Precision Oncology in Clinical Practice: Two Years of Comprehensive Genomic Profiling in Croatia †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Comprehensive Genomic Profiling Analysis
2.3. Study Population
2.4. Endpoints
2.5. Statistical Analysis
3. Results
3.1. Patients Characteristics
3.2. Results of the CGP Analysis
3.3. Uptake of the CGP
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APC | adenomatous polyposis coli |
CDKN2A | cyclin-dependent kinase inhibitor 2A |
cfDNA | cell-free DNA |
CGP | comprehensive genomic profiling |
CI | confidence interval |
CNA | copy number alteration |
ECOG PS | Eastern Cooperative Oncology Group performance status |
FDA | U.S. Food and Drug Administration |
FDR | false discovery rate |
IQR | interquartile range |
MSI | microsatellite instability |
MTB | Molecular Tumor Board |
Muts/Mb | mutations per megabase |
NSCLC | non-small cell lung cancer |
OR | odds ratio |
TF | tumor fraction |
TMB | tumor mutational burden |
TP53 | tumor protein P53 |
Abbreviations from Table 2 | |
KRAS | Kirsten rat sarcoma |
PIK3CA | phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha |
AR | androgen receptor |
NRAS | neuroblastoma RAS viral oncogene homolog |
PTEN | phosphatase and tensin homolog |
ARID1A | AT-rich interactive domain-containing protein 1A |
MYC | Myelocytomatosis oncogene |
NF1 | Neurofibromatosis type 1 |
BRCA1 | Breast cancer 1, early onset |
CTNNB1 | Catenin beta 1 |
STK11 | Serine/threonine kinase 11 |
ATM | Ataxia telangiectasia mutated |
ERBB2 | Erb-b2 receptor tyrosine kinase 2 |
CHEK2 | Checkpoint kinase 2 |
PIK3R1 | Phosphoinositide-3-kinase regulatory subunit 1 |
BRAF | B-Raf proto-oncogene, serine/threonine kinase |
CDK4 | Cyclin-dependent kinase 4 |
FBXW7 | F-box and WD repeat domain containing 7 |
AURKA | Aurora kinase A |
BRCA2 | Breast cancer 2, early onset |
EGFR | Epidermal growth factor receptor |
MDM2 | Mouse double minute 2 homolog |
NF2 | Neurofibromatosis type 2 |
RNF43 | Ring finger protein 43 |
CCND1 | Cyclin D1 |
FGFR1 | Fibroblast growth factor receptor 1 |
MET | Mesenchymal epithelial transition factor |
SOX2 | SRY-box transcription factor 2 |
AKT1 | AKT serine/threonine kinase 1 |
AKT2 | AKT serine/threonine kinase 2 |
ERBB3 | Erb-b2 receptor tyrosine kinase 3 |
MTAP | Methylthioadenosine phosphorylase |
RICTOR | Rapamycin-insensitive companion of mTOR |
SMARCB1 | SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily B member 1 |
FANCL | Fanconi anemia complementation group L |
FGFR2 | Fibroblast growth factor receptor 2 |
IDH1 | Isocitrate dehydrogenase (NADP(+)) 1, cytosolic |
KEAP1 | Kelch-like ECH-associated protein 1 |
KIT | KIT proto-oncogene, receptor tyrosine kinase |
PTCH1 | Patched 1 |
PALB2 | Partner and localizer of BRCA2 |
CCND2 | Cyclin D2 |
GNAQ | G protein subunit alpha q |
PDGFRA | Platelet-derived growth factor receptor alpha |
ALK | Anaplastic lymphoma kinase |
BAP1 | BRCA1 associated protein 1 |
BRIP1 | BRCA1 interacting protein C-terminal helicase 1 |
MEN1 | Multiple endocrine neoplasia type 1 |
RET | Ret proto-oncogene |
AKT3 | AKT serine/threonine kinase 3 |
AXL | AXL receptor tyrosine kinase |
FLT3 | FMS-like tyrosine kinase 3 |
GNA11 | G protein subunit alpha 11 |
HRAS | Harvey rat sarcoma viral oncogene homolog |
MDM4 | Mouse double minute 4 homolog |
MTOR | Mechanistic target of rapamycin |
MYCN | V-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog |
PBRM1 | Polybromo 1 |
RAD54L | RAD54 like |
RAF1 | RAF proto-oncogene serine/threonine-protein kinase |
ALOX12B | Arachidonate lipoxygenase 12B |
APC | Adenomatous polyposis coli |
ARAF | ARAF proto-oncogene, serine/threonine kinase |
ATR | ATR serine/threonine kinase |
CBL | Casitas B-lineage lymphoma proto-oncogene |
CCNE1 | Cyclin E1 |
CDK12 | Cyclin-dependent kinase 12 |
CDK6 | Cyclin-dependent kinase 6 |
CDKN1A | Cyclin-dependent kinase inhibitor 1A (p21) |
CDKN2A | Cyclin-dependent kinase inhibitor 2A (p16) |
EP300 | E1A binding protein p300 |
ERRFI1 | ERBB receptor feedback inhibitor 1 |
EZH2 | Enhancer of zeste homolog 2 |
FANCA | Fanconi anemia complementation group A |
FGFR4 | Fibroblast Growth Factor Receptor 4 |
FLCN | Folliculin |
KDM6A | Lysine Demethylase 6A |
MAF | MAF Proto-Oncogene |
MAP3K1 | Mitogen-Activated Protein Kinase Kinase Kinase 1 |
MLH1 | MutL Homolog 1 |
MSH3 | MutS Homolog 3 |
NTRK2 | Neurotrophic Tyrosine Receptor Kinase 2 |
NTRK3 | Neurotrophic Tyrosine Receptor Kinase 3 |
PDGFRB | Platelet-Derived Growth Factor Receptor Beta |
PIK3CB | Phosphoinositide 3-Kinase Catalytic Subunit Beta |
RB1 | Retinoblastoma 1 |
SMARCA4 | SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin Subfamily A Member 4 |
SMO | Smoothened, Frizzled Class Receptor |
SUFU | Suppressor of Fused |
References
- Goetz, L.H.; Schork, N.J. Personalized medicine: Motivation, challenges, and progress. Fertil. Steril. 2018, 109, 952–963. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salto-Tellez, M.; Cree, I.A. Cancer taxonomy: Pathology beyond pathology. Eur. J. Cancer. 2019, 115, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Goswami, S.; Raychaudhuri, D.; Siddiqui, B.A.; Singh, P.; Nagarajan, A.; Liu, J.; Subudhi, S.K.; Poon, C.; Gant, K.L.; et al. Immune checkpoint therapy-current perspectives and future directions. Cell 2023, 186, 1652–1669. [Google Scholar] [CrossRef] [PubMed]
- Bedard, P.L.; Hyman, D.M.; Davids, M.S.; Siu, L.L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 2020, 395, 1078–1088. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34, Erratum in N. Engl. J. Med. 2018, 379, 2185. https://doi.org/10.1056/NEJMx180040. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.; Schouten, R.D.; De Gooijer, C.J.; Baas, P. Pembrolizumab, for the treatment of non-small cell lung cancer. Expert. Rev. Anticancer. Ther. 2017, 17, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B.; et al. Pembrolizumab, plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef] [PubMed]
- Dagher, R.; Cohen, M.; Williams, G.; Rothmann, M.; Gobburu, J.; Robbie, G.; Rahman, A.; Chen, G.; Staten, A.; Griebel, D.; et al. Approval, summary: Imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin. Cancer Res. 2002, 8, 3034–3038. [Google Scholar] [PubMed]
- Flaherty, K.T.; Robert, C.; Hersey, P.; Nathan, P.; Garbe, C.; Milhem, M.; Demidov, L.V.; Hassel, J.C.; Rutkowski, P.; Mohr, P.; et al. Improved, Survival with MEK Inhibition in BRAF-Mutated Melanoma. N. Engl. J. Med. 2012, 367, 107–114. [Google Scholar] [CrossRef]
- Jänne, P.A.; Yang, J.C.-H.; Kim, D.-W.; Planchard, D.; Ohe, Y.; Ramalingam, S.S.; Ahn, M.-J.; Kim, S.-W.; Su, W.-C.; Horn, L.; et al. AZD9291, in EGFR Inhibitor–Resistant Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 372, 1689–1699. [Google Scholar] [CrossRef]
- Poveda, A.; Floquet, A.; Ledermann, J.A.; Asher, R.; Penson, R.T.; Oza, A.M.; Korach, J.; Huzarski, T.; Pignata, S.; Friedlander, M.; et al. Final overall survival (OS) results from SOLO2/ENGOT-ov21: A phase III trial assessing maintenance olaparib in patients (pts) with platinum-sensitive, relapsed ovarian cancer and a BRCA mutation. J. Clin. Oncol. 2020, 38, 6002. [Google Scholar] [CrossRef]
- Adamowicz, K.; Baczkowska-Waliszewska, Z. Quality of life during chemotherapy, hormonotherapy or antiHER2 therapy of patients with advanced, metastatic breast cancer in clinical practice. Health Qual. Life Outcomes 2020, 18, 134. [Google Scholar] [CrossRef] [PubMed]
- Frampton, G.M.; Fichtenholtz, A.; Otto, G.A.; Wang, K.; Downing, S.R.; He, J.; Schnall-Levin, M.; White, J.; Sanford, E.M.; An, P.; et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 2013, 31, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef]
- US Food and Drug Administration. FoundationOne®CDx (F1CDx) 2020. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019S017B.pdf (accessed on 30 January 2025).
- Hobbs, B.P.; Pestana, R.C.; Zabor, E.C.; Kaizer, A.M.; Hong, D.S. Basket Trials: Review of Current Practice and Innovations for Future Trials. J. Clin. Oncol. 2022, 40, 3520–3528. [Google Scholar] [CrossRef]
- Park, J.J.H.; Hsu, G.; Siden, E.G.; Thorlund, K.; Mills, E.J. An overview of precision oncology basket and umbrella trials for clinicians. CA Cancer J. Clin. 2020, 70, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Kenny, K.; Broom, A.; Page, A.; Prainsack, B.; Wakefield, C.E.; Itchins, M.; Lwin, Z.; Khasraw, M. A sociology of precision-in-practice: The affective and temporal complexities of everyday clinical care. Sociol. Health Illn. Novemb. 2021, 43, 2178–2195. [Google Scholar] [CrossRef] [PubMed]
- Čerina, D.; Krpina, K.; Jakopović, M.; Plavetić, N.D.; Seiwerth, F.; Tomić, S.; Radić, J.; Lovasić, I.B.; Canjko, I.; Boban, M.; et al. The Challenges and Opportunities of the Implementation of Comprehensive Genomic Profiling in Everyday Clinical Practice with Non-Small Cell Lung Cancer: National Results from Croatia. Cancers 2023, 15, 3395. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- FoundationOne LiquidCDx Technical information. Available online: https://assets.ctfassets.net/w98cd481qyp0/wVEm7VtICYR0sT5C1VbU7/fd055e0476183a6acd4eae6b583e3a00/F1LCDx_Technical_Specs_072021.pdf (accessed on 30 January 2025).
- Woodhouse, R.; Li, M.; Hughes, J.; Delfosse, D.; Skoletsky, J.; Ma, P.; Meng, W.; Dewal, N.; Milbury, C.; Clark, T.; et al. Clinical and analytical validation of FoundationOne Liquid CDx, a novel 324-Gene cfDNA-based comprehensive genomic profiling assay for cancers of solid tumor origin. PLoS ONE 2020, 15, e0237802. [Google Scholar] [CrossRef]
- FoundationOne HemeCDx Technical Information. Available online: https://www.foundationmedicine.com/sites/default/files/media/documents/2024-04/FoundationOne_Heme_Technical_Specifications.pdf (accessed on 30 January 2025).
- Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin. 2022, 72, 409–436. [Google Scholar] [CrossRef] [PubMed]
- Babić, D.; Pleština, S.; Samaržija, M. Preporuke Za Odabir Bolesnika/tumora Za SGP. 2021. Available online: https://www.hrvatsko-onkolosko-drustvo.com/wp-content/uploads/2021/02/Preporuke-za-SGP_Izdanje-23.2.2021.pdf (accessed on 30 January 2025).
- Song, I.W.; Vo, H.H.; Chen, Y.S.; Baysal, M.A.; Kahle, M.; Johnson, A.; Tsimberidou, A.M. Precision Oncology: Evolving Clinical Trials across Tumor Types. Cancers 2023, 15, 1967. [Google Scholar] [CrossRef] [PubMed]
- Horgan, D.; Van den Bulcke, M.; Malapelle, U.; Troncone, G.; Normanno, N.; Capoluongo, E.D.; Prelaj, A.; Rizzari, C.; Trapani, D.; Singh, J.; et al. Tackling the implementation gap for the uptake of NGS and advanced molecular diagnostics into healthcare systems. Heliyon 2024, 10, e23914. [Google Scholar] [CrossRef] [PubMed]
- Fasola, G.; Barducci, M.C.; Pelizzari, G.; Grossi, F.; Pinto, C.; Daniele, B.; Giordano, M.; Ortega, C.; Silva, R.R.; Tozzi, V.D.; et al. Implementation of Precision Oncology in Clinical Practice: Results of a National Survey for Health Care Professionals. Oncologist 2023, 28, e324–e330. [Google Scholar] [CrossRef] [PubMed]
- Schmid, S.; Jochum, W.; Padberg, B.; Demmer, I.; Mertz, K.; Joerger, M.; Britschgi, C.; Matter, M.; Rothschild, S.; Omlin, A. How to read a next-generation sequencing report-what oncologists need to know. ESMO Open 2022, 7, 100570. [Google Scholar] [CrossRef] [PubMed]
- Čerina, D.; Matković, V.; Katić, K.; Lovasić, I.B.; Šeparović, R.; Canjko, I.; Bajić, Ž.; Vrdoljak, E. Comprehensive Genomic Profiling in the Management of Ovarian Cancer-National Results from Croatia. J. Pers. Med. 2022, 12, 1176. [Google Scholar] [CrossRef]
- Čerina, D.; Matković, V.; Katić, K.; Lovasić, I.B.; Šeparović, R.; Canjko, I.; Jakšić, B.; Fröbe, A.; Pleština, S.; Bajić, Ž.; et al. Precision Oncology in Metastatic Uterine Cancer; Croatian First-Year Experience of the Comprehensive Genomic Profiling in Everyday Clinical Practice. Pathol. Oncol. Res. 2021, 27, 1609963. [Google Scholar] [CrossRef] [PubMed]
- Zazo, S.; Pérez-Buira, S.; Carvajal, N.; Plaza-Sánchez, J.; Manso, R.; Pérez-González, N.; Dominguez, C.; Prieto-Potin, I.; Rubio, J.; Dómine, M.; et al. Actionable mutational profiling in solid tumors using hybrid-capture-based next-generation sequencing in a real-world setting in Spain. Cancer Med. 2024, 13, e6827. [Google Scholar] [CrossRef] [PubMed]
2020 (n = 313) | 2021 (n = 168) | Total (n = 481) | |
---|---|---|---|
Diagnosed cancers by organ system | |||
Gastrointestinal | 92 (29.4) | 48 (28.6) | 140 (29.1) |
Reproductive organs (gynecologic and breast cancer) | 92 (29.4) | 47 (28.0) | 139 (28.9) |
Respiratory | 52 (16.6) | 18 (10.7) | 70 (14.6) |
Musculoskeletal | 16 (5.1) | 18 (10.7) | 34 (7.1) |
Genitourinary | 20 (6.4) | 8 (4.8) | 28 (5.8) |
Skin | 10 (3.2) | 7 (4.2) | 17 (3.5) |
Endocrine | 8 (2.6) | 4 (2.4) | 12 (2.5) |
Central nervous system | 6 (1.9) | 3 (1.8) | 9 (1.9) |
Head and neck | 4 (1.3) | 2 (1.2) | 6 (1.2) |
Other | 13 (4.2) | 13 (7.7) | 26 (5.4) |
Specific diagnosis, n (%) | |||
Colorectal | 65 (20.8) | 27 (16.1) | 92 (19.1) |
Lung | 44 (14.1) | 13 (7.7) | 57 (11.9) |
Ovaries | 25 (8.0) | 21 (12.5) | 46 (9.6) |
Endometrium | 29 (9.3) | 10 (6.0) | 39 (8.1) |
Breast | 23 (7.3) | 10 (6.0) | 33 (6.9) |
Stomach, abdominal | 11 (3.5) | 6 (3.6) | 17 (3.5) |
Skin, melanoma | 9 (2.9) | 7 (4.2) | 16 (3.3) |
Soft tissue and musculoskeletal system | 8 (2.6) | 8 (4.8) | 16 (3.3) |
Uterus | 11 (3.5) | 4 (2.4) | 15 (3.1) |
Pancreas | 7 (2.2) | 6 (3.6) | 13 (2.7) |
Kidney | 7 (2.2) | 3 (1.8) | 10 (2.1) |
Other | 74 (23.6) | 53 (31.5) | 127 (26.4) |
n | (%) | n | (%) | n | (%) | |||
---|---|---|---|---|---|---|---|---|
KRAS | 131 | (27.2) | PTCH1 | 6 | (1.2) | MAP3K1 | 1 | (0.2) |
PIK3CA | 62 | (12.9) | PALB2 | 5 | (1.0) | MLH1 | 1 | (0.2) |
AR | 51 | (10.6) | CCND2 | 4 | (0.8) | MSH3 | 1 | (0.2) |
NRAS | 50 | (10.4) | GNAQ | 4 | (0.8) | NTRK2 | 1 | (0.2) |
PTEN | 44 | (9.1) | PDGFRA | 4 | (0.8) | NTRK3 | 1 | (0.2) |
ARID1A | 43 | (8.9) | ALK | 3 | (0.6) | PDGFRB | 1 | (0.2) |
MYC | 35 | (7.3) | BAP1 | 3 | (0.6) | PIK3CB | 1 | (0.2) |
NF1 | 24 | (5.0) | BRIP1 | 3 | (0.6) | RB1 | 1 | (0.2) |
BRCA1 | 23 | (4.8) | MEN1 | 3 | (0.6) | SMARCA4 | 1 | (0.2) |
CTNNB1 | 22 | (4.6) | RET | 3 | (0.6) | SMO | 1 | (0.2) |
STK11 | 20 | (4.2) | AKT3 | 2 | (0.4) | SUFU | 1 | (0.2) |
ATM | 17 | (3.5) | AXL | 2 | (0.4) | |||
ERBB2 | 17 | (3.5) | FLT3 | 2 | (0.4) | |||
CHEK2 | 15 | (3.1) | GNA11 | 2 | (0.4) | |||
PIK3R1 | 15 | (3.1) | HRAS | 2 | (0.4) | |||
BRAF | 14 | (2.9) | MDM4 | 2 | (0.4) | |||
CDK4 | 13 | (2.7) | MTOR | 2 | (0.4) | |||
FBXW7 | 13 | (2.7) | MYCN | 2 | (0.4) | |||
AURKA | 11 | (2.3) | PBRM1 | 2 | (0.4) | |||
BRCA2 | 11 | (2.3) | RAD54L | 2 | (0.4) | |||
EGFR | 11 | (2.3) | RAF1 | 2 | (0.4) | |||
MDM2 | 11 | (2.3) | ALOX12B | 1 | (0.2) | |||
NF2 | 10 | (2.1) | APC | 1 | (0.2) | |||
RNF43 | 10 | (2.1) | ARAF | 1 | (0.2) | |||
CCND1 | 8 | (1.7) | ATR | 1 | (0.2) | |||
FGFR1 | 8 | (1.7) | CBL | 1 | (0.2) | |||
MET | 8 | (1.7) | CCNE1 | 1 | (0.2) | |||
SOX2 | 8 | (1.7) | CDK12 | 1 | (0.2) | |||
AKT1 | 7 | (1.5) | CDK6 | 1 | (0.2) | |||
AKT2 | 7 | (1.5) | CDKN1A | 1 | (0.2) | |||
ERBB3 | 7 | (1.5) | CDKN2A | 1 | (0.2) | |||
MTAP | 7 | (1.5) | EP300 | 1 | (0.2) | |||
RICTOR | 7 | (1.5) | ERRFI1 | 1 | (0.2) | |||
SMARCB1 | 7 | (1.5) | EZH2 | 1 | (0.2) | |||
FANCL | 6 | (1.2) | FANCA | 1 | (0.2) | |||
FGFR2 | 6 | (1.2) | FGFR4 | 1 | (0.2) | |||
IDH1 | 6 | (1.2) | FLCN | 1 | (0.2) | |||
KEAP1 | 6 | (1.2) | KDM6A | 1 | (0.2) | |||
KIT | 6 | (1.2) | MAF | 1 | (0.2) |
n (%) | OR | (95% CI) | p | |
---|---|---|---|---|
Gastrointestinal | 123 (87.9) | 1.00 | (referent) | |
Genitourinary | 14 (50.0) | 0.14 | (0.06; 0.34) | <0.001 * |
Reproductive organs | 119 (85.6) | 0.82 | (0.41; 1.65) | 0.581 |
Respiratory | 47 (67.1) | 0.28 | (0.14; 0.58) | <0.001 * |
Musculoskeletal | 12 (35.3) | 0.08 | (0.03; 0.18) | <0.001 * |
Skin | 15 (88.2) | 1.04 | (0.22; 4.93) | 0.964 |
Endocrine | 6 (50.0) | 0.14 | (0.04; 0.48) | 0.002 * |
Central nervous system | 8 (88.9) | 1.11 | (0.13; 9.40) | 0.927 |
Head and neck | 3 (50.0) | 0.14 | (0.03; 0.74) | 0.021 * |
Other | 22 (84.6) | 0.76 | (0.23; 2.47) | 0.649 |
Candidates * | CGP | Percent Tested | |
---|---|---|---|
Gastrointestinal | 4499 (35.0) | 140 (29.1) | 3.1% |
Genitourinary | 1883 (14.6) | 28 (5.8) | 1.5% |
Reproductive organs | 1333 (10.4) | 139 (28.9) | 10.4% |
Respiratory | 2951 (22.9) | 70 (14.6) | 2.4% |
Musculoskeletal | 90 (0.7) | 34 (7.1) | 37.8% |
Skin | 224 (1.7) | 17 (3.5) | 7.6% |
Endocrine | 34 (0.3) | 12 (2.5) | 35.3% |
Central nervous system | 391 (3.0) | 9 (1.9) | 2.3% |
Head and neck | 488 (3.8) | 6 (1.2) | 1.2% |
Other | 973 (7.6) | 26 (5.4) | 2.7% |
TOTAL | 12,866 (100.0) | 481 | 3.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čerina Pavlinović, D.; Šuto Pavičić, J.; Njavro, A.; Librenjak, N.; Tomaš, I.; Šeparović, R.; Pleština, S.; Bajić, Ž.; Dedić Plavetić, N.; Vrdoljak, E. Precision Oncology in Clinical Practice: Two Years of Comprehensive Genomic Profiling in Croatia. J. Pers. Med. 2025, 15, 59. https://doi.org/10.3390/jpm15020059
Čerina Pavlinović D, Šuto Pavičić J, Njavro A, Librenjak N, Tomaš I, Šeparović R, Pleština S, Bajić Ž, Dedić Plavetić N, Vrdoljak E. Precision Oncology in Clinical Practice: Two Years of Comprehensive Genomic Profiling in Croatia. Journal of Personalized Medicine. 2025; 15(2):59. https://doi.org/10.3390/jpm15020059
Chicago/Turabian StyleČerina Pavlinović, Dora, Jelena Šuto Pavičić, Antonela Njavro, Nikša Librenjak, Ilijan Tomaš, Robert Šeparović, Stjepko Pleština, Žarko Bajić, Natalija Dedić Plavetić, and Eduard Vrdoljak. 2025. "Precision Oncology in Clinical Practice: Two Years of Comprehensive Genomic Profiling in Croatia" Journal of Personalized Medicine 15, no. 2: 59. https://doi.org/10.3390/jpm15020059
APA StyleČerina Pavlinović, D., Šuto Pavičić, J., Njavro, A., Librenjak, N., Tomaš, I., Šeparović, R., Pleština, S., Bajić, Ž., Dedić Plavetić, N., & Vrdoljak, E. (2025). Precision Oncology in Clinical Practice: Two Years of Comprehensive Genomic Profiling in Croatia. Journal of Personalized Medicine, 15(2), 59. https://doi.org/10.3390/jpm15020059