Models for Drug Discovery for Metastatic Disease. Cell 2023, 186, 1792–1813. [Google Scholar] [CrossRef]
- Shah, K.; McCormack, C.E.; Bradbury, N.A. Do You Know the Sex of Your Cells? Am. J. Physiol. Cell Physiol. 2014, 306, C3–C18. [Google Scholar] [CrossRef]
- Souren, N.Y.; Fusenig, N.E.; Heck, S.; Dirks, W.G.; Capes-Davis, A.; Bianchini, F.; Plass, C. Cell line authentication: A necessity for reproducible biomedical research. EMBO J. 2022, 41, e111307. [Google Scholar] [CrossRef]
- Beery, A.K. Inclusion of Females Does Not Increase Variability in Rodent Research Studies. Curr. Opin. Behav. Sci. 2018, 23, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Voskuhl, R. Preclinical Studies of Sex Differences: A Clinical Perspective. Biol. Sex. Differ. 2016, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- de Souza Santos, R. Sex and Media: Considerations for Cell Culture Studies. ALTEX 2018, 35, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Durkin, A.S.; Cedrone, E.; Sykes, G.; Boles, D.; Reid, Y.A. Utility of Gender Determination in Cell Line Identity. Vitr. Cell Dev. Biol. Anim. 2000, 36, 344. [Google Scholar] [CrossRef]
- Maselli, A.; Matarrese, P.; Straface, E.; Canu, S.; Franconi, F.; Malorni, W. Cell Sex: A New Look at Cell Fate Studies. FASEB J. 2009, 23, 978–984. [Google Scholar] [CrossRef]
- Straface, E.; Gambardella, L.; Brandani, M.; Malorni, W. Sex Differences at Cellular Level: “Cells Have a Sex”. Handb. Exp. Pharmacol. 2012, 214, 49–65. [Google Scholar] [CrossRef]
- Franconi, F.; Rosano, G.; Campesi, I. Need for Gender-Specific Pre-Analytical Testing: The Dark Side of the Moon in Laboratory Testing. Int. J. Cardiol. 2015, 179, 514–535. [Google Scholar] [CrossRef]
- Arigony, A.L.V.; de Oliveira, I.M.; Machado, M.; Bordin, D.L.; Bergter, L.; Prá, D.; Pêgas Henriques, J.A. The Influence of Micronutrients in Cell Culture: A Reflection on Viability and Genomic Stability. BioMed Res. Int. 2013, 2013, 597282. [Google Scholar] [CrossRef]
- Sikora, M.J.; Johnson, M.D.; Lee, A.V.; Oesterreich, S. Endocrine Response Phenotypes Are Altered by Charcoal-Stripped Serum Variability. Endocrinology 2016, 157, 3760–3766. [Google Scholar] [CrossRef]
- Brunner, D. Serum-Free Cell Culture: The Serum-Free Media Interactive Online Database. ALTEX 2010, 27, 53–62. [Google Scholar] [CrossRef]
- van der Valk, J. Fetal Bovine Serum (FBS): Past—Present—Future. ALTEX 2018, 35, 99–118. [Google Scholar] [CrossRef] [PubMed]
- McKee, T.J.; Komarova, S.V. Is It Time to Reinvent Basic Cell Culture Medium? Am. J. Physiol. Cell Physiol. 2017, 312, C624–C626. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Cuevas, J.E.; Sirbasku, D.A. Estrogen Mitogenic Action. Iii. Is Phenol Red a “Red Herring”? Vitr. Cell Dev. Biol. Anim. 2000, 36, 447. [Google Scholar] [CrossRef]
- Berthois, Y.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Phenol Red in Tissue Culture Media Is a Weak Estrogen: Implications Concerning the Study of Estrogen-Responsive Cells in Culture. Proc. Natl. Acad. Sci. USA 1986, 83, 2496–2500. [Google Scholar] [CrossRef]
- Wesierska-Gadek, J.; Schreiner, T.; Maurer, M.; Waringer, A.; Ranftler, C. Phenol Red in the Culture Medium Strongly Affects the Susceptibility of Human MCF-7 Cells to Roscovitine. Cell Mol. Biol. Lett. 2007, 12, 280–293. [Google Scholar] [CrossRef] [PubMed]
- Soto, A.M.; Justicia, H.; Wray, J.W.; Sonnenschein, C. P-Nonyl-Phenol: An Estrogenic Xenobiotic Released from “Modified” Polystyrene. Environ. Health Perspect. 1991, 92, 167–173. [Google Scholar] [CrossRef]
- Clayton, J.A.; Collins, F.S. Policy: NIH to Balance Sex in Cell and Animal Studies. Nature 2014, 509, 282–283. [Google Scholar] [CrossRef]
- Carmody, C.; Duesing, C.G.; Kane, A.E.; Mitchell, S.J. Is Sex as a Biological Variable Still Being Ignored in Preclinical Aging Research? J. Gerontol. Ser. A 2022, 77, 2177–2180. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F.; Arnold, A.P.; Reue, K. A Guide for the Design of Pre-Clinical Studies on Sex Differences in Metabolism. Cell Metab. 2017, 25, 1216–1230. [Google Scholar] [CrossRef]
- Sorge, R.E.; Martin, L.J.; Isbester, K.A.; Sotocinal, S.G.; Rosen, S.; Tuttle, A.H.; Wieskopf, J.S.; Acland, E.L.; Dokova, A.; Kadoura, B.; et al. Olfactory Exposure to Males, Including Men, Causes Stress and Related Analgesia in Rodents. Nat. Methods 2014, 11, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, A.; Arnold, A.P.; Bangasser, D.A.; Denton, K.M.; Gupta, A.; Hilliard Krause, L.M.; Mayer, E.A.; McCarthy, M.; Miller, W.L.; Raznahan, A.; et al. Considering Sex as a Biological Variable in Basic and Clinical Studies: An Endocrine Society Scientific Statement. Endocr. Rev. 2021, 42, 219–258. [Google Scholar] [CrossRef] [PubMed]
- Finnerty, C.C.; Mabvuure, N.T.; Ali, A.; Kozar, R.A.; Herndon, D.N. The Surgically Induced Stress Response. JPEN J. Parenter. Enteral Nutr. 2013, 37 (Suppl. 5), 9S–21S. [Google Scholar] [CrossRef]
- Arnold, A.P. Four Core Genotypes and XY* Mouse Models: Update on Impact on SABV Research. Neurosci. Biobehav. Rev. 2020, 119, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gendered Innovations: How Inclusive Analysis Contributes to Research and Innovation; Publications Office of the European Union: Luxembourg, 2020.
- Jahn, I.; Börnhorst, C.; Günther, F.; Brand, T. Examples of Sex/Gender Sensitivity in Epidemiological Research: Results of an Evaluation of Original Articles Published in JECH 2006–2014. Health Res. Policy Syst. 2017, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Mangia, C.; Ferroni, E. The importance of asking the right questions. E&P, 2021; 315–316. [Google Scholar]
- Ferroni, E.; Ruggieri, A.; Biscaglia, L.; Mangia, C. Sex and Gender Approach in Epidemiology and Public Health Research. J. Sex Gend. Specif. Med. 2023, 9, 3–5. [Google Scholar] [CrossRef]
- Mazure, C.M.; Jones, D.P. Twenty Years and Still Counting: Including Women as Participants and Studying Sex and Gender in Biomedical Research. BMC Womens Health 2015, 15, 94. [Google Scholar] [CrossRef]
- Labots, G.; Jones, A.; de Visser, S.J.; Rissmann, R.; Burggraaf, J. Gender Differences in Clinical Registration Trials: Is There a Real Problem? Brit. J. Clin. Pharma 2018, 84, 700–707. [Google Scholar] [CrossRef]
- Tadiri, C.P.; Raparelli, V.; Abrahamowicz, M.; Kautzy-Willer, A.; Kublickiene, K.; Herrero, M.-T.; Norris, C.M.; Pilote, L.; GOINGFWD Consortium. Methods for Prospectively Incorporating Gender into Health Sciences Research. J. Clin. Epidemiol. 2021, 129, 191–197. [Google Scholar] [CrossRef]
- Johnson, J.; Greaves, L. Better Science with Sex and Gender: A Primer for Health; Women’s Health Research Network: Vancouver, BC, Canada, 2007. [Google Scholar]
- Ryczkowska, K.; Adach, W.; Janikowski, K.; Banach, M.; Bielecka-Dabrowa, A. Menopause and Women’s Cardiovascular Health: Is It Really an Obvious Relationship? Arch. Med. Sci. 2023, 19, 458–466. [Google Scholar] [CrossRef]
- Kamińska, M.S.; Schneider-Matyka, D.; Rachubińska, K.; Panczyk, M.; Grochans, E.; Cybulska, A.M. Menopause Predisposes Women to Increased Risk of Cardiovascular Disease. J. Clin. Med. 2023, 12, 7058. [Google Scholar] [CrossRef] [PubMed]
- Clougherty, J.E. A Growing Role for Gender Analysis in Air Pollution Epidemiology. Cien Saude Colet. 2011, 16, 2221–2238. [Google Scholar] [CrossRef] [PubMed]
- Mergler, D. Neurotoxic Exposures and Effects: Gender and Sex Matter! Hänninen Lecture 2011. Neurotoxicology 2012, 33, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Mangia, C.; Civitelli, S. Environment and health. A gender perspective in epidemiology. Epidemiol. Prev. 2020; 44, 13–14. [Google Scholar] [CrossRef]
- Lee, H.; Kim Pak, Y.; Yeo, E.; Kim, Y.S.; Young Paik, H.; Lee, S.K. It is time to integrate sex as a variable in preclinical and clinical studies. Exp. Mol. Med. 2018, 50, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Vegeto, E.; Villa, A.; Della Torre, S.; Crippa, V.; Rusmini, P.; Cristofani, R.; Galbiati, M.; Maggi, A.; Poletti, A. The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocr. Rev. 2020, 41, 273–319. [Google Scholar] [CrossRef]
- Romano, E.; Cosentino, L.; Laviola, G.; De Filippis, B. Genes and Sex Hormones Interaction in Neurodevelopmental Disorders. Neurosci. Biobehav. Rev. 2016, 67, 9–24. [Google Scholar] [CrossRef]
- Romanescu, M.; Buda, V.; Lombrea, A.; Andor, M.; Ledeti, I.; Suciu, M.; Danciu, C.; Dehelean, C.A.; Dehelean, L. Sex-Related Differences in Pharmacological Response to CNS Drugs: A Narrative Review. J. Pers. Med. 2022, 12, 907. [Google Scholar] [CrossRef]
- Sugimoto, C.R.; Ahn, Y.-Y.; Smith, E.; Macaluso, B.; Larivière, V. Factors Affecting Sex-Related Reporting in Medical Research: A Cross-Disciplinary Bibliometric Analysis. Lancet 2019, 393, 550–559. [Google Scholar] [CrossRef]
- Steinberg, J.R.; Turner, B.E.; Weeks, B.T.; Magnani, C.J.; Wong, B.O.; Rodriguez, F.; Yee, L.M.; Cullen, M.R. Analysis of Female Enrollment and Participant Sex by Burden of Disease in US Clinical Trials Between 2000 and 2020. JAMA Net. Open 2021, 4, e2113749. [Google Scholar] [CrossRef]
- Perera, N.D.; Bellomo, T.R.; Schmidt, W.M.; Litt, H.K.; Shyu, M.; Stavins, M.A.; Wang, M.M.; Bell, A.; Saleki, M.; Wolf, K.I.; et al. Analysis of Female Participant Representation in Registered Oncology Clinical Trials in the United States from 2008 to 2020. Oncologist 2023, 28, 510–519. [Google Scholar] [CrossRef]
- Tannenbaum, C.; Greaves, L.; Graham, I.D. Why Sex and Gender Matter in Implementation Research. BMC Med. Res. Methodol. 2016, 16, 145. [Google Scholar] [CrossRef] [PubMed]
- McGregor, A.J.; Hasnain, M.; Sandberg, K.; Morrison, M.F.; Berlin, M.; Trott, J. How to Study the Impact of Sex and Gender in Medical Research: A Review of Resources. Biol. Sex. Differ. 2016, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Heidari, S.; Babor, T.F.; De Castro, P.; Tort, S.; Curno, M. Sex and Gender Equity in Research: Rationale for the SAGER Guidelines and Recommended Use. Res. Integr. Peer Rev. 2016, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Califf, R.M. Biomarker Definitions and Their Applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Vanderstichele, A.; Busschaert, P.; Olbrecht, S.; Lambrechts, D.; Vergote, I. Genomic Signatures as Predictive Biomarkers of Homologous Recombination Deficiency in Ovarian Cancer. Eur. J. Cancer 2017, 86, 5–14. [Google Scholar] [CrossRef]
- Arora, C.; Kaur, D.; Raghava, G.P.S. Universal and Cross-cancer Prognostic Biomarkers for Predicting Survival Risk of Cancer Patients from Expression Profile of Apoptotic Pathway Genes. Proteomics 2022, 22, 2000311. [Google Scholar] [CrossRef]
- Ow, G.S.; Kuznetsov, V.A. Multiple Signatures of a Disease in Potential Biomarker Space: Getting the Signatures Consensus and Identification of Novel Biomarkers. BMC Genom. 2015, 16, S2. [Google Scholar] [CrossRef]
- Pusztai, L.; Hatzis, C.; Andre, F. Reproducibility of Research and Preclinical Validation: Problems and Solutions. Nat. Rev. Clin. Oncol. 2013, 10, 720–724. [Google Scholar] [CrossRef]
- Mayeux, R. Biomarkers: Potential Uses and Limitations. Neurotherapeutics 2004, 1, 182–188. [Google Scholar] [CrossRef]
- Lau, E.S.; Binek, A.; Parker, S.L.; Shah, S.H.; Zanni, M.V.; Van Eyk, J.E.; Ho, J.E. Sexual Dimorphism in Cardiovascular Biomarkers: Clinical and Research Implications. Circ. Res. 2022, 130, 578–592. [Google Scholar] [CrossRef]
- Pagano, M.T.; Peruzzu, D.; Busani, L.; Pierdominici, M.; Ruggieri, A.; Antinori, A.; D’Offizi, G.; Petrosillo, N.; Palmieri, F.; Piselli, P.; et al. Predicting Respiratory Failure in Patients Infected by SARS-CoV-2 by Admission Sex-Specific Biomarkers. Biol. Sex. Differ. 2021, 12, 63. [Google Scholar] [CrossRef]
- Morera-Fumero, A.L.; Abreu-Gonzalez, P.; Henry-Benitez, M.; Fernandez-Lopez, L.; Diaz-Mesa, E.; del Rosario Cejas-Mendez, M.; Guillen-Pino, F. Day/Night and Summer/Winter Changes in Serum Total Antioxidant Capacity. Med. Chem. 2018, 14, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, J.M.; Cooper, J.D.; Penninx, B.W.J.H.; Bahn, S. Variation in Serum Biomarkers with Sex and Female Hormonal Status: Implications for Clinical Tests. Sci. Rep. 2016, 6, 26947. [Google Scholar] [CrossRef]
- Mukai, Y. Sex Differences in Atrial Fibrillation. Circ. J. 2022, 86, 1217–1218. [Google Scholar] [CrossRef] [PubMed]
- Mittelstrass, K.; Ried, J.S.; Yu, Z.; Krumsiek, J.; Gieger, C.; Prehn, C.; Roemisch-Margl, W.; Polonikov, A.; Peters, A.; Theis, F.J.; et al. Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers. PLoS Genet. 2011, 7, e1002215. [Google Scholar] [CrossRef]
- Pietraforte, D.; Straface, E.; Piscopo, P.; Vona, R.; Confaloni, A. Sex-Related Biomarkers in Cardiovascular and Neurodegenerative Disorders. Ann. Ist. Super. Sanita 2016, 52, 230–239. [Google Scholar] [CrossRef]
- Caranci, G.; Piscopo, P.; Rivabene, R.; Traficante, A.; Riozzi, B.; Castellano, A.E.; Ruggieri, S.; Vanacore, N.; Confaloni, A. Gender Differences in Parkinson’s Disease: Focus on Plasma α-Synuclein. J. Neural. Transm. 2013, 120, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cattaneo, A.; Bellenghi, M.; Ferroni, E.; Mangia, C.; Marconi, M.; Rizza, P.; Borghini, A.; Martini, L.; Luciani, M.N.; Ortona, E.; et al. Recommendations for the Application of Sex and Gender Medicine in Preclinical, Epidemiological and Clinical Research. J. Pers. Med. 2024, 14, 908. https://doi.org/10.3390/jpm14090908
Cattaneo A, Bellenghi M, Ferroni E, Mangia C, Marconi M, Rizza P, Borghini A, Martini L, Luciani MN, Ortona E, et al. Recommendations for the Application of Sex and Gender Medicine in Preclinical, Epidemiological and Clinical Research. Journal of Personalized Medicine. 2024; 14(9):908. https://doi.org/10.3390/jpm14090908
Chicago/Turabian StyleCattaneo, Annamaria, Maria Bellenghi, Eliana Ferroni, Cristina Mangia, Matteo Marconi, Paola Rizza, Alice Borghini, Lorena Martini, Maria Novella Luciani, Elena Ortona, and et al. 2024. "Recommendations for the Application of Sex and Gender Medicine in Preclinical, Epidemiological and Clinical Research" Journal of Personalized Medicine 14, no. 9: 908. https://doi.org/10.3390/jpm14090908
APA StyleCattaneo, A., Bellenghi, M., Ferroni, E., Mangia, C., Marconi, M., Rizza, P., Borghini, A., Martini, L., Luciani, M. N., Ortona, E., Carè, A., Appetecchia, M., & Ministry of Health-Gender Medicine Team. (2024). Recommendations for the Application of Sex and Gender Medicine in Preclinical, Epidemiological and Clinical Research. Journal of Personalized Medicine, 14(9), 908. https://doi.org/10.3390/jpm14090908