Patterns of Lipid Abnormalities in Obesity: A Comparative Analysis in Normoglycemic and Prediabetic Obese Individuals
Abstract
:1. Introduction
2. Methods
2.1. Ethical Approval
2.2. Study Design
2.3. Data Collection
- Demographic and clinical data: Age, sex, and BMI were recorded. Weight and height were measured using a weighing scale and a portable stadiometer (Marsden H226, Marsden Weighing Group, South Yorkshire, UK). Patients were instructed to wear lightweight clothing during weight measurement. BMI was calculated by dividing body weight (kg) by height (m2). Medical history and current medications were reviewed to ensure adherence to the inclusion criteria.
- Laboratory Data: Biochemical data were available for each participant. Blood samples were collected routinely according to protocol and transported to the central laboratory. Quality assurance and control of all laboratory equipment were carried out regularly. Fasting Blood Glucose (FBG) and lipid parameters were measured using a Cobas-8000 autoanalyzer (Roche Diagnostics, Rotkreuz, Switzerland). HbA1c levels were measured using a Cobas-513 autoanalyzer (Roche Diagnostics, Rotkreuz, Switzerland).
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Studied Population
3.2. Normoglycemic Obese Exhibited Different Forms of Lipid Abnormalities
3.3. TGs and HDL but Not LDL Were Significantly Altered in PreDM-OB Compared to the NO Group
3.4. TG and Lipid Ratios Were Significantly Higher in the PreDM Obese Compared to the NG Obese Group
3.5. Differential Predictive Performance of Lipid Parameters for Different Obesity Phenotypes
3.6. LDL Is the Most Prevalent Lipid Abnormality among Obese Patients
3.7. TC/HDL Carries a Greater Risk of Developing Prediabetes among Obese Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, Z.; Qin, Y. Dyslipidemia and Cardiovascular Disease: Current Knowledge, Existing Challenges, and New Opportunities for Management Strategies. J. Clin. Med. 2023, 12, 363. [Google Scholar] [CrossRef] [PubMed]
- Bilitou, A.; Were, J.; Farrer, A.; Rabe, A.; Ming, S.W.Y.; Haq, I.; Dunton, K. Prevalence and Patient Outcomes of Adult Primary Hypercholesterolemia and Dyslipidemia in the UK: Longitudinal Retrospective Study Using a Primary Care Dataset from 2009 to 2019. Clin. Outcomes Res. 2022, 14, 189–203. [Google Scholar] [CrossRef]
- Lin, C.F.; Chang, Y.H.; Chien, S.C.; Lin, Y.H.; Yeh, H.Y. Epidemiology of Dyslipidemia in the Asia Pacific Region. Int. J. Gerontol. 2018, 12, 2–6. [Google Scholar] [CrossRef]
- Obsa, M.S.; Ataro, G.; Awoke, N.; Jemal, B.; Tilahun, T.; Ayalew, N.; Woldegeorgis, B.Z.; Azeze, G.A.; Haji, Y. Determinants of Dyslipidemia in Africa: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 778891. [Google Scholar] [CrossRef] [PubMed]
- Enani, S.; Bahijri, S.; Malibary, M.; Jambi, H.; Eldakhakhny, B.; Al-Ahmadi, J.; Al Raddadi, R.; Ajabnoor, G.; Boraie, A.; Tuomilehto, J. The association between dyslipidemia, dietary habits and other lifestyle indicators among non-diabetic attendees of primary health care centers in Jeddah, Saudi Arabia. Nutrients 2020, 12, 2441. [Google Scholar] [CrossRef] [PubMed]
- Tóth, P.P.; Potter, D.; Ming, E.E. Prevalence of lipid abnormalities in the United States: The National Health and Nutrition Examination Survey 2003–2006. J. Clin. Lipidol. 2012, 6, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Khanali, J.; Ghasemi, E.; Rashidi, M.M.; Ahmadi, N.; Ghamari, S.H.; Azangou-Khyavy, M.; Malekpour, M.R.; Abbasi-Kangevari, M.; Hashemi, S.M.; Naderian, M.; et al. Prevalence of plasma lipid abnormalities and associated risk factors among Iranian adults based on the findings from STEPs survey 2021. Sci. Rep. 2023, 13, 15499. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, H.; Lu, J.; Ding, Q.; Li, X.; Wang, X.; Sun, D.; Tan, L.; Mu, L.; Liu, J.; et al. Prevalence of Dyslipidemia and Availability of Lipid-Lowering Medications among Primary Health Care Settings in China. JAMA Netw. Open 2021, 4, e2127573. [Google Scholar] [CrossRef]
- Moh. World Health Survey Saudi Arabia (KSAWHS) Biological Risk Factors; 2021. Available online: https://www.moh.gov.sa/en/Ministry/Statistics/Indicator/Documents/Report-Biological-Risk-Factors.pdf (accessed on 9 August 2024).
- Al-Zahrani, J.; Shubair, M.M.; Al-Ghamdi, S.; Alrasheed, A.A.; Alduraywish, A.A.; Alreshidi, F.S.; Alshahrani, S.M.; Alsalamah, M.; Al-Khateeb, B.F.; Ashathri, A.I.; et al. The prevalence of hypercholesterolemia and associated risk factors in Al-Kharj population, Saudi Arabia: A cross-sectional survey. BMC Cardiovasc. Disord. 2021, 21, 22. [Google Scholar] [CrossRef]
- Deprince, A.; Haas, J.T.; Staels, B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol. Metab. 2020, 42, 101092. [Google Scholar] [CrossRef]
- Tang, N.; Ma, J.; Tao, R.; Chen, Z.; Yang, Y.; He, Q.; Lv, Y.; Lan, Z.; Zhou, J. The effects of the interaction between BMI and dyslipidemia on hypertension in adults. Sci. Rep. 2022, 12, 927. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, A.P.; Whelton, S.P.; Blumenthal, R.S.; Mcevoy, J.W. Dyslipidemia. In Hypertension A Companion to Braunwald’s Heart Disease; Elsevier: Amsterdam, The Netherlands, 2024; pp. 476–488. [Google Scholar] [CrossRef]
- Hyassat, D.; Al-Saeksaek, S.; Naji, D.; Mahasneh, A.; Khader, Y.; Abujbara, M.; El-Khateeb, M.; Ajlouni, K. Dyslipidemia among patients with type 2 diabetes in Jordan: Prevalence, pattern, and associated factors. Front. Public Health 2022, 10, 1002466. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.K.; Dron, J.S.; Berberich, A.J.; Wang, J.; McIntyre, A.D.; Cao, H.; Hegele, R.A. Combined hyperlipidemia is genetically similar to isolated hypertriglyceridemia. J. Clin. Lipidol. 2021, 15, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Alfhili, M.A.; Alsughayyir, J.; Basudan, A.M.; Ghneim, H.K.; Alfaifi, M.; Alamri, H.S.; Awan, Z.A.; Algethami, M.R. Patterns of Dyslipidemia in the Anemic and Nonanemic Hypertensive Saudi Population: A Cross-Sectional Study. Int. J. Gen. Med. 2022, 15, 7895–7906. [Google Scholar] [CrossRef]
- Reiner, Ž. Hypertriglyceridaemia and risk of coronary artery disease. Nat. Rev. Cardiol. 2017, 14, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, N.; Danesh, J.; Eiriksdottir, G.; Sigurdsson, G.; Wareham, N.; Bingham, S.; Boekholdt, S.M.; Khaw, K.T.; Gudnason, V. Triglycerides and the risk of coronary heart disease: 10,158 Incident cases among 262,525 participants in 29 Western prospective studies. Circulation 2007, 115, 450–458. [Google Scholar] [CrossRef]
- Navab, M.; Reddy, S.T.; Van Lenten, B.J.; Fogelman, A.M. HDL and cardiovascular disease: Atherogenic and atheroprotective mechanisms. Nat. Rev. Cardiol. 2011, 8, 222–232. [Google Scholar] [CrossRef]
- Bays, H.E.; Toth, P.P.; Kris-Etherton, P.M.; Abate, N.; Aronne, L.J.; Brown, W.V.; Gonzalez-Campoy, J.M.; Jones, S.R.; Kumar, R.; La Forge, R.; et al. Obesity, adiposity, and dyslipidemia: A consensus statement from the National Lipid Association. J. Clin. Lipidol. 2013, 7, 304–383. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, Y.; Xu, C.; Zeng, S.; Wang, Q.; Guo, Y.; Li, J.; Li, S.; Dong, M.; Luo, X.; et al. Association between obesity and the prevalence of dyslipidemia in middle-aged and older people: An observational study. Sci. Rep. 2024, 14, 11974. [Google Scholar] [CrossRef]
- Vekic, J.; Stefanovic, A.; Zeljkovic, A. Obesity and Dyslipidemia: A Review of Current Evidence. Curr. Obes. Rep. 2023, 12, 207–222. [Google Scholar] [CrossRef]
- Hierons, S.J.; Abbas, K.; Sobczak, A.I.S.; Cerone, M.; Smith, T.K.; Ajjan, R.A.; Stewart, A.J. Changes in plasma free fatty acids in obese patients before and after bariatric surgery highlight alterations in lipid metabolism. Sci. Rep. 2022, 12, 15337. [Google Scholar] [CrossRef] [PubMed]
- Giudetti, A.M. Editorial: Lipid metabolism in obesity. Front. Physiol. 2023, 14, 1268288. [Google Scholar] [CrossRef] [PubMed]
- Aldossari, K.K.; Aldiab, A.; Al-Zahrani, J.M.; Al-Ghamdi, S.H.; Abdelrazik, M.; Batais, M.A.; Javad, S.; Nooruddin, S.; Razzak, H.A.; El-Metwally, A. Prevalence of Prediabetes, Diabetes, and Its Associated Risk Factors among Males in Saudi Arabia: A Population-Based Survey. J. Diabetes Res. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Hoe, F.M.; Darbinian, J.A.; Greenspan, L.C.; Lo, J.C. Hemoglobin A1c and Type 2 Diabetes Incidence among Adolescents with Overweight and Obesity. JAMA Netw. Open 2024, 7, E2351322. [Google Scholar] [CrossRef] [PubMed]
- Al-Hazzaa, H.M.; Abahussain, N.A.; Al-Sobayel, H.I.; Qahwaji, D.M.; Musaiger, A.O. Physical activity, sedentary behaviors and dietary habits among Saudi adolescents relative to age, gender and region. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 140. [Google Scholar] [CrossRef]
- Alsulami, S.; Baig, M.; Ahmad, T.; Althagafi, N.; Hazzazi, E.; Alsayed, R.; Alghamdi, M.; Almohammadi, T. Obesity prevalence, physical activity, and dietary practices among adults in Saudi Arabia. Front. Public Health 2023, 11, 1124051. [Google Scholar] [CrossRef]
- Robert, A.; Al Dawish, M.; Braham, R.; Musallam, M.; Al Hayek, A.; Al Kahtany, N. Type 2 Diabetes Mellitus in Saudi Arabia: Major Challenges and Possible Solutions. Curr. Diabetes Rev. 2016, 13, 59–64. [Google Scholar] [CrossRef]
- Naeem, Z. Burden of Diabetes Mellitus in Saudi Arabia. Int. J. Health Sci. 2015, 9, V–VI. [Google Scholar] [CrossRef]
- Ginsberg, H.N.; Zhang, Y.L.; Hernandez-Ono, A. Metabolic syndrome: Focus on dyslipidemia. Obesity 2006, 14 (Suppl. S1), 41S. [Google Scholar] [CrossRef]
- Taskinen, M.R. Diabetic dyslipidaemia: From basic research to clinical practice. Diabetologia 2003, 46, 733–749. [Google Scholar] [CrossRef]
- AlMuhaidib, S.; AlBuhairan, F.; Tamimi, W.; AlDubayee, M.; AlAqeel, A.; Babiker, A.; AlFaraidi, H.; AlJuraibah, F.; Badri, M.; Al Alwan, I. Prevalence and factors associated with dyslipidemia among adolescents in Saudi Arabia. Sci. Rep. 2022, 12, 16888. [Google Scholar] [CrossRef]
- Freedman, D.S.; Mei, Z.; Srinivasan, S.R.; Berenson, G.S.; Dietz, W.H. Cardiovascular Risk Factors and Excess Adiposity Among Overweight Children and Adolescents: The Bogalusa Heart Study. J. Pediatr. 2007, 150, 12–17. [Google Scholar] [CrossRef]
- Festa, A.; D’Agostino, R.; Howard, G.; Mykkänen, L.; Tracy, R.P.; Haffner, S.M. Chronic subclinical inflammation as part of the insulin resistance syndrome: The insulin resistance atherosclerosis study (IRAS). Circulation 2000, 102, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Mongraw-Chaffin, M.; Foster, M.C.; Anderson, C.A.M.; Burke, G.L.; Haq, N.; Kalyani, R.R.; Ouyang, P.; Sibley, C.T.; Tracy, R.; Woodward, M.; et al. Metabolically Healthy Obesity, Transition to Metabolic Syndrome, and Cardiovascular Risk. J. Am. Coll. Cardiol. 2018, 71, 1857–1865. [Google Scholar] [CrossRef] [PubMed]
- Rey-López, J.P.; de Rezende, L.F.; Pastor-Valero, M.; Tess, B.H. The prevalence of metabolically healthy obesity: A systematic review and critical evaluation of the definitions used. Obes. Rev. 2014, 15, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Weir, C.B.; Jan, A. BMI Classification Percentile And Cut Off Points; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- White, K.A.M.; Daneshvari, S.; Lilyquist, J.; Luo, L.; Steffen, L.E.; Bivin, A.; Gurule, N.; Ducasa, G.M.; Torres, S.M.; Lindeman, R.; et al. Prediabetes: The Variation between HbA1c and Fasting Plasma Glucose. Int. J. Diabetol. Vasc. Dis. Res. 2015, S2, 1–7. [Google Scholar] [CrossRef]
- Alshuweishi, Y.; Basudan, A.M.; Alfaifi, M.; Daghistani, H.; Alfhili, M.A. Association of the HALP Score with Dyslipidemia: A Large, Nationwide Retrospective Study. Medicina 2023, 59, 2002. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Siddiqui, W.J. Cholesterol Levels. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Zheng, S.; Xu, H.; Zhou, H.; Ren, X.; Han, T.; Chen, Y.; Qiu, H.; Wu, P.; Zheng, J.; Wang, L.; et al. Associations of lipid profiles with insulin resistance and β cell function in adults with normal glucose tolerance and different categories of impaired glucose regulation. PLoS ONE 2017, 12, e0172221. [Google Scholar] [CrossRef]
- Chen, G.Y.; Li, L.; Dai, F.; Li, X.J.; Xu, X.X.; Fan, J.G. Prevalence of and Risk Factors for Type 2 Diabetes Mellitus in Hyperlipidemia in China. Med. Sci. Monit. 2015, 21, 2476–2484. [Google Scholar] [CrossRef]
- Barrera Echegoyen, F.X.; Szeto, A.; Mendez, A.J.; Garg, R.; Goldberg, R.B. The nature and characteristics of hypertriglyceridemia in a large cohort with type 2 diabetes. J. Diabetes Complicat. 2023, 37, 108387. [Google Scholar] [CrossRef]
- Cowie, C.C.; Howard, B.V.; Harris, M.I. Serum lipoproteins in African Americans and whites with non-insulin-dependent diabetes in the US population. Circulation 1994, 90, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Farbstein, D.; Levy, A.P. HDL dysfunction in diabetes: Causes and possible treatments. Expert Rev. Cardiovasc. Ther. 2012, 10, 353–361. [Google Scholar] [CrossRef] [PubMed]
- The Expert Panel Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [CrossRef]
- Haffner, S.M.; Stern, M.P.; Hazuda, H.P.; Mitchell, B.D.; Patterson, J.K. Cardiovascular Risk Factors in Confirmed Prediabetic Individuals: Does the Clock for Coronary Heart Disease Start Ticking Before the Onset of Clinical Diabetes? JAMA J. Am. Med. Assoc. 1990, 263, 2893–2898. [Google Scholar] [CrossRef]
- De Ferranti, S.D.; Gauvreau, K.; Ludwig, D.S.; Neufeld, E.J.; Newburger, J.W.; Rifai, N. Prevalence of the metabolic syndrome in American adolescents: Findings from the Third National Health and Nutrition Examination Survey. Circulation 2004, 110, 2494–2497. [Google Scholar] [CrossRef]
- Siebel, A.L.; Natoli, A.K.; Yap, F.Y.T.; Carey, A.L.; Reddy-Luthmoodoo, M.; Sviridov, D.; Weber, C.I.K.; Meneses-Lorente, G.; Maugeais, C.; Forbes, J.M.; et al. Effects of high-density lipoprotein elevation with cholesteryl ester transfer protein inhibition on insulin secretion. Circ. Res. 2013, 113, 167–175. [Google Scholar] [CrossRef]
- Denimal, D.; Monier, S.; Bouillet, B.; Vergès, B.; Duvillard, L. High-Density Lipoprotein Alterations in Type 2 Diabetes and Obesity. Metabolites 2023, 13, 253. [Google Scholar] [CrossRef]
- Ho, J.H.; Liu, Y.; Adam, S.; Syed, A.A.; Ammori, B.J.; Donn, R.; Malik, R.; Tabet, F.; Cochran, B.J.; Rye, K.-A.; et al. Changes in the effect of HDL on pancreatic beta-cell insulin secretion following metabolic surgery. Atherosclerosis 2020, 315, e150–e151. [Google Scholar] [CrossRef]
- Quispe, R.; Elshazly, M.B.; Zhao, D.; Toth, P.P.; Puri, R.; Virani, S.S.; Blumenthal, R.S.; Martin, S.S.; Jones, S.R.; Michos, E.D. Total cholesterol/HDL-cholesterol ratio discordance with LDL-cholesterol and non-HDL-cholesterol and incidence of atherosclerotic cardiovascular disease in primary prevention: The ARIC study. Eur. J. Prev. Cardiol. 2020, 27, 1597–1605. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, X.; Lo, K.; Huang, Y.; Feng, Y. The effect of total cholesterol/high-density lipoprotein cholesterol ratio on mortality risk in the general population. Front. Endocrinol. 2022, 13, 1012383. [Google Scholar] [CrossRef]
- Nie, G.; Hou, S.; Zhang, M.; Peng, W. High TG/HDL ratio suggests a higher risk of metabolic syndrome among an elderly Chinese population: A cross-sectional study. BMJ Open 2021, 11, e041519. [Google Scholar] [CrossRef] [PubMed]
- Nur Zati Iwani, A.K.; Jalaludin, M.Y.; Yahya, A.; Mansor, F.; Md Zain, F.; Hong, J.Y.H.; Wan Mohd Zin, R.M.; Mokhtar, A.H. TG: HDL-C Ratio as Insulin Resistance Marker for Metabolic Syndrome in Children with Obesity. Front. Endocrinol. 2022, 13, 852290. [Google Scholar] [CrossRef] [PubMed]
- Kuang, M.; Peng, N.; Qiu, J.; Zhong, Y.; Zou, Y.; Sheng, G. Association of LDL:HDL ratio with prediabetes risk: A longitudinal observational study based on Chinese adults. Lipids Health Dis. 2022, 21, 44. [Google Scholar] [CrossRef] [PubMed]
Parameter | NO Group | NG-OB Group | PreDM-OB Group | p-Value |
---|---|---|---|---|
BMI (kg/m2) | 26 (22–27) | 36 (34–38) | 35 (33.25–38) | <0.0001 |
Age (Years) | 39.5 (27.5–46.5) | 35 (28.25–42.75) | 43.5 (34.5–51.75) | 0.057 |
Gender (female), n (%) | 38 (70.37%) | 32 (72.73%) | 26 (65%) | - |
HbA1c (%) | 5.37 (5.12–5.50) | 5.47 (5.30–5.55) | 6.02 (5.83–6.16) | <0.0001 |
WBC (×109/L) | 6 (4.92–6.82) | 7.35 (5.52–8.32) | 6.25 (5.15–7.6) | 0.010 |
Monocyte count (×103/µL) | 0.47 (0.37–0.57) | 0.55 (0.43–0.64) | 0.44 (0.38–0.55) | 0.056 |
Basophil count (×103/µL) | 0.04 (0.025–0.05) | 0.045 (0.03–0.06) | 0.04 (0.03–0.062) | 0.287 |
Neutrophils (×103/µL) | 2.92 (2.08–3.70) | 3.64 (2.52–4.50) | 2.74 (2.21–4.13) | 0.087 |
Eosinophils (×103/µL) | 0.135 (0.08–0.20) | 0.16 (0.12–0.24) | 0.17 (0.10–0.24) | 0.286 |
TSH (mIU/L) | 1.9 (1.50–2.78) | 2.34 (1.84–3.03) | 2.1 (1.36–3.76) | 0.561 |
25-hydroxyvitamin D (ng/mL) | 50.7 (39.95–67.6) | 42 (31.7–55.8) | 43.25 (27.65–71.1) | 0.071 |
RBC count (×1012/µL) | 4.71 (4.4–5.12) | 4.90 (4.59–5.32) | 4.59 (4.33–5.00) | 0.046 |
Hb (g/dL) | 13.2 (12.4–14.18) | 13.35 (11.53–15.03) | 12.90 (11.10–13.43) | 0.164 |
ALT (U/L) | 13 (10–18.75) | 15 (11–27.25) | 15 (12–20.75) | 0.220 |
NO Group | NG-OB Group | PreDM-OB Group | |
---|---|---|---|
Medications | |||
GLP-1 agonist, n (%) | 0 (0%) | 15 (34.09%) | 13 (32.50%) |
Metformin, n (%) | 1 (1.85%) | 2 (4.55%) | 8 (20%) |
Iron supplementation, n (%) | 3 (5.56%) | 11 (25%) | 10 (25%) |
Comorbidities | |||
Hypertension, n (%) | 3 (5.56%) | 3 (6.82%) | 6 (15%) |
PCOS, n (%) | 1 (1.85%) | 2 (4.55%) | 1 (2.5%) |
Smoking, n (%) | 3 (5.56%) | 7 (15.91%) | 6 (15%) |
Parameter | NO (%) | OB (%) | NG-OB (%) | PreDM-OB (%) |
---|---|---|---|---|
TC | ||||
<200 mg/dL | 76.92 | 54.65 | 50.00 | 60.00 |
≥200 mg/dL | 23.08 | 45.35 | 50.00 | 40.00 |
TG | ||||
<150 mg/dL | 88.46 | 74.42 | 86.36 | 60.00 |
≥150 mg/dL | 11.54 | 25.58 | 13.64 | 40.00 |
HDL | ||||
≥40 mg/dL | 88.46 | 74.42 | 79.55 | 67.50 |
<40 mg/dL | 11.54 | 25.58 | 20.45 | 32.50 |
LDL | ||||
<130 mg/dL | 76.92 | 56.47 | 54.55 | 58.97 |
≥130 mg/dL | 23.08 | 43.53 | 45.45 | 41.03 |
TC/HDL | ||||
<6 | 96.15 | 74.42 | 81.82 | 65.00 |
≥6 | 3.85 | 25.58 | 18.18 | 35.00 |
TG/HDL | ||||
≤2 | 86.54 | 66.28 | 77.27 | 52.50 |
>2 | 13.46 | 33.72 | 22.73 | 47.50 |
LDL/HDL | ||||
≤2.5 | 92.31 | 61.18 | 70.45 | 48.72 |
>2.5 | 7.69 | 38.82 | 29.55 | 51.28 |
Parameters | Overall | NG-OB | PreDM-OB | |||
---|---|---|---|---|---|---|
OR | p Value | OR | p Value | OR | p Value | |
TC | 2.77 | 0.0098 | 3.33 | 0.0070 | 2.22 | 0.0832 |
TGs | 2.64 | 0.0524 | 1.21 | 0.7570 | 5.11 | 0.0026 |
L-HDL | 2.64 | 0.0524 | 1.97 | 0.2360 | 3.69 | 0.0175 |
LDL | 2.57 | 0.0169 | 2.78 | 0.0223 | 2.32 | 0.0692 |
TC/HDL | 8.59 | 0.0048 | 5.56 | 0.0366 | 13.46 | 0.0011 |
TGs/HDL | 3.27 | 0.0110 | 1.89 | 0.2405 | 5.82 | 0.0006 |
LDL/HDL | 7.62 | 0.0003 | 5.03 | 0.0088 | 12.63 | <0.0001 |
Characteristics | NO | NG-OB | NO | PreDM-OB | ||
---|---|---|---|---|---|---|
TC | < | - | ||||
TGs | < | < | ||||
HDL | - | > | ||||
LDL | < | - | ||||
TC/HDL | < | < | ||||
TGs/HDL | - | < | ||||
LDL/HDL | < | < |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshuweishi, Y.; Almufarrih, A.A.; Abudawood, A.; Alfayez, D.; Alkhowaiter, A.Y.; AlSudais, H.; Almuqrin, A.M. Patterns of Lipid Abnormalities in Obesity: A Comparative Analysis in Normoglycemic and Prediabetic Obese Individuals. J. Pers. Med. 2024, 14, 980. https://doi.org/10.3390/jpm14090980
Alshuweishi Y, Almufarrih AA, Abudawood A, Alfayez D, Alkhowaiter AY, AlSudais H, Almuqrin AM. Patterns of Lipid Abnormalities in Obesity: A Comparative Analysis in Normoglycemic and Prediabetic Obese Individuals. Journal of Personalized Medicine. 2024; 14(9):980. https://doi.org/10.3390/jpm14090980
Chicago/Turabian StyleAlshuweishi, Yazeed, Abdulmalik A. Almufarrih, Arwa Abudawood, Dalal Alfayez, Abdullah Y. Alkhowaiter, Hamood AlSudais, and Abdulaziz M. Almuqrin. 2024. "Patterns of Lipid Abnormalities in Obesity: A Comparative Analysis in Normoglycemic and Prediabetic Obese Individuals" Journal of Personalized Medicine 14, no. 9: 980. https://doi.org/10.3390/jpm14090980
APA StyleAlshuweishi, Y., Almufarrih, A. A., Abudawood, A., Alfayez, D., Alkhowaiter, A. Y., AlSudais, H., & Almuqrin, A. M. (2024). Patterns of Lipid Abnormalities in Obesity: A Comparative Analysis in Normoglycemic and Prediabetic Obese Individuals. Journal of Personalized Medicine, 14(9), 980. https://doi.org/10.3390/jpm14090980