Effectiveness and Safety of mRNA Vaccines in the Therapy of Glioblastoma
Abstract
:1. Introduction
2. Current Challenges in GBM Therapy
2.1. Tumor Microenvironment and Immune System Interaction in GBM
2.2. History and Development of mRNA Vaccines in Oncology
2.3. Unique Advantages of mRNA Vaccines
3. Application of mRNA Vaccines in Glioblastoma
3.1. Mechanism of Action
3.2. Immune Responses
3.3. Clinical Outcomes
4. The Way Forward
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burster, T.; Traut, R.; Yermekkyzy, Z.; Mayer, K.; Westhoff, M.A.; Bischof, J.; Knippschild, U. Critical view of novel treatment strategies for glioblastoma: Failure and success of resistance mechanisms by glioblastoma cells. Front. Cell Dev. Biol. 2021, 9, 695325. [Google Scholar] [CrossRef] [PubMed]
- Delle Donne, R.; Iannucci, R.; Rinaldi, L.; Roberto, L.; Oliva, M.A.; Senatore, E.; Borzacchiello, D. Targeted inhibition of ubiquitin signaling reverses metabolic reprogramming and suppresses glioblastoma growth. Commun. Biol. 2022, 5, 780. [Google Scholar] [CrossRef]
- Ye, L.; Wang, L.; Yang, J.; Hu, P.; Zhang, C.; Tong, S.; Liu, Z.; Tian, D. Identification of tumor antigens and immune landscape in glioblastoma for mRNA vaccine development. Front. Genet. 2021, 12, 701065. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.; Cardon, T.; Aboulouard, S.; Hajjaji, N.; Kobeissy, F.; Duhamel, M.; Fournier, I.; Salzet, M. Surfaceome proteomic of glioblastoma revealed potential targets for immunotherapy. Front. Immunol. 2021, 12, 746168. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Wang, K.; Xiong, Y.; Zhou, L.; Yang, Y.; Chen, S.; Xu, P.; Zhou, Y.; Mao, R.; Lv, G.; et al. Identification of tumor antigens and immune subtypes of glioblastoma for mRNA vaccine development. Front. Immunol. 2022, 13, 773264. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.P.; Sherpa, N.; Manyanga, J.; Johanns, T.M. Considerations for personalized neoantigen vaccination in malignant glioma. Adv. Drug Deliv. Rev. 2022, 186, 114312. [Google Scholar] [CrossRef]
- Wu, C.; Qin, C.; Long, W.; Wang, X.; Xiao, K.; Liu, Q. Tumor antigens and immune subtypes of glioblastoma: The fundamentals of mRNA vaccine and individualized immunotherapy development. J. Big Data 2022, 9, 92. [Google Scholar] [CrossRef]
- Hosseinalizadeh, H.; Rahmati, M.; Ebrahimi, A.; O’Connor, R.S. Current status and challenges of vaccination therapy for glioblastoma. Mol. Cancer Ther. 2023, 22, 435–446. [Google Scholar] [CrossRef]
- Wang, Z.L.; Huang, R.Y.; Han, B.; Wu, F.; Sun, Z.Y.; Li, G.Z.; Zhang, W.; Zhao, Z.; Liu, X. Identification of tumor-associated antigens and immune subtypes of lower-grade glioma and glioblastoma for mRNA vaccine development. Chin. Neurosurg. J. 2022, 8, 34. [Google Scholar] [CrossRef]
- Mendez-Gomez, H.R.; DeVries, A.; Castillo, P.; von Roemeling, C.; Qdaisat, S.; Stover, B.D.; Xie, C.; Weidert, F.; Zhao, C.; Moor, R.; et al. RNA aggregates harness the danger response for potent cancer immunotherapy. Cell 2024, 187, 2521–2535.e21. [Google Scholar] [CrossRef]
- Su, T.; Liu, X.; Lin, S.; Cheng, F.; Zhu, G. Ionizable polymeric nanocarriers for the codelivery of bi-adjuvant and neoantigens in combination tumor immunotherapy. Bioact. Mater. 2023, 26, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadis, P.; Winkles, J.A.; Kim, A.J.; Woodworth, G.F. Focused Ultrasound-Mediated Blood-Brain Barrier Disruption for Enhanced Drug Delivery to Brain Tumors. In Nanotherapy for Brain Tumor Drug Delivery. Neuromethods; Agrahari, V., Kim, A., Agrahari, V., Eds.; Humana: New York, NY, USA, 2021; Volume 163. [Google Scholar] [CrossRef]
- Fan, C.-H.; Liu, H.-L.; Ting, C.-Y.; Lee, Y.-H.; Huang, C.-Y.; Ma, Y.-J.; Wei, K.C.; Yen, T.C.; Yeh, C.K. Submicron-Bubble-Enhanced Focused Ultrasound for Blood–Brain Barrier Disruption and Improved CNS Drug Delivery. PLoS ONE 2014, 9, e96327. [Google Scholar] [CrossRef]
- Alexander, A.; Agrawal, M.; Uddin, A.; Siddique, S.; Shehata, A.M.; Shaker, M.A.; Ata Ur Rahman, S.; Abdul, M.I.M.; Shaker, M.A. Recent expansions of novel strategies towards the drug targeting into the brain. Int. J. Nanomed. 2019, 14, 5895–5909. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99 Pt A, 28–51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bulcha, J.T.; Wang, Y.; Ma, H.; Tai, P.W.; Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 2021, 6, 53. [Google Scholar] [CrossRef]
- Zhong, R.; Talebian, S.; Mendes, B.B.; Wallace, G.; Langer, R.; Conde, J.; Shi, J. Hydrogels for RNA delivery. Nat. Mater. 2023, 22, 818–831. [Google Scholar] [CrossRef]
- Sayour, E.; Leon, G.; Pham, C.; Flores, C.; Sanchez-Perez, L.; Mitchell, D. Imps-36rna nanoparticle vaccines re-program host-immunity against glioblastoma inducing therapeutic anti-tumor activity. Neuro-Oncology 2015, 17, v121. [Google Scholar] [CrossRef]
- Keskin, D.B.; Anandappa, A.J.; Sun, J.; Tirosh, I.; Mathewson, N.D.; Li, S.; Oliveira, G. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 2019, 565, 234–239. [Google Scholar] [CrossRef]
- University of Florida.mRNA Vaccine Reprograms Immune System to Attack Glioblastoma. Available online: https://www.healio.com/news/hematology-oncology/20240516/mrna-vaccine-reprograms-immune-system-to-attack-glioblastoma (accessed on 10 September 2024).
- Ghiaseddin, A.; Méndez-Gómez, H.; Rahman, M.; Devries, A.; Zhang, D.; Zhao, C.; Hodik, M.; Kresak, J.; Massini, T.; Gatica, S.; et al. Ctim-11. Mrna aggregates elicit rapid immunologic response and pseudoprogression in glioblastoma patients. Neuro-Oncology 2023, 25, v63. [Google Scholar] [CrossRef]
- Hormigo, A.; Rubinsteyn, A.; Kodysh, J.; Blázquez, A.; Bhardwaj, N. Abstract CT062: A Phase I study of the safety and immunogenicity of personalized mutation-derived tumor vaccine and treatment fields in patients with newly diagnosed glioblastoma. Clinical Trials. Cancer Res. 2019, 79, CT062. [Google Scholar] [CrossRef]
- Zhong, H.; Liu, S.; Cao, F.; Zhao, Y.; Zhou, J.; Tang, F.; Peng, Z.; Li, Y.; Xu, S.; Wang, C.; et al. Dissecting Tumor Antigens and Immune Subtypes of Glioma to Develop mRNA Vaccine. Front. Immunol. 2021, 12, 709986. [Google Scholar] [CrossRef] [PubMed]
- Vik-Mo, E.; Nyakas, M.; Mikkelsen, B.; Moe, M.; Due-Tønnesen, P.; Suso, E.; Sæbøe-Larssen, S.; Sandberg, C.; Brinchmann, J.; Helseth, E.; et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol. Immunother. 2013, 62, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Guterres, A.; Abrahim, M.; Neves, P. The role of immune subtyping in glioma mRNA vaccine development. Immunotherapy 2023, 15, 1057–1072. [Google Scholar] [CrossRef] [PubMed]
- Grippin, A.; Wummer, B.; Wildes, T.; Dyson, K.; Méndez-Gómez, H.; Dobson, J.; Mitchell, D.; Sayour, E. Versatile mRNA-Nanoparticle Platform for Treatment of Glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, e251–e252. [Google Scholar] [CrossRef]
Vaccine Type | Mechanism | Examples |
---|---|---|
Inactivated vaccines | Contain killed or inactivated viruses/bacteria | Hepatitis A, polio (IPV), influenza (some formulations) |
Live-attenuated vaccines | Contain weakened live viruses/bacteria | Measles, mumps, rubella (MMR), varicella (chickenpox), yellow fever |
Subunit, recombinant, polysaccharide, and conjugate vaccines | Use parts of the pathogen (proteins, sugars, etc.) | Human papillomavirus (HPV), hepatitis B, pneumococcal (conjugate), meningococcal (polysaccharide or conjugate) |
Toxoid vaccines | Contain inactivated toxins (toxoids) | Diphtheria, tetanus |
mRNA vaccines | Deliver mRNA to produce a pathogen protein; potential for rapid production, strong immune responses, and adaptability for personalization | COVID-19 vaccines (Pfizer-BioNTech, Moderna) |
Viral vector vaccines | Use a modified virus to deliver pathogen genetic material | COVID-19 vaccines (AstraZeneca, Johnson & Johnson) |
DNA vaccines (under development) | Inject DNA that encodes a pathogen antigen | Currently experimental, research ongoing |
Protein subunit vaccines | Include harmless pieces of the pathogen | Novavax COVID-19 vaccine |
Strategy | Description | Chronological Development | References |
---|---|---|---|
Focused ultrasound (FUS) | Uses targeted ultrasound waves in combination with microbubbles to transiently disrupt the BBB, allowing the passage of therapeutic agents. | Developed in the early 2000s | Anastasiadis et al., 2021 [12] |
Receptor-mediated transcytosis | Exploits endogenous transport mechanisms by attaching ligands or antibodies to nanoparticles that bind to specific receptors on the BBB, facilitating transport. | Emerged in the late 2000s | Fan et al., 2014 [13] |
Nanoparticle modifications | Involves designing nanoparticles with surface modifications, such as PEGylation, to enhance their ability to cross the BBB and increase stability. | Progressed during the 2010s | Alexander et al., 2019 [14] |
Cell-penetrating peptides (CPPs) | Short peptides that facilitate the delivery of therapeutic agents across cellular membranes, including the BBB, improving delivery efficiency. | Gained traction in the 2010s | Suk et al., 2016 [15] |
Viral vectors | Utilizes viral vectors such as Adeno-associated viruses (AAVs) and lentiviruses that naturally cross the BBB to deliver mRNA directly to brain cells. | Became prominent in the 2020s | Bulcha et al., 2021 [16] |
Hydrogel-based systems | Novel systems that provide sustained release of mRNA, enhancing therapeutic efficacy while minimizing side effects once mRNA reaches the target site. | Emerging in the early 2020s | Zhong et al., 2023 [17] |
Study | Type of Study | Patient Population | Outcomes |
---|---|---|---|
Sayour et al. (2015) [18] | Preclinical | Animal models of GBM | Significant tumor regression, improved survival rates |
Keskin et al. (2019) [19] | Phase I clinical trial | Newly diagnosed GBM patients | Prolonged progression-free survival in 8/16 patients, well-tolerated |
University of Florida (ongoing) [20] | Phase Ib clinical trial | Advanced GBM patients | Early results show tumor shrinkage, enhanced immune responses |
Ghiaseddin et al. (2023) [21] | Phase I/II clinical trial | GBM patients | Enhanced T cell activation, tumor regression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strika, Z.; Petković, K.; Likić, R. Effectiveness and Safety of mRNA Vaccines in the Therapy of Glioblastoma. J. Pers. Med. 2024, 14, 993. https://doi.org/10.3390/jpm14090993
Strika Z, Petković K, Likić R. Effectiveness and Safety of mRNA Vaccines in the Therapy of Glioblastoma. Journal of Personalized Medicine. 2024; 14(9):993. https://doi.org/10.3390/jpm14090993
Chicago/Turabian StyleStrika, Zdeslav, Karlo Petković, and Robert Likić. 2024. "Effectiveness and Safety of mRNA Vaccines in the Therapy of Glioblastoma" Journal of Personalized Medicine 14, no. 9: 993. https://doi.org/10.3390/jpm14090993
APA StyleStrika, Z., Petković, K., & Likić, R. (2024). Effectiveness and Safety of mRNA Vaccines in the Therapy of Glioblastoma. Journal of Personalized Medicine, 14(9), 993. https://doi.org/10.3390/jpm14090993