Intraoperative Augmented Reality for Vitreoretinal Surgery Using Edge Computing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iskander, M.; Ogunsola, T.; Ramachandran, R.; McGowan, R.; Al-Aswad, L.A. Virtual reality and augmented reality in ophthalmology: A contemporary prospective. Asia-Pac. J. Ophthalmol. 2021, 10, 244. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, C.; Zhang, X.; Liang, W.; Chen, Y.; Ye, Y.; Lin, H. Augmented reality in ophthalmology: Applications and challenges. Front. Med. 2021, 8, 733241. [Google Scholar] [CrossRef]
- Yoon, J.W.; Chen, R.E.; Kim, E.J.; Akinduro, O.O.; Kerezoudis, P.; Han, P.K.; Si, P.; Freeman, W.D.; Diaz, R.J.; Komotar, R.J. Augmented reality for the surgeon: Systematic review. Int. J. Med. Robot. Comput. Assist. Surg. 2018, 14, e1914. [Google Scholar] [CrossRef] [PubMed]
- Leitritz, M.A.; Ziemssen, F.; Suesskind, D.; Partsch, M.; Voykov, B.; Bartz-Schmidt, K.U.; Szurman, G.B. Critical evaluation of the usability of augmented reality ophthalmoscopy for the training of inexperienced examiners. Retina 2014, 34, 785–791. [Google Scholar] [CrossRef]
- Ropelato, S.; Menozzi, M.; Michel, D.; Siegrist, M. Augmented reality microsurgery: A tool for training micromanipulations in ophthalmic surgery using augmented reality. Simul. Healthc. 2020, 15, 122–127. [Google Scholar] [CrossRef]
- Chou, J.; Kosowsky, T.; Payal, A.R.; Gonzalez, L.A.G.; Daly, M.K. Construct and face validity of the Eyesi indirect ophthalmoscope simulator. Retina 2017, 37, 1967–1976. [Google Scholar] [CrossRef]
- Huang, J.; Kinateder, M.; Dunn, M.J.; Jarosz, W.; Yang, X.-D.; Cooper, E.A. An augmented reality sign-reading assistant for users with reduced vision. PLoS ONE 2019, 14, e0210630. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.A.; Choi, J.; Jeong, S.; Ko, J. Block-building performance test using a virtual reality head-mounted display in children with intermittent exotropia. Eye 2021, 35, 1758–1765. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.R.; Somoskeöy, T.; Chow-Wing-Bom, H.; Crabb, D.P. Seeing other perspectives: Evaluating the use of virtual and augmented reality to simulate visual impairments (OpenVisSim). NPJ Digit. Med. 2020, 3, 32. [Google Scholar] [CrossRef]
- Roodaki, H.; Filippatos, K.; Eslami, A.; Navab, N. Introducing augmented reality to optical coherence tomography in ophthalmic microsurgery. In Proceedings of the 2015 IEEE International Symposium on Mixed and Augmented Reality, Fukuoka, Japan, 29 September–3 October 2015; pp. 1–6. [Google Scholar]
- Tang, N.; Fan, J.; Wang, P.; Shi, G. Microscope integrated optical coherence tomography system combined with augmented reality. Opt. Express 2021, 29, 9407–9418. [Google Scholar] [CrossRef]
- DeLisi, M.P.; Mawn, L.A.; Galloway Jr, R.L. Image-guided transorbital procedures with endoscopic video augmentation. Med. Phys. 2014, 41, 091901. [Google Scholar] [CrossRef]
- Pan, J.; Liu, W.; Ge, P.; Li, F.; Shi, W.; Jia, L.; Qin, H. Real-time segmentation and tracking of excised corneal contour by deep neural networks for DALK surgical navigation. Comput. Methods Programs Biomed. 2020, 197, 105679. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.K.; Xiao, D.; Bhuiyan, A.; Wong, T.Y.; Kanagasingam, Y. Color fundus image registration techniques and applications for automated analysis of diabetic retinopathy progression: A review. Biomed. Signal Process. Control 2019, 47, 288–302. [Google Scholar] [CrossRef]
- Pluim, J.P.; Maintz, J.A.; Viergever, M.A. Mutual-information-based registration of medical images: A survey. IEEE Trans. Med. Imaging 2003, 22, 986–1004. [Google Scholar] [CrossRef]
- Cideciyan, A.V. Registration of ocular fundus images: An algorithm using cross-correlation of triple invariant image descriptors. IEEE Eng. Med. Biol. Mag. 1995, 14, 52–58. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Ghassabi, Z.; Shanbehzadeh, J.; Mohammadzadeh, A.; Ostadzadeh, S.S. Colour retinal fundus image registration by selecting stable extremum points in the scale-invariant feature transform detector. IET Image Process. 2015, 9, 889–900. [Google Scholar] [CrossRef]
- Saha, S.K.; Xiao, D.; Frost, S.; Kanagasingam, Y. A two-step approach for longitudinal registration of retinal images. J. Med. Syst. 2016, 40, 277. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Hsu, W.; Lee, M.L.; Wong, T.Y. A tree matching approach for the temporal registration of retinal images. In Proceedings of the 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’06), Arlington, VA, USA, 13–15 November 2006; pp. 632–642. [Google Scholar]
- Chen, J.; Smith, R.T.; Tian, J.; Laine, A.F. A novel registration method for retinal images based on local features. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 2242–2245. [Google Scholar]
- Chen, L.; Huang, X.; Tian, J. Retinal image registration using topological vascular tree segmentation and bifurcation structures. Biomed. Signal Process. Control 2015, 16, 22–31. [Google Scholar] [CrossRef]
- Pham, D.L.; Xu, C.; Prince, J.L. Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2000, 2, 315–337. [Google Scholar] [CrossRef]
- Forouzanfar, M.; Forghani, N.; Teshnehlab, M. Parameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation. Eng. Appl. Artif. Intell. 2010, 23, 160–168. [Google Scholar] [CrossRef]
- Wu, W.; Chen, A.Y.; Zhao, L.; Corso, J.J. Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. Int. J. Comput. Assist. Radiol. Surg. 2014, 9, 241–253. [Google Scholar] [CrossRef]
- Montastier, É.; Ye, R.Z.; Noll, C.; Bouffard, L.; Fortin, M.; Frisch, F.; Phoenix, S.; Guérin, B.; Turcotte, É.E.; Lewis, G.F. Increased postprandial nonesterified fatty acid efflux from adipose tissue in prediabetes is offset by enhanced dietary fatty acid adipose trapping. Am. J. Physiol.-Endocrinol. Metab. 2021, 320, E1093–E1106. [Google Scholar] [CrossRef] [PubMed]
- Hesamian, M.H.; Jia, W.; He, X.; Kennedy, P. Deep learning techniques for medical image segmentation: Achievements and challenges. J. Digit. Imaging 2019, 32, 582–596. [Google Scholar] [CrossRef]
- Wang, R.; Lei, T.; Cui, R.; Zhang, B.; Meng, H.; Nandi, A.K. Medical image segmentation using deep learning: A survey. IET Image Process. 2022, 16, 1243–1267. [Google Scholar] [CrossRef]
- Qamar, S.; Jin, H.; Zheng, R.; Ahmad, P.; Usama, M. A variant form of 3D-UNet for infant brain segmentation. Future Gener. Comput. Syst. 2020, 108, 613–623. [Google Scholar] [CrossRef]
- Ilesanmi, A.E.; Ilesanmi, T.; Gbotoso, A.G. A systematic review of retinal fundus image segmentation and classification methods using convolutional neural networks. Healthc. Anal. 2023, 4, 100261. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, Z.; Niu, X.; Zhang, Y.; Cao, C.; Xiao, F.; Gao, X. Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 2018, 309, 179–191. [Google Scholar] [CrossRef]
- Chai, Y.; Liu, H.; Xu, J. A new convolutional neural network model for peripapillary atrophy area segmentation from retinal fundus images. Appl. Soft Comput. 2020, 86, 105890. [Google Scholar] [CrossRef]
- Das, S.; Kharbanda, K.; Suchetha, M.; Raman, R.; Dhas, E. Deep learning architecture based on segmented fundus image features for classification of diabetic retinopathy. Biomed. Signal Process. Control 2021, 68, 102600. [Google Scholar] [CrossRef]
- Dasgupta, A.; Singh, S. A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, Australia, 18–21 April 2017; pp. 248–251. [Google Scholar]
- Staal, J.; Abramoff, M.D.; Niemeijer, M.; Viergever, M.A.; van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. pp. 234–241. [Google Scholar]
- Ye, R.Z.; Noll, C.; Richard, G.; Lepage, M.; Turcotte, E.E.; Carpentier, A.C. DeepImageTranslator: A free, user-friendly graphical interface for image translation using deep-learning and its applications in 3D CT image analysis. SLAS Technol. 2022, 27, 76–84. [Google Scholar] [CrossRef]
- Ye, E.Z.; Ye, E.H.; Bouthillier, M.; Ye, R.Z. DeepImageTranslator V2: Analysis of multimodal medical images using semantic segmentation maps generated through deep learning. bioRxiv 2021. [Google Scholar] [CrossRef]
- Henry, H.Y.; Feng, X.; Wang, Z.; Sun, H. MixModule: Mixed CNN kernel module for medical image segmentation. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 1508–1512. [Google Scholar]
- Hoover, A.; Kouznetsova, V.; Goldbaum, M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 2000, 19, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Hoover, A.; Goldbaum, M. Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imaging 2003, 22, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Fischer, P.; Dosovitskiy, A.; Brox, T. Descriptor matching with convolutional neural networks: A comparison to sift. arXiv 2014, arXiv:1405.5769. [Google Scholar]
- Yi, K.M.; Trulls, E.; Lepetit, V.; Fua, P. Lift: Learned invariant feature transform. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part VI 14. pp. 467–483. [Google Scholar]
- Ono, Y.; Trulls, E.; Fua, P.; Yi, K.M. LF-Net: Learning local features from images. Adv. Neural Inf. Process. Syst. 2018, 31, 6237–6247. [Google Scholar]
- Truong, P.; Apostolopoulos, S.; Mosinska, A.; Stucky, S.; Ciller, C.; Zanet, S.D. Glampoints: Greedily learned accurate match points. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 10732–10741. [Google Scholar]
- Liu, J.; Li, X.; Wei, Q.; Xu, J.; Ding, D. Semi-supervised Keypoint Detector and Descriptor for Retinal Image Matching. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 593–609. [Google Scholar]
- Aruna, K.; Anil, V.S.; Anand, A.; Jaysankar, A.; Venugopal, A.; Nisha, K.; Sreelekha, G. Image Mosaicing for Neonatal Fundus Images. In Proceedings of the 2021 8th International Conference on Smart Computing and Communications (ICSCC), Kochi, Kerala, India, 1–3 July 2021; pp. 100–105. [Google Scholar]
- Richa, R.; Linhares, R.; Comunello, E.; Von Wangenheim, A.; Schnitzler, J.-Y.; Wassmer, B.; Guillemot, C.; Thuret, G.; Gain, P.; Hager, G. Fundus image mosaicking for information augmentation in computer-assisted slit-lamp imaging. IEEE Trans. Med. Imaging 2014, 33, 1304–1312. [Google Scholar] [CrossRef]
- Köhler, T.; Heinrich, A.; Maier, A.; Hornegger, J.; Tornow, R.P. Super-resolved retinal image mosaicing. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 1063–1067. [Google Scholar]
- De Zanet, S.; Rudolph, T.; Richa, R.; Tappeiner, C.; Sznitman, R. Retinal slit lamp video mosaicking. Int. J. Comput. Assist. Radiol. Surg. 2016, 11, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Cai, G.; Gou, X.; Yun, Z.; Wang, W.; Yang, W. Retinal mosaicking with vascular bifurcations detected on vessel mask by a convolutional network. J. Healthc. Eng. 2020, 2020, 7156408. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Meng, Z.; Pham, T.D.; Chen, Q.; Wei, L.; Su, R. DUNet: A deformable network for retinal vessel segmentation. Knowl.-Based Syst. 2019, 178, 149–162. [Google Scholar] [CrossRef]
- Chen, C.; Chuah, J.H.; Ali, R.; Wang, Y. Retinal vessel segmentation using deep learning: A review. IEEE Access 2021, 9, 111985–112004. [Google Scholar] [CrossRef]
- Chala, M.; Nsiri, B.; El yousfi Alaoui, M.H.; Soulaymani, A.; Mokhtari, A.; Benaji, B. An automatic retinal vessel segmentation approach based on Convolutional Neural Networks. Expert Syst. Appl. 2021, 184, 115459. [Google Scholar] [CrossRef]
- Jiang, Y.; Liang, J.; Cheng, T.; Lin, X.; Zhang, Y.; Dong, J. MTPA_Unet: Multi-scale transformer-position attention retinal vessel segmentation network joint transformer and CNN. Sensors 2022, 22, 4592. [Google Scholar] [CrossRef]
- Deng, X.; Ye, J. A retinal blood vessel segmentation based on improved D-MNet and pulse-coupled neural network. Biomed. Signal Process. Control 2022, 73, 103467. [Google Scholar] [CrossRef]
Unquantized Model | Quantized Model | |
---|---|---|
Dice Coefficient | 0.795836 | 0.794072 |
Accuracy | 0.947073 | 0.94464 |
Precision | 0.823066 | 0.843703 |
Recall | 0.782214 | 0.764726 |
F1 Score | 0.795836 | 0.794072 |
Jaccard Index | 0.702643 | 0.695848 |
Specificity | 0.718176 | 0.775183 |
IoU | 0.702643 | 0.695848 |
Cohen Kappa | 0.572046 | 0.593596 |
k | Dice Coefficient | Accuracy | Precision | Recall | F1 Score | Jaccard Index | Specificity | IoU | Cohen Kappa |
---|---|---|---|---|---|---|---|---|---|
1 | 0.549 | 0.937 | 0.556 | 0.545 | 0.549 | 0.502 | 0.6 | 0.502 | 0.08 |
2 | 0.678 | 0.951 | 0.678 | 0.683 | 0.678 | 0.591 | 0.842 | 0.591 | 0.291 |
3 | 0.71 | 0.954 | 0.705 | 0.721 | 0.71 | 0.619 | 0.866 | 0.619 | 0.331 |
4 | 0.74 | 0.957 | 0.734 | 0.751 | 0.74 | 0.643 | 0.908 | 0.643 | 0.376 |
5 | 0.732 | 0.957 | 0.728 | 0.741 | 0.732 | 0.636 | 0.903 | 0.636 | 0.367 |
6 | 0.71 | 0.954 | 0.705 | 0.721 | 0.71 | 0.619 | 0.866 | 0.619 | 0.331 |
7 | 0.74 | 0.957 | 0.734 | 0.751 | 0.74 | 0.643 | 0.908 | 0.643 | 0.376 |
M | 0.611 | 0.951 | 0.699 | 0.556 | 0.611 | 0.547 | 0.854 | 0.547 | 0.253 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, R.Z.; Iezzi, R. Intraoperative Augmented Reality for Vitreoretinal Surgery Using Edge Computing. J. Pers. Med. 2025, 15, 20. https://doi.org/10.3390/jpm15010020
Ye RZ, Iezzi R. Intraoperative Augmented Reality for Vitreoretinal Surgery Using Edge Computing. Journal of Personalized Medicine. 2025; 15(1):20. https://doi.org/10.3390/jpm15010020
Chicago/Turabian StyleYe, Run Zhou, and Raymond Iezzi. 2025. "Intraoperative Augmented Reality for Vitreoretinal Surgery Using Edge Computing" Journal of Personalized Medicine 15, no. 1: 20. https://doi.org/10.3390/jpm15010020
APA StyleYe, R. Z., & Iezzi, R. (2025). Intraoperative Augmented Reality for Vitreoretinal Surgery Using Edge Computing. Journal of Personalized Medicine, 15(1), 20. https://doi.org/10.3390/jpm15010020