Personalized Sound Therapy Combined with Low and High-Frequency Electromagnetic Stimulation for Chronic Tinnitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population of Study
2.2. Clinical Evaluation and Self-Reported Questionnaires
Acronym | Extended Name | Description and Subscale Information | Score Interpretation |
---|---|---|---|
THI [48] | Tinnitus Handicap Inventory | Comprises 25 questions across three subscales: Functional, Emotional, and Catastrophic. Scoring: Yes = 4, Sometimes = 2, No = 0. | 0–100 scale: 0–16 (Very mild), 18–36 (Mild), 38–56 (Moderate), 58–76 (Severe), 78–100 (Catastrophic) |
TFI [47] | Tinnitus Functional Index | Contains 25 items scored on an 11-point scale, divided into eight subscales: Intrusive, Sense of Control, Cognitive, Sleep, Auditory, Relaxation, Quality of Life, Emotional. | 0–100 scale: 0–17 (Not a problem), 18–31 (Small problem), 32–53 (Moderate problem), 54–72 (Big problem), 73–100 (Very big problem) |
HQ [49] | Hyperacusis Questionnaire | Features 3 binary questions on auditory disorders/noise exposure and 14 items on self-rating, scored on a 4-point scale: No (0), Yes, a little (1), Yes, a lot (2), Yes, quite a lot (3). | 0–42 scale: 0–27 (Not indicative of hyperacusis), 28–42 (Indicative of hyperacusis) |
SF-36 [52] | Short Form Health Survey 36 | Encompasses eight health domains, each scored from 0 to 100 based on weighted sum: Physical Functioning, Physical Role, Bodily Pain, General Health, Vitality, Social Functioning, Emotional Role, Mental Health. | Each scale: 0 (Maximum disability) to 100 (No disability) |
VAS [53] | Visual Analogue Scale | Assesses perceived tinnitus loudness on a 0–100 scale, with participants marking intensity with pencil and paper. | 0–100 scale: 0 (No tinnitus) to 100 (Worst-imaginable tinnitus) |
2.3. Tinnitus Psychoacoustic Measures
- Pitch Matching: this procedure involved comparing the frequency of a test sound with the patient’s tinnitus frequency until a match was achieved, aiding in identifying the specific pitch of the tinnitus sensation.
- Loudness Matching: in this step, the intensity of the previously identified frequency test sound was adjusted to match the loudness of the patient’s tinnitus, enabling the determination of tinnitus loudness.
- Minimum Masking Level (MML): MML assessed the lowest intensity level at which an external masking signal could partially or completely cover up the perception of tinnitus, revealing its audibility and maskability.
- Residual Inhibition (RI) Test: residual inhibition referred to the temporary suppression or disappearance of tinnitus following exposure to masking noise. Complete or positive residual inhibition (CRI) occurred when the tinnitus completely disappeared, while partial inhibition involved a percentage reduction in tinnitus loudness.
2.4. Device Characteristics
2.5. Study Design
- Screening and Baseline (V0): At the onset of the study, participants underwent a comprehensive clinical and audiological evaluation. Inclusion and exclusion criteria were assessed, and informed consent was obtained after reviewing the study’s objectives and procedures.
- Start of 2 Weeks of Sound Therapy (V1): Eligible patients received the ACUFREE medical device for a two-week period focused solely on sound therapy. The device settings were personalized based on pre-treatment psychoacoustic measures, matching each patient’s tinnitus profile. Patients were instructed to self-administer the treatment at home for 18 min, twice daily, with adherence to the treatment regimen being self-reported by the patients.
- Transition to 1st month of complete treatment (V2): After completing two weeks of sound therapy, the device settings were modified to initiate a one-month complete-treatment phase, which included the activation of low- and high-frequency electromagnetic waves through the inductive and capacitive emitter. This phase was conducted in a single-blind manner, maintaining also the sound-therapy settings.
- First month evaluation, 2-week pause (V3): Upon completing the first month of complete treatment, the device was temporarily removed, and patients were instructed to discontinue the therapy for a period of two weeks. The two-week discontinuation of therapy at V3 was implemented to accurately assess the progression of tinnitus symptoms and the treatment’s effects over time. This pause allowed us to differentiate the immediate impact of the treatment phases and to avoid potential cumulative effects of electromagnetic wave exposure, ensuring a clearer understanding of the therapy’s efficacy.
- Follow-up and start of 2nd month of complete treatment (V4): A follow-up audiological visit was conducted, and the device was returned to the patient for a second cycle of one-month complete treatment.
- Second month evaluation, 2-week pause (V5): The medical device was definitively collected, concluding the 2nd cycle of complete treatment.
- Final follow-up evaluation (V6): Two weeks after the conclusion of the second cycle of complete treatment, a follow-up visit was conducted, and control psychoacoustic measures were repeated.
2.6. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Self-Reported Questionnaires
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, K.W.; Kullar, P.; Malhotra, C.; Stankovic, K.M. Current and Emerging Therapies for Chronic Subjective Tinnitus. J. Clin. Med. 2023, 12, 6555. [Google Scholar] [CrossRef] [PubMed]
- Langguth, B.; Kreuzer, P.M.; Kleinjung, T.; De Ridder, D. Tinnitus: Causes and clinical management. Lancet Neurol. 2013, 12, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Langguth, B. A review of tinnitus symptoms beyond ‘ringing in the ears’: A call to action. Curr. Med. Res. Opin. 2011, 27, 1635–1643. [Google Scholar] [CrossRef]
- Dalrymple, S.N.; Lewis, S.H.; Philman, S. Tinnitus: Diagnosis and Management. Am. Fam. Physician 2021, 103, 663–671. [Google Scholar] [PubMed]
- Tang, D.; Li, H.; Chen, L. Advances in Understanding, Diagnosis, and Treatment of Tinnitus. In Hearing Loss: Mechanisms, Prevention and Cure; Springer: Berlin/Heidelberg, Germany, 2019; pp. 109–128. [Google Scholar] [CrossRef]
- Peter, N.; Kleinjung, T. Neuromodulation for tinnitus treatment: An overview of invasive and non-invasive techniques. J. Zhejiang Univ. B 2019, 20, 116–130. [Google Scholar] [CrossRef]
- Norena, A.; Micheyl, C.; Chéry-Croze, S.; Collet, L. Psychoacoustic characterization of the tinnitus spectrum: Implications for the underlying mechanisms of tinnitus. Audiol. Neurotol. 2002, 7, 358–369. [Google Scholar] [CrossRef]
- Schecklmann, M.; Vielsmeier, V.; Steffens, T.; Landgrebe, M.; Langguth, B.; Kleinjung, T. Relationship between audiometric slope and tinnitus pitch in tinnitus patients: Insights into the mechanisms of tinnitus generation. PLoS ONE 2012, 7, e34878. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.; Bauer, C.A. Neuroscience of Tinnitus. Neuroimaging Clin. N. Am. 2016, 26, 187–196. [Google Scholar] [CrossRef]
- Adams, M.E.; Huang, T.C.; Nagarajan, S.; Cheung, S.W. Tinnitus Neuroimaging. Otolaryngol. Clin. N. Am. 2020, 53, 583–603. [Google Scholar] [CrossRef]
- Isler, B.; Neff, P.; Kleinjung, T. Möglichkeiten der funktionellen Bildgebung bei Tinnitus. HNO 2023, 71, 640–647. [Google Scholar] [CrossRef]
- Raghavan, P.; Steven, A.; Rath, T.; Gandhi, D. Advanced Neuroimaging of Tinnitus. Neuroimaging Clin. N. Am. 2016, 26, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-J.; Vanneste, S.; Schlee, W.; Van De Heyning, P.; De Ridder, D. Onset-related differences in neural substrates of tinnitus-related distress: The anterior cingulate cortex in late-onset tinnitus, and the frontal cortex in early-onset tinnitus. Anat. Embryol. 2015, 220, 571–584. [Google Scholar] [CrossRef]
- Fuller, T.E.; Haider, H.F.; Kikidis, D.; Lapira, A.; Mazurek, B.; Norena, A.; Rabau, S.; Lardinois, R.; Cederroth, C.R.; Edvall, N.K.; et al. Different teams, same conclusions? A systematic review of existing clinical guidelines for the assessment and treatment of tinnitus in adults. Front. Psychol. 2017, 8, 206. [Google Scholar] [CrossRef]
- Cima, R.F.F.; Mazurek, B.; Haider, H.; Kikidis, D.; Lapira, A.; Noreña, A.; Hoare, D.J. A multidisciplinary European guideline for tinnitus: Diagnostics, assessment, and treatment. HNO 2019, 67, 10–42. [Google Scholar] [CrossRef]
- Swain, S.K.; Nayak, S.; Ravan, J.R.; Sahu, M.C. Tinnitus and its current treatment–Still an enigma in medicine. J. Formos. Med. Assoc. 2016, 115, 139–144. [Google Scholar] [CrossRef]
- Ghimire, M.; Cai, R.; Ling, L.; Brownell, K.A.; Hackett, T.A.; Llano, D.A.; Caspary, D.M. Increased pyramidal and VIP neuronal excitability in rat primary auditory cortex directly correlates with tinnitus behaviour. J. Physiol. 2023, 601, 2493–2511. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, F.A.d.B.; Suzuki, F.A.; Yonamine, F.K.; Onishi, E.T.; Penido, N.O. Effectiveness of sound therapy in patients with tinnitus resistant to previous treatments: Importance of adjustments. Braz. J. Otorhinolaryngol. 2016, 82, 297–303. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Yang, S.B.; Wang, X.; Zhang, W.; Li, J.B.; Yang, T.B. Efficacy of sound therapy interventions for tinnitus management. Medicine 2021, 100, e27509. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tang, D.; Wu, Y.; Zhou, L.; Sun, S. The state of the art of sound therapy for subjective tinnitus in adults. Ther. Adv. Chronic Dis. 2020, 11, 2040622320956426. [Google Scholar] [CrossRef]
- Henry, J.A.; Carlson, K.F.; Theodoroff, S.; Folmer, R.L. Reevaluating the Use of Sound Therapy for Tinnitus Management: Perspectives on Relevant Systematic Reviews. J. Speech Lang. Hear. Res. 2022, 65, 2327–2342. [Google Scholar] [CrossRef]
- Jastreboff, P.J. The Neurophysiological Model of Tinnitus and Decreased Sound Tolerance. In Textbook of Tinnitus; Springer: Berlin/Heidelberg, Germany, 2024; Volume I, pp. 231–249. [Google Scholar]
- Phillips, J.S.; McFerran, D. Neurophysiological model-based treatments for tinnitus. Cochrane Database Syst. Rev. 2019, 2019, CD008248. [Google Scholar] [CrossRef]
- Jastreboff, P.J.; Hazell, J.W.P. A neurophysiological approach to tinnitus: Clinical implications. Br. J. Audiol. 1993, 27, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Jastreboff, P.J.; Jastreboff, M.M. Tinnitus Retraining Therapy (trt) as a method for treatment of tinnitus and hyperacusis patients. J. Am. Acad. Audiol. 2000, 11, 162–177. [Google Scholar] [CrossRef] [PubMed]
- Hobson, J.; Chisholm, E.; El Refaie, A. Sound therapy (masking) in the management of tinnitus in adults. Cochrane Database Syst. Rev. 2012, 2012, CD006371. [Google Scholar] [CrossRef]
- Hoare, D.J.; Stacey, P.C.; Hall, D.A. The Efficacy of auditory perceptual training for tinnitus: A systematic review. Ann. Behav. Med. 2010, 40, 313–324. [Google Scholar] [CrossRef]
- Jin, I.-K.; Choi, S.-J.; Yoo, J.; Jeong, S.; Heo, S.; Oh, H. Effects of Tinnitus Sound Therapy Determined Using Subjective Measurements. J. Am. Acad. Audiol. 2021, 32, 212–218. [Google Scholar] [CrossRef]
- Denton, A.J.; Finberg, A.; Ashman, P.E.; Bencie, N.B.; Scaglione, T.; Kuzbyt, B.; Telischi, F.F.; Mittal, R.; Eshraghi, A.A. Implications of Transcranial Magnetic Stimulation as a Treatment Modality for Tinnitus. J. Clin. Med. 2021, 10, 5422. [Google Scholar] [CrossRef]
- Byun, Y.J.; Lee, J.A.; Nguyen, S.A.; Rizk, H.G.; Meyer, T.A.; Lambert, P.R. Transcutaneous Electrical Nerve Stimulation for Treatment of Tinnitus: A Systematic Review and Meta-analysis. Otol. Neurotol. 2020, 41, e767–e775. [Google Scholar] [CrossRef] [PubMed]
- Formánek, M.; Migaľová, P.; Krulová, P.; Bar, M.; Jančatová, D.; Zakopčanová-Srovnalová, H.; Tomášková, H.; Zeleník, K.; Komínek, P. Combined transcranial magnetic stimulation in the treatment of chronic tinnitus. Ann. Clin. Transl. Neurol. 2018, 5, 857–864. [Google Scholar] [CrossRef]
- Marcondes, R.A.; Sanchez, T.G.; Kii, M.A.; Ono, C.R.; Buchpiguel, C.A.; Langguth, B.; Marcolin, M.A. Repetitive transcranial magnetic stimulation improve tinnitus in normal hearing patients: A double-blind controlled, clinical and neuroimaging outcome study. Eur. J. Neurol. 2010, 17, 38–44. [Google Scholar] [CrossRef]
- Olszewski, J.; Bielińska, M.; Kowalski, A.J. Assessment of Subjective Tinnitus Treatment Results Using a Prototype Device for Electrical and Magnetic Stimulation of the Ear-Preliminary Study. Life 2022, 12, 918. [Google Scholar] [CrossRef]
- Portmann, M.; Aran, J.-M.; Nègrevergne, M.; Cazals, Y. Electrical Stimulation of the Ear: Clinical Applications. Ann. Otol. Rhinol. Laryngol. 1983, 92, 621–622. [Google Scholar] [CrossRef]
- Adamchic, I.; Toth, T.; Hauptmann, C.; Walger, M.; Langguth, B.; Klingmann, I.; Tass, P.A. Acute effects and after-effects of acoustic coordinated reset neuromodulation in patients with chronic subjective tinnitus. NeuroImage Clin. 2017, 15, 541–558. [Google Scholar] [CrossRef]
- Yuan, T.; Yadollahpour, A.; Salgado-Ramírez, J.; Robles-Camarillo, D.; Ortega-Palacios, R. Transcranial direct current stimulation for the treatment of tinnitus: A review of clinical trials and mechanisms of action. BMC Neurosci. 2018, 19, 66. [Google Scholar] [CrossRef]
- Hoare, D.J.; Whitham, D.; Henry, J.A.; Shorter, G.W. Neuromodulation (desynchronisation) for tinnitus in adults. Cochrane Database Syst. Rev. 2015, 29. [Google Scholar] [CrossRef]
- Londero, A.; Bonfils, P.; Lefaucheur, J. Transcranial magnetic stimulation and subjective tinnitus. A review of the literature, 2014–2016. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2018, 135, 51–58. [Google Scholar] [CrossRef]
- Soleimani, R.; Jalali, M.M.; Hasandokht, T. Therapeutic impact of repetitive transcranial magnetic stimulation (rTMS) on tinnitus: A systematic review and meta-analysis. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 1663–1675. [Google Scholar] [CrossRef]
- Yang, S.; Yang, D.; Gou, C.; Tu, M.; Tan, Y.; Yang, L.; Wang, X. Brain alterations in patients with intractable tinnitus before and after rTMS: A resting-state functional magnetic resonance imaging study. Clin. Neurol. Neurosurg. 2023, 227, 107664. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Huang, S.; Zhou, H.; Feng, Y.; Shi, H.; Wang, D.; Nan, W.; Wang, H.; Yin, S. Differences in Clinical Characteristics and Brain Activity between Patients with Low- and High-Frequency Tinnitus. Neural Plast. 2020, 2020, 5285362. [Google Scholar] [CrossRef]
- Ghossaini, S.N.; Spitzer, J.B.; Mackins, C.C.; Zschommler, A.; Diamond, B.E.; Wazen, J.J. High-Frequency Pulsed Electromagnetic Energy in Tinnitus Treatment. Laryngoscope 2004, 114, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Conlon, B.; Langguth, B.; Hamilton, C.; Hughes, S.; Meade, E.; Connor, C.O.; Schecklmann, M.; Hall, D.A.; Vanneste, S.; Leong, S.L.; et al. Bimodal neuromodulation combining sound and tongue stimulation reduces tinnitus symptoms in a large randomized clinical study. Sci. Transl. Med. 2020, 12, eabb2830. [Google Scholar] [CrossRef] [PubMed]
- Niemann, U.; Boecking, B.; Brueggemann, P.; Mebus, W.; Mazurek, B.; Spiliopoulou, M. Tinnitus-related distress after multimodal treatment can be characterized using a key subset of baseline variables. PLoS ONE 2020, 15, e0228037. [Google Scholar] [CrossRef] [PubMed]
- Report of the Informal Working Group on Prevention of Deafness and Hearing Impairment Programme Planning. Geneva. Available online: https://iris.who.int/handle/10665/58839 (accessed on 1 April 2019).
- Olusanya, B.O.; Davis, A.C.; Hoffman, H.J. Hearing loss grades and the International classification of functioning, disability and health. Bull. World Health Organ. 2019, 97, 725–728. [Google Scholar] [CrossRef]
- Henry, J.A.; Griest, S.; Thielman, E.; McMillan, G.; Kaelin, C.; Carlson, K.F. Tinnitus Functional Index: Development, validation, outcomes research, and clinical application. Hear. Res. 2016, 334, 58–64. [Google Scholar] [CrossRef]
- Zhang, J.; Huo, Y.; Lui, G.; Li, M.; Tyler, R.S.; Ping, H. Reliability and Validity of the Tinnitus Handicap Inventory: A Clinical Study of Questionnaires. J. Int. Adv. Otol. 2022, 18, 522–529. [Google Scholar] [CrossRef]
- Fioretti, A.; Tortorella, F.; Masedu, F.; Valenti, M.; Fusetti, M.; Pavaci, S. Validity of the Italian version of Khalfa’s Questionnaire on hyperacusis. Acta Otorhinolaryngol. Ital. 2015, 35, 110–115. [Google Scholar] [PubMed]
- Khalfa, S.; Dubal, S.; Veuillet, E.; Perez-Diaz, F.; Jouvent, R.; Collet, L. Psychometric Normalization of a Hyperacusis Questionnaire. ORL 2002, 64, 436–442. [Google Scholar] [CrossRef]
- Lins, L.; Carvalho, F.M. SF-36 total score as a single measure of health-related quality of life: Scoping review. SAGE Open Med. 2016, 4, 2050312116671725. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Townsend, M.; Berman, L.B.; Keller, J.L. A comparison of Likert and visual analogue scales for measuring change in function. J. Chronic Dis. 1987, 40, 1129–1133. [Google Scholar] [CrossRef]
- Shin, S.-H.; Byun, S.W.; Kim, S.J.; Lee, H.Y. Measures of Subjective Tinnitus: What Does Visual Analog Scale Stand for? J. Am. Acad. Audiol. 2022, 33, 092–097. [Google Scholar] [CrossRef]
- Langguth, B.; De Ridder, D. Minimal Clinically Important Difference of Tinnitus Outcome Measurement Instruments—A Scoping Review. J. Clin. Med. 2023, 12, 7117. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Tyler, R.S.; Ji, H.; Coelho, C.; Gehringer, A.K.; Gogel, S.A. The relationship between tinnitus pitch and the audiogram. Int. J. Audiol. 2009, 48, 277–294. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.R.; Vernon, J.A.; Creedon, T.A. Measuring tinnitus parameters: Loudness, pitch, and maskability. J. Am. Acad. Audiol. 1993, 4, 139–151. [Google Scholar]
- Ristovska, L.; Jachova, Z.; Stojcheska, V. Psychoacoustic Characteristics of Tinnitus in Relation to Audiometric Profile. Arch. Acoust. 2019, 44, 419–428. [Google Scholar] [CrossRef]
- Adamchic, I.; Langguth, B.; Hauptmann, C.; Tass, P.A. Psychometric Evaluation of Visual Analog Scale for the Assessment of Chronic Tinnitus. Am. J. Audiol. 2012, 21, 215–225. [Google Scholar] [CrossRef]
- Shin, S.-H.; Byun, S.W.; Park, Y.; Lee, H.Y. The Tinnitus Handicap Inventory is a better indicator of the overall status of patients with tinnitus than the Numerical Rating Scale. Am. J. Otolaryngol. 2023, 44, 103719. [Google Scholar] [CrossRef]
- Baguley, D.; McFerran, D.; Hall, D. Tinnitus. Lancet 2013, 382, 1600–1607. [Google Scholar] [CrossRef]
- Reddy, K.V.K.; Chaitanya, V.K.; Babu, G.R. Efficacy of Tinnitus Retraining Therapy, A Modish Management of Tinnitus: Our Experience. Indian J. Otolaryngol. Head Neck Surg. 2019, 71, 95–98. [Google Scholar] [CrossRef]
- The Tinnitus Retraining Therapy Trial Research Group; Scherer, R.W.; Formby, C. Effect of Tinnitus Retraining Therapy vs Standard of Care on Tinnitus-Related Quality of Life. Arch. Otolaryngol. Neck Surg. 2019, 145, 597–608. [Google Scholar] [CrossRef]
- Alashram, A.R. Effects of tinnitus retraining therapy on patients with tinnitus: A systematic review of randomized controlled trials. Eur. Arch. Oto-Rhino-Laryngol. 2024, 1–17. [Google Scholar] [CrossRef]
- Pesce, M.; Patruno, A.; Speranza, L.; Reale, M. Extremely low frequency electromagnetic field and wound healing: Implication of cytokines as biological mediators. Eur. Cytokine Netw. 2013, 24, 1–10. [Google Scholar] [CrossRef]
- Schaette, R.; McAlpine, D. Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model. J. Neurosci. 2011, 31, 13452–13457. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, S.; Nan, W.; Zhou, H.; Wang, J.; Wang, H.; Salvi, R.; Yin, S. Switching Tinnitus-On: Maps and source localization of spontaneous EEG. Clin. Neurophysiol. 2021, 132, 345–357. [Google Scholar] [CrossRef]
- Piarulli, A.; Vanneste, S.; Nemirovsky, I.E.; Kandeepan, S.; Maudoux, A.; Gemignani, A.; De Ridder, D.; Soddu, A. Tinnitus and distress: An electroencephalography classification study. Brain Commun. 2022, 5, fcad018. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-D.; Zhu, X.-R.; Zhou, X.; Li, J.; Lan, L.; Huang, D.; Zheng, Y.; Cai, Y. Cross-Subject Tinnitus Diagnosis Based on Multi-Band EEG Contrastive Representation Learning. IEEE J. Biomed. Health Inform. 2023, 27, 3187–3197. [Google Scholar] [CrossRef]
- Alonso-Valerdi, L.M.; Ibarra-Zarate, D.I.; Tavira-Sánchez, F.J.; Ramírez-Mendoza, R.A.; Recuero, M. Electroencephalographic evaluation of acoustic therapies for the treatment of chronic and refractory tinnitus. BMC Ear Nose Throat Disord. 2017, 17, 9. [Google Scholar] [CrossRef]
- Jørgensen, M.L.; Hyvärinen, P.; Caporali, S.; Dau, T. Effect of sound therapy on whole scalp oscillatory brain activity and distress in chronic tinnitus patients. Front. Neurosci. 2023, 17, 1212558. [Google Scholar] [CrossRef] [PubMed]
- Doborjeh, M.; Liu, X.; Doborjeh, Z.; Shen, Y.; Searchfield, G.; Sanders, P.; Wang, G.Y.; Sumich, A.; Yan, W.Q. Prediction of Tinnitus Treatment Outcomes Based on EEG Sensors and TFI Score Using Deep Learning. Sensors 2023, 23, 902. [Google Scholar] [CrossRef] [PubMed]
Visit Code and Title | Time | Evaluations and Activities | |
---|---|---|---|
V0 | Screening and baseline assessment | Day 0 |
|
V1 | Start of 2 weeks of Sound Therapy | Day 0 |
|
V2 | Transition to 1st month of complete treatment | Day 15 ± 3 |
|
V3 | First month evaluation; 2-week pause | Day 45 ± 3 |
|
V4 | Follow-up and start of 2nd month of complete treatment | Day 60 ± 3 |
|
V5 | Second month evaluation; 2-week pause | Day 90 ± 3 |
|
V6 | Final follow-up evaluation | Day 105 ± 3 |
|
Characteristics | Number of Participants | Percentage |
---|---|---|
Total participants who completed the treatment | 50 | - |
Gender | ||
Male | 32 | 64% |
Female | 18 | 36% |
Tinnitus Laterality | ||
Unilateral tinnitus | 18 | 36% |
Bilateral tinnitus | 32 | 64% |
Hearing Status | ||
Normal hearing | 8 | 16% |
High-frequency hearing loss | 12 | 24% |
Mild bilateral hearing loss | 26 | 52% |
Mild asymmetrical hearing loss | 1 | 2% |
Moderate bilateral hearing loss | 1 | 2% |
Moderate asymmetrical hearing loss | 2 | 4% |
(A) Score Overview by Study Visit | |||||||
V1 | V2 | V3 | V4 | V5 | V6 | ||
TFI | Mean | 34.00 | 31.26 | 29.70 | 29.50 | 25.12 | 22.29 |
SE | 2.74 | 2.64 | 2.87 | 3.27 | 2.45 | 2.36 | |
Range | 5–87 | 3–88 | 1–82 | 4–100 | 1–87 | 0–75 | |
THI | Mean | 26.66 | 23.60 | 23.52 | 20.52 | 19.73 | 20.37 |
SE | 2.79 | 2.81 | 2.91 | 2.71 | 2.67 | 2.77 | |
Range | 0–86 | 0–78 | 0–94 | 0–94 | 0–96 | 0–92 | |
VAS | Mean | 49.28 | 46.78 | 44.30 | 42.26 | 39.30 | 39.18 |
SE | 2.86 | 3.44 | 3.38 | 3.43 | 3.44 | 3.51 | |
Range | 10–81 | 0–100 | 0–100 | 0–100 | 0–98 | 0–98 | |
HQ | Mean | 12.54 | 11.92 | 12.47 | 9.84 | 9.80 | 9.47 |
SE | 1.16 | 1.04 | 1.27 | 1.06 | 1.04 | 1.05 | |
Range | 0–30 | 0–26 | 0–36 | 0–26 | 0–23 | 0–23 | |
(B) Variations in Self-Reported Questionnaire Scores | |||||||
V1–V2 | V1–V3 | V1–V4 | V1–V5 | V1–V6 | |||
TFI | Mean Score Change | 2.74 ± 21.14 | 4.30 ± 1.77 | 4.50 ± 3.05 | 8.88 ± 2.30 | 11.36 ± 1.99 | |
p-value | 0.21 | 0.02 | 0.15 | <0.01 | <0.01 | ||
% of Patients with Improved Scores | 58% | 62% | 66% | 72% | 73% | ||
Mean Score Change in Improved Patients | 11.24 ± 21.19 | 11.45 ± 11.72 | 14.15 ± 21.12 | 15.75 ± 21.23 | 17.14 ± 11.91 | ||
% of Patients with MCID (≥13-Point [44]) | 18% | 18% | 30% | 34% | 39% | ||
THI | Mean Score Change | 3.06 ± 1.92 | 3.14 ± 1.77 | 6.14 ± 2.20 | 6.93 ± 2.20 | 5.57 ± 1.73 | |
p-value | 0.12 | 0.08 | 0.01 | 0.01 | <0.01 | ||
% of Patients with Improved Scores | 54% | 56% | 64% | 64% | 61% | ||
Mean Score Change in Improved Patients | 10.96 ± 21.14 | 10.79 ± 11.59 | 13.69 ± 21.34 | 14.47 ± 21.39 | 12.83 ± 11.67 | ||
% of Patients with MCID (≥7-Point [55]) | 28% | 34% | 42% | 41% | 37% | ||
VAS | Mean Score Change | 2.50 ± 11.68 | 4.98 ± 21.42 | 7.02 ± 21.99 | 9.98 ± 21.77 | 10.28 ± 31.06 | |
p-value | 0.15 | 0.05 | 0.01 | <0.01 | <0.01 | ||
% of Patients with Improved Scores | 38% | 50% | 58% | 70% | 67% | ||
Mean Score Change in Improved Patients | 14.11 ± 11.94 | 17.52 ± 21.60 | 17.07 ± 21.64 | 18.89 ± 21.55 | 20.27 ± 21.90 | ||
% of Patients with MCID (≥10-Point [54]) | 32% | 34% | 40% | 50% | 55% | ||
HQ | Mean Score Change | 0.62 ± 0.71 | 0.32 ± 0.87 | 2.70 ± 0.82 | 2.74 ± 0.90 | 3.18 ± 0.81 | |
p-value | 0.39 | 0.40 | < 0.01 | < 0.01 | < 0.01 | ||
% of Patients with Improved Scores | 42% | 54% | 66% | 54% | 74% | ||
Mean Score Change in Improved Patients | 4.95 ± 01.75 | 4.48 ± 01.63 | 5.76 ± 01.74 | 7.07 ± 01.96 | 5.46 ± 01.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francavilla, B.; Marzocchella, G.; Alagna, A.; Tilotta, S.; Di Leo, E.; Omer, G.L.; Di Girolamo, S. Personalized Sound Therapy Combined with Low and High-Frequency Electromagnetic Stimulation for Chronic Tinnitus. J. Pers. Med. 2024, 14, 912. https://doi.org/10.3390/jpm14090912
Francavilla B, Marzocchella G, Alagna A, Tilotta S, Di Leo E, Omer GL, Di Girolamo S. Personalized Sound Therapy Combined with Low and High-Frequency Electromagnetic Stimulation for Chronic Tinnitus. Journal of Personalized Medicine. 2024; 14(9):912. https://doi.org/10.3390/jpm14090912
Chicago/Turabian StyleFrancavilla, Beatrice, Giulia Marzocchella, Arianna Alagna, Stefania Tilotta, Elisa Di Leo, Goran Latif Omer, and Stefano Di Girolamo. 2024. "Personalized Sound Therapy Combined with Low and High-Frequency Electromagnetic Stimulation for Chronic Tinnitus" Journal of Personalized Medicine 14, no. 9: 912. https://doi.org/10.3390/jpm14090912
APA StyleFrancavilla, B., Marzocchella, G., Alagna, A., Tilotta, S., Di Leo, E., Omer, G. L., & Di Girolamo, S. (2024). Personalized Sound Therapy Combined with Low and High-Frequency Electromagnetic Stimulation for Chronic Tinnitus. Journal of Personalized Medicine, 14(9), 912. https://doi.org/10.3390/jpm14090912