Assessing the Utility of Prediction Scores PAINT, ISARIC4C, CHIS, and COVID-GRAM at Admission and Seven Days after Symptom Onset for COVID-19 Mortality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Legal and Ethical Considerations
2.2. Inclusion and Exclusion Criteria
2.3. Study Variables
2.4. Definitions
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Analysis of Findings
4.2. Study Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, Q.D.; Chang, S.L.; Jamerlan, C.M.; Prokopenko, M. Measuring unequal distribution of pandemic severity across census years, variants of concern and interventions. Popul. Health Metr. 2023, 21, 17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, M.; Shi, L.; Liu, M.; Yang, J.; Xie, W.; Sun, G. Comparison of COVID-19 vaccine policies and their effectiveness in Korea, Japan, and Singapore. Int. J. Equity Health 2023, 22, 224. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aboul-Fotouh, S.; Mahmoud, A.N.; Elnahas, E.M.; Habib, M.Z.; Abdelraouf, S.M. What are the current anti-COVID-19 drugs? From traditional to smart molecular mechanisms. Virol. J. 2023, 20, 241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hung, H.F. The Virus, the Dollar, and the Global Order: The COVID-19 Crisis in Comparative Perspective. Dev. Chang. 2022. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Walmsley, T.; Rose, A.; John, R.; Wei, D.; Hlávka, J.P.; Machado, J.; Byrd, K. Macroeconomic consequences of the COVID-19 pandemic. Econ. Model. 2023, 120, 106147. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rose, A. COVID-19 economic impacts in perspective: A comparison to recent U.S. disasters. Int. J. Disaster Risk Reduct. 2021, 60, 102317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herrick, C. ‘We thank you for your sacrifice’: Clinical vulnerability, shielding and biosociality in the UK’s COVID-19 response. Biosocieties 2023, 18, 218–240. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kattan, M.W.; Ji, X.; Milinovich, A.; Adegboye, J.; Duggal, A.; Dweik, R.; Khouli, H.; Gordon, S.; Young, J.B.; Jehi, L. An Algorithm for Classifying Patients Most Likely to Develop Severe Coronavirus Disease 2019 Illness. Crit. Care Explor. 2020, 2, e0300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shakeel, S.M.; Kumar, N.S.; Madalli, P.P.; Srinivasaiah, R.; Swamy, D.R. COVID-19 prediction models: A systematic literature review. Osong Public Health Res. Perspect. 2021, 12, 215–229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weizman, O.; Duceau, B.; Trimaille, A.; Pommier, T.; Cellier, J.; Geneste, L.; Panagides, V.; Marsou, W.; Deney, A.; Attou, S.; et al. Machine learning-based scoring system to predict in-hospital outcomes in patients hospitalized with COVID-19. Arch. Cardiovasc. Dis. 2022, 115, 617–626. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fayed, M.; Patel, N.; Angappan, S.; Nowak, K.; Vasconcelos Torres, F.; Penning, D.H.; Chhina, A.K. Sequential Organ Failure Assessment (SOFA) Score and Mortality Prediction in Patients With Severe Respiratory Distress Secondary to COVID-19. Cureus 2022, 14, e26911. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, H.; Cao, T.; Ji, T.; Luo, Y.; Huang, J.; Ma, K. Predictive value of the neutrophil-to-lymphocyte ratio in the prognosis and risk of death for adult sepsis patients: A meta-analysis. Front. Immunol. 2024, 15, 1336456. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ravindra, R.; Ramamurthy, P.; Aslam, S.S.M.; Kulkarni, A.; Suhail, K.; Ramamurthy, P.S. Platelet Indices and Platelet to Lymphocyte Ratio (PLR) as Markers for Predicting COVID-19 Infection Severity. Cureus 2022, 14, e28206. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carriel, J.; Muñoz-Jaramillo, R.; Bolaños-Ladinez, O.; Heredia-Villacreses, F.; Menéndez-Sanchón, J.; Martin-Delgado, J.; COVID-EC Researh Group. CURB-65 as a predictor of 30-day mortality in patients hospitalized with COVID-19 in Ecuador: COVID-EC study. Rev. Clin. Esp. 2022, 222, 37–41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharma, A.; Tiwari, S.; Deb, M.K.; Marty, J.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A global pandemic and treatment strategies. Int. J. Antimicrob. Agents 2020, 56, 106054. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, C.; Ramasamy, A.; Verduzco-Gutierrez, M.; Brode, W.M.; Melamed, E. Acute and post-acute sequelae of SARS-CoV-2 infection: A review of risk factors and social determinants. Virol. J. 2023, 20, 124. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, M.; Wu, D.; Liu, C.H.; Li, Y.; Hu, J.; Wang, W.; Jiang, W.; Zhang, Q.; Huang, Z.; Bai, L.; et al. Predicting progression to severe COVID-19 using the PAINT score. BMC Infect. Dis. 2022, 22, 498. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abu Elhassan, U.E.; Alqahtani, S.M.A.; Al Saglan, N.S.; Hawan, A.; Alqahtani, F.S.; Almtheeb, R.S.; Abdelwahab, M.S.R.; AlFlan, M.A.; Alfaifi, A.S.Y.; Alqahtani, M.A.; et al. Utility of the 4C ISARIC mortality score in hospitalized COVID-19 patients at a large tertiary Saudi Arabian center. Multidiscip. Respir. Med. 2023, 18, 917. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Webb, B.J.; Peltan, I.D.; Jensen, P.; Hoda, D.; Hunter, B.; Silver, A.; Starr, N.; Buckel, W.; Grisel, N.; Hummel, E.; et al. Clinical criteria for COVID-19-associated hyperinflammatory syndrome: A cohort study. Lancet Rheumatol. 2020, 2, e754–e763. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sebastian, A.; Madziarski, M.; Madej, M.; Proc, K.; Szymala-Pędzik, M.; Żórawska, J.; Gronek, M.; Morgiel, E.; Kujawa, K.; Skarupski, M.; et al. The Usefulness of the COVID-GRAM Score in Predicting the Outcomes of Study Population with COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 12537. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ji, D.; Zhang, D.; Xu, J.; Chen, Z.; Yang, T.; Zhao, P.; Chen, G.; Cheng, G.; Wang, Y.; Bi, J.; et al. Prediction for Progression Risk in Patients with COVID-19 Pneumonia: The CALL Score. Clin. Infect. Dis. 2020, 71, 1393–1399. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vallipuram, T.; Schwartz, B.C.; Yang, S.S.; Jayaraman, D.; Dial, S. External validation of the ISARIC4C Mortality Score to predict in-hospital mortality among patients with COVID-19 in a Canadian intensive care unit: A single-centre historical cohort study. Can. J. Anaesth. 2023, 70, 1362–1370. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Durie, M.L.; Neto, A.S.; Burrell, A.J.C.; Cooper, D.J.; Udy, A.A.; SPRINT-SARI Australia Investigators. ISARIC-4C Mortality Score overestimates risk of death due to COVID-19 in Australian ICU patients: A validation cohort study. Crit. Care Resusc. 2023, 23, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Albai, O.; Frandes, M.; Sima, A.; Timar, B.; Vlad, A.; Timar, R. Practical Applicability of the ISARIC-4C Score on Severity and Mortality due to SARS-CoV-2 Infection in Patients with Type 2 Diabetes. Medicina 2022, 58, 848. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Vito, A.; Colpani, A.; Saderi, L.; Puci, M.; Zauli, B.; Meloni, M.C.; Fois, M.; Bitti, A.; Di Castri, C.; Fiore, V.; et al. Is the 4C Score Still a Valid Item to Predict In-Hospital Mortality in People with SARS-CoV-2 Infections in the Omicron Variant Era? Life 2023, 13, 183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hsu, T.Y.; D’Silva, K.M.; Patel, N.J.; Wang, J.; Mueller, A.A.; Fu, X.; Prisco, L.; Martin, L.; Vanni, K.M.M.; Zaccardelli, A.; et al. Laboratory trends, hyperinflammation, and clinical outcomes for patients with a systemic rheumatic disease admitted to hospital for COVID-19: A retrospective, comparative cohort study. Lancet Rheumatol. 2021, 3, e638–e647. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yildirim, M.; Halacli, B.; Yuce, D.; Gunegul, Y.; Ersoy, E.O.; Topeli, A. Assessment of Admission COVID-19 Associated Hyperinflammation Syndrome Score in Critically-Ill COVID-19 Patients. J. Intensive Care Med. 2023, 38, 70–77. [Google Scholar] [CrossRef]
Variables | Survivors Group (n = 139) | Mortality Group (n = 76) | p-Value |
---|---|---|---|
Age, years (mean ± SD) | 57.23 ± 14.56 | 60.89 ± 10.42 | 0.0542 |
Gender, men | 78 (56.12%) | 33 (43.42%) | 0.1015 |
BMI (mean ± SD) | 27.68 ± 4.89 | 30.12 ± 6.03 | 0.0010 |
Smoking | 26 (18.71%) | 22 (28.95%) | 0.1205 |
Alcohol use | 31 (22.30%) | 27 (35.53%) | 0.0539 |
COVID-19 vaccinated | 89 (64.03%) | 39 (51.32%) | 0.0949 |
CCI > 2 | 42 (30.22%) | 34 (44.74%) | 0.0477 |
COVID-19 severity * | - | - | 0.0954 |
Mild | 95 (68.35%) | 41 (53.95%) | |
Moderate | 29 (20.86%) | 21 (27.63%) | |
Severe | 15 (10.79%) | 14 (71.05%) | |
ICU admissions | 5 (3.60%) | 41 (18.42%) | <0.0001 |
Supplemental oxygen | 18 (12.95%) | 64 (84.21%) | <0.0001 |
Mechanical ventilation | 4 (2.88%) | 39 (51.32%) | <0.0001 |
Mortality | 0 (0%) | 76 (100%) | <0.0001 |
Variables (Mean ± SD) | Survivors Group (n = 139) | Mortality Group (n = 76) | p-Value |
---|---|---|---|
Oxygen saturation (%) | 94.32 ± 1.76 | 85.47 ± 3.29 | <0.001 |
WBC (×109/L) | 6.47 ± 1.34 | 11.28 ± 4.26 | <0.001 |
Lymphocyte count (×109/L) | 1.45 ± 0.48 | 0.82 ± 0.37 | <0.001 |
IgM levels (mg/dL) | 120.56 ± 35.12 | 69.89 ± 22.45 | <0.001 |
CD16 (cells/µL) | 352.67 ± 110.32 | 190.44 ± 89.15 | <0.001 |
Respiratory rate (breaths/min) | 18.47 ± 2.11 | 27.34 ± 5.78 | <0.001 |
AST (U/L) | 25.78 ± 8.96 | 58.44 ± 15.37 | <0.001 |
Temperature (°C) | 37.1 ± 0.46 | 38.5 ± 0.82 | <0.001 |
Heart rate (bpm) | 88.34 ± 12.34 | 103.47 ± 19.22 | <0.001 |
Glasgow coma scale | 14.78 ± 0.42 | 11.34 ± 2.86 | <0.001 |
Bilirubin levels (mg/dL) | 0.68 ± 0.22 | 1.45 ± 0.58 | <0.001 |
IL-6 (pg/mL) | 12.34 ± 4.67 | 46.87 ± 17.32 | <0.001 |
D-dimers (mg/L FEU) | 0.55 ± 0.25 | 3.98 ± 1.74 | <0.001 |
Creatinine (mg/dL) | 0.89 ± 0.18 | 1.34 ± 0.42 | <0.001 |
Ferritin (ng/mL) | 250.45 ± 110.78 | 742.89 ± 330.45 | <0.001 |
CRP (mg/L) | 20.78 ± 10.44 | 156.34 ± 70.56 | <0.001 |
Platelets (×109/L) | 251.34 ± 50.12 | 120.89 ± 45.67 | <0.001 |
Systolic blood pressure (mmHg) | 130.67 ± 14.22 | 118.56 ± 20.45 | <0.001 |
BUN (mg/dL) | 15.34 ± 4.22 | 30.89 ± 11.34 | <0.001 |
Clinical scores | |||
PAINT | 3.25 ± 1.11 | 7.84 ± 2.56 | <0.001 |
ISARIC4C | 4.22 ± 1.34 | 11.45 ± 3.67 | <0.001 |
CHIS | 2.56 ± 1.22 | 8.34 ± 3.12 | <0.001 |
COVID-GRAM | 0.34 ± 0.12 | 0.89 ± 0.23 | <0.001 |
Variables (Mean ± SD) | Survivors Group (n = 139) | Mortality Group (n = 76) | p-Value |
---|---|---|---|
Oxygen saturation (%) | 92.87 ± 2.15 | 84.35 ± 4.26 | <0.001 |
WBC (×109/L) | 7.56 ± 2.03 | 15.27 ± 5.89 | <0.001 |
Lymphocyte count (×109/L) | 1.65 ± 0.62 | 0.79 ± 0.30 | <0.001 |
IgM levels (mg/dL) | 158.78 ± 45.63 | 50.12 ± 28.57 | <0.001 |
CD16 (cells/µL) | 420.58 ± 135.77 | 163.39 ± 102.54 | <0.001 |
Respiratory rate (breaths/min) | 17.34 ± 3.12 | 28.67 ± 7.54 | <0.001 |
AST (U/L) | 23.45 ± 9.87 | 70.98 ± 25.34 | <0.001 |
Temperature (°C) | 37.2 ± 0.55 | 38.9 ± 1.12 | <0.001 |
Heart rate (bpm) | 86.23 ± 13.45 | 110.56 ± 23.45 | <0.001 |
Glasgow coma scale | 14.89 ± 0.87 | 9.78 ± 3.56 | <0.001 |
Bilirubin levels (mg/dL) | 0.78 ± 0.34 | 2.65 ± 1.29 | <0.001 |
IL-6 (pg/mL) | 15.67 ± 6.45 | 80.23 ± 35.67 | <0.001 |
D-dimers (mg/L FEU) | 0.75 ± 0.38 | 7.45 ± 3.89 | <0.001 |
Creatinine (mg/dL) | 0.97 ± 0.26 | 2.35 ± 1.08 | <0.001 |
Ferritin (ng/mL) | 320.34 ± 150.78 | 1520.89 ± 620.45 | <0.001 |
CRP (mg/L) | 30.56 ± 15.47 | 250.78 ± 120.56 | <0.001 |
Platelets (×109/L) | 230.45 ± 75.12 | 85.67 ± 50.34 | <0.001 |
Systolic blood pressure (mmHg) | 128.34 ± 18.22 | 95.67 ± 25.45 | <0.001 |
BUN (mg/dL) | 18.34 ± 5.67 | 45.12 ± 20.89 | <0.001 |
Clinical scores | |||
PAINT | 2.87 ± 1.22 | 9.34 ± 3.45 | <0.001 |
ISARIC4C | 3.65 ± 2.11 | 14.56 ± 4.98 | <0.001 |
CHIS | 1.98 ± 1.08 | 12.67 ± 5.34 | <0.001 |
COVID-GRAM | 0.45 ± 0.23 | 0.98 ± 0.32 | <0.001 |
Parameters | Timeframe | Best Cutoff Value | Sensitivity | Specificity | AUC | p-Value |
---|---|---|---|---|---|---|
PAINT | Baseline | 6.26 | 85.47 | 77.34 | 0.861 | <0.0001 |
ISARIC4C | Baseline | 7.95 | 80.56 | 82.12 | 0.879 | <0.0001 |
CHIS | Baseline | 5.58 | 88.89 | 75.01 | 0.842 | <0.0001 |
COVID-GRAM | Baseline | 0.63 | 83.33 | 78.45 | 0.851 | <0.0001 |
PAINT | One week | 8.15 | 90.12 | 79.56 | 0.912 | <0.0001 |
ISARIC4C | One week | 9.10 | 87.98 | 81.67 | 0.900 | <0.0001 |
CHIS | One week | 7.84 | 91.67 | 74.56 | 0.886 | <0.0001 |
COVID-GRAM | One week | 0.72 | 85.45 | 80.34 | 0.894 | <0.0001 |
Factors above the Best Cutoff | Timeframe | Hazard Ratio | 95% CI | R2 | p-Value |
---|---|---|---|---|---|
PAINT | Baseline | 3.45 | 2.10–5.67 | 0.74 | <0.0001 |
ISARIC4C | Baseline | 2.89 | 1.85–4.50 | 0.69 | 0.0003 |
CHIS | Baseline | 4.02 | 2.56–6.30 | 0.71 | <0.0001 |
COVID-GRAM | Baseline | 3.15 | 2.01–4.92 | 0.66 | 0.0002 |
PAINT | One week | 4.88 | 3.10–7.68 | 0.76 | <0.0001 |
ISARIC4C | One week | 3.67 | 2.34–5.78 | 0.73 | <0.0001 |
CHIS | One week | 5.34 | 3.45–8.21 | 0.81 | <0.0001 |
COVID-GRAM | One week | 4.22 | 2.67–6.70 | 0.79 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanase, A.D.; FNU, O.; Cristescu, D.-M.; Barata, P.I.; David, D.; Petrescu, E.-L.; Bojoga, D.-E.; Hoinoiu, T.; Blidisel, A. Assessing the Utility of Prediction Scores PAINT, ISARIC4C, CHIS, and COVID-GRAM at Admission and Seven Days after Symptom Onset for COVID-19 Mortality. J. Pers. Med. 2024, 14, 966. https://doi.org/10.3390/jpm14090966
Tanase AD, FNU O, Cristescu D-M, Barata PI, David D, Petrescu E-L, Bojoga D-E, Hoinoiu T, Blidisel A. Assessing the Utility of Prediction Scores PAINT, ISARIC4C, CHIS, and COVID-GRAM at Admission and Seven Days after Symptom Onset for COVID-19 Mortality. Journal of Personalized Medicine. 2024; 14(9):966. https://doi.org/10.3390/jpm14090966
Chicago/Turabian StyleTanase, Alina Doina, Oktrian FNU, Dan-Mihai Cristescu, Paula Irina Barata, Dana David, Emanuela-Lidia Petrescu, Daliana-Emanuela Bojoga, Teodora Hoinoiu, and Alexandru Blidisel. 2024. "Assessing the Utility of Prediction Scores PAINT, ISARIC4C, CHIS, and COVID-GRAM at Admission and Seven Days after Symptom Onset for COVID-19 Mortality" Journal of Personalized Medicine 14, no. 9: 966. https://doi.org/10.3390/jpm14090966
APA StyleTanase, A. D., FNU, O., Cristescu, D. -M., Barata, P. I., David, D., Petrescu, E. -L., Bojoga, D. -E., Hoinoiu, T., & Blidisel, A. (2024). Assessing the Utility of Prediction Scores PAINT, ISARIC4C, CHIS, and COVID-GRAM at Admission and Seven Days after Symptom Onset for COVID-19 Mortality. Journal of Personalized Medicine, 14(9), 966. https://doi.org/10.3390/jpm14090966