Blazars at Very High Energies: Emission Modelling
Abstract
:1. Introduction
2. Blazar Emission Modelling
2.1. Leptonic Emission Modelling
2.2. Lepto-Hadronic Emission Modelling
2.3. Application of Single-Zone Models to Specific Blazar Types
2.3.1. Applications to FSRQs and Luminous BL Lac Objects
2.3.2. Applications to HBLs and Extreme Blazars
2.4. Strengths and Weaknesses of Emission Scenarios
2.5. Beyond the Single-Zone Model
3. Brief Overview of Particle Acceleration Mechanisms
3.1. Fermi Processes and Shear Acceleration
3.2. Magnetic Reconnection
3.3. Pulsar-like Acceleration around Black Hole
4. Locating the VHE Emitting Zone: A Critical Missing Link
4.1. Black Hole Magnetospheres
4.2. Nuclear VLBI Jets
4.3. Large Scale Jets
4.4. Constraints from VHE Observations
5. Multi-Wavelength and Multi-Messenger Astrophysics
5.1. The Infrared, Optical, X-ray and Low-Energy Gamma-Ray Domains
5.2. Synergy with Radio VLBI and Absolute Sub-Mas Astrometry
5.3. The Link with Neutrinos and UHECRs
5.4. Perspective with Gravitational Waves
6. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
1 | cf. http://tevcat.uchicago.edu/?mode=1&showsrc=309 (accessed on 31 July 2022). |
References
- Nigro, C.; Sitarek, J.; Gliwny, P.; Sanchez, D.; Tramacere, A.; Craig, M. agnpy: An open-source python package modelling the radiative processes of jetted active galactic nuclei. Astron. Astrophys. 2022, 660, 18. [Google Scholar] [CrossRef]
- Konigl, A. Relativistic jets as X-ray and gamma-ray sources. Astrophys. J. 1981, 243, 700. [Google Scholar] [CrossRef]
- Dermer, C.D.; Schlickeiser, R. Model for the High-Energy Emission from Blazars. Astrophys. J. 1993, 416, 458. [Google Scholar] [CrossRef]
- Sikora, M.; Begelman, M.C.; Rees, M.J. Comptonization of Diffuse Ambient Radiation by a Relativistic Jet: The Source of Gamma Rays from Blazars? Astrophys. J. 1994, 421, 153. [Google Scholar] [CrossRef]
- Levinson, A.; Blandford, R. Pair cascades in extragalactic jets. II. The beamed X-ray spectrum. Astrophys. J. 1995, 449, 86. [Google Scholar] [CrossRef]
- Inoue, S.; Takahara, F. Electron Acceleration and Gamma-Ray Emission from Blazars. Astrophys. J. 1996, 463, 555. [Google Scholar] [CrossRef]
- Ghisellini, G.; Madau, P. On the origin of the gamma-ray emission in blazars. Mon. Not. R. Astron. Soc. 1996, 280, 67. [Google Scholar] [CrossRef] [Green Version]
- Ghisellini, G.; Maraschi, L. Bulk acceleration in relativistic jets and the spectral properties of blazars. Astrophys. J. 1989, 340, 181. [Google Scholar] [CrossRef]
- Katarzyński, K.; Sol, H.; Kus, A. The multifrequency emission of Mrk 501, from radio to TeV gamma-rays. Astron. Astrophys. 2001, 367, 809–825. [Google Scholar] [CrossRef]
- Bednarek, W.; Protheroe, R.J. Testing the homogeneous synchrotron self-Compton model forgamma-ray production in Mrk421. Mon. Not. R. Astron. Soc. 1997, 292, 646. [Google Scholar] [CrossRef]
- Tavecchio, F.; Maraschi, L.; Ghisellini, G. Constraints on the Physical Parameters of TeV Blazars. Astrophys. J. 1998, 509, 608. [Google Scholar] [CrossRef] [Green Version]
- Kardashev, N.S. Nonstationarity of Spectra of Young Sources of Nonthermal Radio Emission. Sov. Astron. 1962, 6, 317. [Google Scholar]
- Tramacere, A.; Massaro, E.; Taylor, A.M. Stochastic Acceleration and the Evolution of Spectral Distributions in Synchro-Self-Compton Sources: A Self-consistent Modeling of Blazars’ Flares. Astrophys. J. 2011, 739, 66. [Google Scholar] [CrossRef] [Green Version]
- Cerruti, M.; Boisson, C.; Zech, A. Constraining the parameter space of the one-zone synchrotron-self-Compton model for GeV-TeV detected BL Lacertae objects. Astron. Astrophys. 2013, 558, 47. [Google Scholar] [CrossRef] [Green Version]
- Abramowski, A.; et al.; [H.E.S.S. Collaboration] A multiwavelength view of the flaring state of PKS 2155-304 in 2006. Astron. Astrophys. 2012, 539, 149. [Google Scholar]
- Ghisellini, G.; Tavecchio, F. Canonical high-power blazars. Mon. Not. R. Astron. Soc. 2009, 397, 985. [Google Scholar] [CrossRef]
- Lewis, T.R.; Finke, J.D.; Becker, P.A. Electron Acceleration in Blazars: Application to the 3C 279 Flare on 2013 December 20. Astrophys. J. 2019, 884, 116. [Google Scholar] [CrossRef] [Green Version]
- Finke, J.D. External Compton scattering in blazar jets and the location of the gamma-ray emitting region. Astrophys. J. 2016, 830, 94. [Google Scholar] [CrossRef] [Green Version]
- Joshi, M.; Böttcher, M. Time-dependent Radiation Transfer in the Internal Shock Model Scenario for Blazar Jets. Astrophys. J. 2011, 727, 21. [Google Scholar] [CrossRef] [Green Version]
- Böttcher, M.; Baring, M.G. Multi-wavelength variability signatures of relativistic shocks in blazar jets. Astrophys. J. 2019, 887, 133. [Google Scholar] [CrossRef]
- Dmytriiev, A.; Sol, H.; Zech, A. Connecting steady emission and very high energy flaring states in blazars: The case of Mrk 421. Mon. Not. R. Astron. Soc. 2021, 505, 2712. [Google Scholar] [CrossRef]
- Katarzyński, K.; Sol, H.; Kus, A. The multifrequency variability of Mrk 421. Astron. Astrophys. 2003, 410, 101. [Google Scholar] [CrossRef]
- Graff, P.B.; Georganopoulos, M.; Perlman, E.S.; Kazanas, D. A Multizone Model for Simulating the High-Energy Variability of TeV Blazars. Astrophys. J. 2008, 689, 68. [Google Scholar] [CrossRef] [Green Version]
- Aab, A.; et al.; [The Pierre Auger Collaboration] Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV. Science 2007, 357, 1266–1270. [Google Scholar]
- The IceCube Collaboration; Fermi-LAT; MAGIC; AGILE; ASAS-SN; HAWC; H.E.S.S.; INTEGRAL; Kanata; Kiso; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar] [CrossRef] [Green Version]
- Celotti, A.; Ghisellini, G. The power of blazar jets. Mon. Not. R. Astron. Soc. 2008, 385, 283–300. [Google Scholar] [CrossRef] [Green Version]
- Mannheim, K. The proton blazar. Astron. Astrophys. 1993, 269, 67. [Google Scholar]
- Aharonian, F.A. TeV gamma rays from BL Lac objects due to synchrotron radiation of extremely high energy protons. New Astron. 2000, 5, 377. [Google Scholar] [CrossRef] [Green Version]
- Mücke, A.; Protheroe, R.J. A proton synchrotron blazar model for flaring in Markarian 501. Astropart. Phys. 2001, 15, 121. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, X.; Fedynitch, A.; Gao, S.; Boncioli, D.; Winter, W. Neutrinos and Ultra-high-energy Cosmic-ray Nuclei from Blazars. Astrophys. J. 2018, 854, 54. [Google Scholar] [CrossRef]
- Mastichiadis, A.; Petropoulou, M.; Dimitrakoudis, S. Mrk 421 as a case study for TeV and X-ray variability in leptohadronic models. Mon. Not. R. Astron. Soc. 2013, 434, 2684. [Google Scholar] [CrossRef] [Green Version]
- Zech, A.; Cerruti, M.; Mazin, D. Expected signatures from hadronic emission processes in the TeV spectra of BL Lacertae objects. Astron. Astrophys. 2017, 602, 25. [Google Scholar] [CrossRef] [Green Version]
- Cerruti, M.; Zech, A.; Boisson, C.; Inoue, S. A hadronic origin for ultra-high-frequency-peaked BL Lac objects. Mon. Not. R. Astron. Soc. 2015, 448, 910–927. [Google Scholar] [CrossRef] [Green Version]
- Cerruti, M. Leptonic and Hadronic Radiative Processes in Supermassive-Black-Hole Jets. Galaxies 2020, 8, 72. [Google Scholar] [CrossRef]
- Petropoulou, M.; Dimitrakoudis, S.; Padovani, P. Photohadronic origin of γ-ray BL Lac emission: Implications for IceCube neutrinos. Mon. Not. R. Astron. Soc. 2015, 448, 2412. [Google Scholar] [CrossRef]
- Reynoso, M.M.; Medina, M.C.; Romero, G.E. A lepto-hadronic model for high-energy emission from FR I radiogalaxies. Astron. Astrophys. 2011, 531, 30. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, H.; Adam, R.; Aharonian, F.; Benkhali, F.A.; Angüner, E.O.; Arakawa, M.; Arcaro, C.; Armand, C.; Ashkar, H.; Backes, M.; et al. Constraints on the emission region of 3C 279 during strong flares in 2014 and 2015 through VHE gamma-ray observations with H.E.S.S. Astron. Astrophys. 2019, 627, 159. [Google Scholar]
- Böttcher, M.; Reimer, A.; Sweeney, K.; Prakash, A. Leptonic and Hadronic Modeling of Fermi-detected Blazars. Astrophys. J. 2013, 768, 54. [Google Scholar] [CrossRef] [Green Version]
- Hervet, O.; Boisson, C.; Sol, H. Linking radio and gamma-ray emission in Ap Librae. Astron. Astrophys. 2015, 578, 69. [Google Scholar] [CrossRef] [Green Version]
- Zacharias, M.; Wagner, S.J. The extended jet of AP Librae: Origin of the very high-energy γ-ray emission? Astron. Astrophys. 2016, 588, 110. [Google Scholar] [CrossRef] [Green Version]
- Petropoulou, M.; Vasilopoulos, G.; Giannios, D. The TeV emission of Ap Librae: A hadronic interpretation and prospects for CTA. Mon. Not. R. Astron. Soc. 2017, 464, 2213. [Google Scholar] [CrossRef] [Green Version]
- Zdziarski, A.; Boettcher, M. Hadronic models of blazars require a change of the accretion paradigm. Mon. Not. R. Astron. Soc. 2015, 450, L21–L25. [Google Scholar] [CrossRef]
- Biteau, J.; Prandini, E.; Costamante, L.; Lemoine, M.; Padovani, P.; Pueschel, E.; Resconi, E.; Tavecchio, F.; Taylor, A.; Zech, A. Progress in unveiling extreme particle acceleration in persistent astrophysical jets. Nat. Astron. 2020, 4, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Katarzyński, K.; Ghisellini, G.; Tavecchio, F. Hard TeV spectra of blazars and the constraints to the infrared intergalactic background. Mon. Not. R. Astron. Soc. 2006, 368, 52. [Google Scholar] [CrossRef]
- Costamante, L.; Bonnoli, G.; Tavecchio, F. The NuSTAR view on hard-TeV BL Lacs. Mon. Not. R. Astron. Soc. 2018, 477, 4257. [Google Scholar] [CrossRef]
- Giannios, D.; Uzdensky, D.A.; Begelman, M.C. Fast TeV variability in blazars: Jets in a jet. Mon. Not. R. Astron. Soc. 2009, 395, 29. [Google Scholar] [CrossRef] [Green Version]
- Zech, A.; Lemoine, M. Electron-proton co-acceleration on relativistic shocks in extreme-TeV blazars. Astron. Astrophys. 2021, 654, 96. [Google Scholar] [CrossRef]
- Tavecchio, F.; Costa, A.; Sciaccaluga, A. Extreme blazars: The result of unstable recollimated jets? Mon. Not. R. Astron. Soc. 2022. [Google Scholar] [CrossRef]
- Lefa, E.; Rieger, F.M.; Aharonian, F. Formation of Very Hard Gamma-Ray Spectra of Blazars in Leptonic Models. Astrophys. J. 2011, 740, 64. [Google Scholar] [CrossRef] [Green Version]
- Tavecchio, F. On the hadronic cascade scenario for extreme BL Lacs. Mon. Not. R. Astron. Soc. 2014, 438, 3255. [Google Scholar] [CrossRef] [Green Version]
- Böttcher, M.; Dermer, C.D.; Finke, J.D. The Hard VHE γ-Ray Emission in High-Redshift TeV Blazars: Comptonization of Cosmic Microwave Background Radiation in an Extended Jet? Astrophys. J. 2008, 679, 9. [Google Scholar] [CrossRef]
- Gaidos, J.A.; Akerlof, C.W.; Biller, S.; Boyle, P.J.; Breslin, A.C.; Buckley, J.H.; Carter-Lewis, D.A.; Catanese, M.; Cawley, M.F.; Fegan, D.J.; et al. Extremely rapid bursts of TeV photons from the active galaxy Markarian 421. Nature 1996, 383, 219–320. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.; et al.; [H.E.S.S. Collaboration] An Exceptional Very High Energy Gamma-Ray Flare of PKS 2155-304. Astrophys. J. 2007, 664, L71. [Google Scholar] [CrossRef]
- Krawczynski, H.; Hughes, S.B.; Horan, D.; Aharonian, F.; Aller, M.F.; Aller, H.; Boltwood, P.; Buckley, J.; Coppi, P.; Fossati, G.; et al. Multiwavelength Observations of Strong Flares from the TeV Blazar 1ES 1959+650. Astrophys. J. 2004, 601, 151. [Google Scholar] [CrossRef]
- Snios, B.; Nulsen, P.E.; Kraft, R.P.; Cheung, C.C.; Meyer, E.T.; Forman, W.R.; Jones, C.; Murray, S.S. Detection of Superluminal Motion in the X-ray Jet of M87. Astrophys. J. 2019, 879, 8. [Google Scholar] [CrossRef]
- Snios, B.; Wykes, S.; Nulsen, P.E.J. Variability and Proper Motion of X-Ray Knots in the Jet of Centaurus A. Astrophys. J. 2019, 871, 248. [Google Scholar] [CrossRef]
- Dimitrakoudis, S.; Mastichiadis, A.; Protheroe, R.J.; Reimer, A. The time-dependent one-zone hadronic model. Astron. Astrophys. 2012, 546, 120. [Google Scholar] [CrossRef] [Green Version]
- Boutelier, T.; Henri, G.; Petrucci, P.-O. An inhomogeneous jet model for the rapid variability of TeV blazars. Mon. Not. R. Astron. Soc. 2008, 390, L73. [Google Scholar] [CrossRef] [Green Version]
- Potter, W.J.; Cotter, G. Synchrotron and inverse-Compton emission from blazar jets—II. An accelerating jet model with a geometry set by observations of M87. Mon. Not. R. Astron. Soc. 2013, 429, 1189. [Google Scholar] [CrossRef] [Green Version]
- Marscher, A.P. Turbulent Extreme Multi-Zone Model for simulating flux and polarization variability in Blazars. Astrophys. J. 2014, 780, 87. [Google Scholar] [CrossRef]
- Lucchini, M.; Markoff, S.; Crumley, P. Breaking degeneracy in jet dynamics: Multi-epoch joint modelling of the BL Lac PKS 2155-304. Mon. Not. R. Astron. Soc. 2019, 482, 4798. [Google Scholar] [CrossRef] [Green Version]
- Aller, M.F.; Gomez, J.L.; Perlman, E. (Eds.) Polarimetry as a Probe of Magnetic Fields in AGN Jets; Galaxies Special Issue; MDPI: Basel, Switzerland, 2021. [Google Scholar]
- The Fermi-LAT Collaboration and Members of the 3C 279 Multi-Band Campaign. A change in the optical polarization associated with a γ-ray flare in the blazar 3C 279. Nature 2010, 463, 919–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blinov, D.; Pavlidou, V.; Papadakis, I.; Kiehlmann, S.; Liodakis, I.; Panopoulou, G.V.; Angelakis, E.; Baloković, M.; Hovatta, T.; King, O.G.; et al. RoboPol: Connection between optical polarization plane rotations and gamma-ray flares in blazars. Mon. Not. R. Astron. Soc. 2018, 474, 1296. [Google Scholar] [CrossRef]
- Zhang, H.; Böttcher, M. X-Ray and Gamma-Ray Polarization in Leptonic and Hadronic Jet Models of Blazars. Astrophys. J. 2013, 774, 18. [Google Scholar] [CrossRef] [Green Version]
- Chiaberge, M.; Ghisellini, G. Rapid variability in the synchrotron self-Compton model for blazars. Mon. Not. R. Astron. Soc. 1999, 306, 551. [Google Scholar] [CrossRef]
- Zacharias, M.; Reimer, A.; Boisson, C.; Zech, A. EXHALE-JET: An extended hadro-leptonic jet model for blazars—I. Code description and initial results. Mon. Not. R. Astron. Soc. 2022, 512, 3948. [Google Scholar] [CrossRef]
- Sol, H.; Pelletier, G.; Asseo, E. Two-flow model for extragalactic radio jets. Mon. Not. R. Astron. Soc. 1989, 237, 411. [Google Scholar] [CrossRef] [Green Version]
- Tavecchio, F.; Ghisellini, G. Spine-sheath layer radiative interplay in subparsec-scale jets and the TeV emission from M87. Mon. Not. R. Astron. Soc. 2008, 385, 98. [Google Scholar] [CrossRef] [Green Version]
- Sikora, M.; Rutkowski, M.; Begelman, M.C. A spine-sheath model for strong-line blazars. Mon. Not. R. Astron. Soc. 2016, 457, 1352. [Google Scholar] [CrossRef]
- Vuillaume, T.; Henri, G.; Petrucci, P.-O. A stratified jet model for AGN emission in the two-flow paradigm. Astron. Astrophys. 2018, 620, 41. [Google Scholar] [CrossRef] [Green Version]
- Sikora, M. Powers and Magnetization of Blazar Jets. Galaxies 2016, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Nalewajko, K.; Giannios, D.S.; Begelman, M.C. Radiative properties of reconnection-powered minijets in blazars. Mon. Not. R. Astron. Soc. 2011, 413, 333. [Google Scholar] [CrossRef] [Green Version]
- Ghisellini, G.; Tavecchio, F. Rapid variability in TeV blazars: The case of PKS2155-304. Mon. Not. R. Astron. Soc. 2008, 386, 28. [Google Scholar] [CrossRef]
- Barkov, M.V.; Aharonian, F.A.; Bogovalov, S.V. Rapid TeV Variability in Blazars as a Result of Jet-Star Interaction. Astrophys. J. 2012, 749, 119. [Google Scholar] [CrossRef]
- Bosch-Ramon, V.; Perucho, M.; Barkov, M.V. Clouds and red giants interacting with the base of AGN jets. Astron. Astrophys. 2012, 539, 69. [Google Scholar] [CrossRef]
- Gomez, J.L.; Marti, J.M.A.; Marscher, A.P. Parsec-Scale Synchrotron Emission from Hydrodynamic Relativistic Jets in Active Galactic Nuclei. Astrophys. J. 1995, 449, 19. [Google Scholar] [CrossRef]
- Agudo, I.; Gómez, J.-L.; Martí, J.-M. Jet Stability and the Generation of Superluminal and Stationary Components. Astrophys. J. 2001, 549, 183. [Google Scholar] [CrossRef] [Green Version]
- Mimica, P.; Aloy, M.-A.; Agudo, I. Spectral Evolution of Superluminal Components in Parsec-Scale Jets. Astrophys. J. 2009, 696, 1142. [Google Scholar] [CrossRef] [Green Version]
- Porth, O.; Fendt, C.; Meliani, Z. Synchrotron Radiation of Self-collimating Relativistic Magnetohydrodynamic Jets. Astrophys. J. 2011, 737, 42. [Google Scholar] [CrossRef] [Green Version]
- Fromm, C.M.; Perucho, M.; Mimica, P. Spectral evolution of flaring blazars from numerical simulations. Astron. Astrophys. 2016, 588, 101. [Google Scholar] [CrossRef] [Green Version]
- Fichet de Clairfontaine, G.; Meliani, Z.; Zech, A. Flux variability from ejecta in structured relativistic jets with large-scale magnetic fields. Astron. Astrophys. 2021, 647, 77. [Google Scholar] [CrossRef]
- Rieger, F.M. An Introduction to Particle Acceleration in Shearing Flows. Galaxies 2019, 7, 78. [Google Scholar] [CrossRef] [Green Version]
- Petropoulou, M.; Sironi, L.; Spitkovsky, A. Relativistic Magnetic Reconnection in Electron-Positron-Proton Plasmas: Implications for Jets of Active Galactic Nuclei. Astrophys. J. 2019, 880, 37. [Google Scholar] [CrossRef] [Green Version]
- Meyer, E.T.; Georganopoulos, M.; Sparks, W.B.; Perlman, E.; van der Marel, R.P.; Anderson, J.; Sohn, S.T.; Biretta, J.; Norman, C.; Chiaberge, M. A kiloparsec-scale internal shock collision in the jet of a nearby radio galaxy. Nature 2015, 521, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Fichet de Clairfontaine, G.; Meliani, Z.; Zech, A. Flare echos from relaxation shocks in perturbed relativistic jets. Astron. Astrophys. 2022, 661, A54. [Google Scholar] [CrossRef]
- Schlickeiser, R. Cosmic Ray Astrophysics; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Stawarz, L.; Petrosian, V. On the Momentum Diffusion of Radiating Ultrarelativistic Electrons in a Turbulent Magnetic Field. Astrophys. J. 2008, 681, 1725. [Google Scholar] [CrossRef] [Green Version]
- Zhdankin, V.; Werner, G.R.; Uzdensky, D.A.; Begelman, M.C. Kinetic Turbulence in Relativistic Plasma: From Thermal Bath to Nonthermal Continuum. Phys. Rev. Lett. 2017, 118, 055103. [Google Scholar] [CrossRef] [Green Version]
- Zhdankin, V.; Uzdensky, D.A.; Werner, G.R.; Begelman, M.C. System-size Convergence of Nonthermal Particle Acceleration in Relativistic Plasma Turbulence. Astrophys. J. 2018, 867, L18. [Google Scholar] [CrossRef] [Green Version]
- Comisso, L.; Sironi, L. Particle Acceleration in Relativistic Plasma Turbulence. Phys. Rev. Lett. 2018, 121, 255101. [Google Scholar] [CrossRef] [Green Version]
- Nättilä, J.; Beloborodov, A.M. Radiative Turbulent Flares in Magnetically Dominated Plasmas. Astrophys. J. 2021, 921, 87. [Google Scholar] [CrossRef]
- Bresci, V.; Lemoine, M.; Gremillet, L.; Comisso, L.; Sironi, L.; Demidemet, C. Nonresonant particle acceleration in strong turbulence: Comparison to kinetic and MHD simulations. Phys. Rev. D 2022, 106, 023028. [Google Scholar] [CrossRef]
- Asano, K.; Hayashida, M. The Most Intensive Gamma-Ray Flare of Quasar 3C 279 with the Second-order Fermi Acceleration. Astrophys. J. Lett. 2015, 808, L18. [Google Scholar] [CrossRef] [Green Version]
- Rieger, F.M.; Duffy, P. Turbulence and particle acceleration in shearing flows. Astrophys. J. Lett. 2021, 907, L2. [Google Scholar] [CrossRef]
- Spitkovsky, A. Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last? Astrophys. J. Lett. 2008, 682, L5. [Google Scholar] [CrossRef]
- Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.J. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic shocks. Astrophys. J. 2005, 622, 927. [Google Scholar] [CrossRef]
- Sironi, L.; Spitovsky, A. Particle Acceleration in Relativistic Magnetized Collisionless Electron-Ion Shocks. Astrophys. J. 2011, 726, 75. [Google Scholar] [CrossRef] [Green Version]
- Summerlin, E.J.; Baring, M.G. Diffusive acceleration of particles at oblique, relativistic, magnetohydrodynamic shocks. Astrophys. J. 2012, 745, 63. [Google Scholar] [CrossRef]
- Ellison, D.C.; Warren, D.C.; Bykov, A.M. Monte Carlo simulations of nonlinear particle acceleration in parallel trans-relativistic shocks. Astrophys. J. 2013, 776, 46. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Sironi, L.; Narayan, R. Non-thermal electron acceleration in low Mach number collisionless shocks. I. Particle energy spectra and acceleration mechanism. Astrophys. J. 2014, 794, 153. [Google Scholar] [CrossRef]
- Sironi, L.; Keshet, U.; Lemoine, M. Relativistic shocks: Particle acceleration and magnetization. Space Sci. Rev. 2015, 191, 519. [Google Scholar] [CrossRef]
- Groselj, D.; Sironi, L.; Beloborodov, A.M. Microphysics of relativistic collisionless electron-ion-positron shocks. Astrophys. J. 2022, 933, 74. [Google Scholar] [CrossRef]
- Lemoine, M. Generalized Fermi acceleration. Phys. Rev. D 2019, 99, 083006. [Google Scholar] [CrossRef] [Green Version]
- Treumann, R.A.; Baumjohann, W. Spontaneous magnetic reconnection—Collisionless reconnection and its potential astrophysical relevance. Astron. Astrophys. Rev. 2015, 23, 4. [Google Scholar] [CrossRef]
- Marcowith, A.; Ferrand, G.; Grech, M.; Meliani, Z.; Plotnikov, I.; Walder, R. Multi-scale simulations of particle acceleration in astrophysical systems. Living Rev. Comput. Astrophys. 2020, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, K.; Dutan, I.; Kohn, C.; Mizuno, Y. PIC methods in astrophysics: Simulations of relativistic jets and kinetic physics in astrophysical systems. Living Rev. Comput. Astrophys. 2021, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Zenitani, S.; Hoshino, H. The role of the guide field in relativistic pair plasma reconnection. Astrophys. J. 2008, 677, 530. [Google Scholar] [CrossRef] [Green Version]
- Sironi, L.; Spitkovsky, A. Relativistic reconnection: An efficient source of non-thermal particles. Astrophys. J. Lett. 2014, 783, L21. [Google Scholar] [CrossRef]
- Sironi, L.; Giannios, D. Petropoulou, Plasmoids in relativistic reconnection, from birth to adulthood: First they grow, then they go. Mon. Not. R. Astron. Soc. 2016, 462, 48. [Google Scholar] [CrossRef] [Green Version]
- Werner, G.R.; Uzdensky, D.A. Nonthermal particle acceleration in 3D relativistic magnetic reconnection in pair plasma. Astrophys. J. Lett. 2017, 843, L27. [Google Scholar] [CrossRef]
- Christie, I.M.; Petropoulou, M.; Sironi, L.; Giannios, D. Interplasmoid Compton scattering and the Compton dominance of BL Lacs. Mon. Not. R. Astron. Soc. 2020, 492, 549. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, K.; Mizuno, Y.; Gomez, J.L.; Ioana, D.; Jacek, N.; Oleh, K.; Nicholas, M.; Athina, M.; Martin, P.; Kouichi, H. Rapid particle acceleration due to recollimation shocks and turbulent magnetic fields in injected jets with helical magnetic fields. Astrophys. J. 2020, 493, 2652. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Sironi, L.; Giannios, D. Fast particle acceleration in three-dimensional relativistic reconnection. Astrophys. J. 2021, 922, 261. [Google Scholar] [CrossRef]
- Sironi, L.; Rowan, M.E.; Narayan, R. Reconnection-driven particle acceleration in relativistic shear flows. Astrophys. J. Lett. 2021, 907, L44. [Google Scholar] [CrossRef]
- Meli, A.; Nishikawa, K.; Kohn, C.; Dutan, I.; Mizuno, Y.; Kobzar, O.; MacDonald, N.; Gomez, J.L.; Hirotani, K. 3D PIC simulations for relativistic jets with a toroidal magnetic field. Mon. Not. R. Astron. Soc. 2022. submitted. [Google Scholar]
- Bransgrove, A.; Ripperda, B.; Philippov, A. Magnetic Hair and Reconnection in Black Hole Magnetospheres. Phys. Rev. Lett. 2021, 127, 055101. [Google Scholar] [CrossRef] [PubMed]
- Crinquand, B.; Cerutti, B.; Dubus, G.; Parfrey, K.; Philippov, A. Images of magnetospheric reconnection-powered radiation around supermassive black holes. arXiv 2022, arXiv:2202.04472. [Google Scholar]
- Nathanail, A.; Mpisketzis, V.; Porth, O.; Fromm, C.M.; Rezzolla, L. Magnetic reconnection and plasmoid formation in three-dimensional accretion flows around black holes. Mon. Not. R. Astron. Soc. 2022, 513, 4267. [Google Scholar] [CrossRef]
- Medina-Torrejón, T.E.; de Gouveia Dal Pino, E.M.; Kadowaki, L.H.S.; Kowal, G.; Singh, C.B.; Mizuno, Y. Particle Acceleration by Relativistic Magnetic Reconnection Driven by Kink Instability Turbulence in Poynting Flux-Dominated Jets. Astrophys. J. 2021, 908, 193. [Google Scholar] [CrossRef]
- Morris, P.J.; Potter, W.J.; Cotter, G. The feasibility of magnetic reconnection powered blazar flares from synchrotron self-Compton emission. Mon. Not. R. Astron. Soc. 2019, 486, 1548. [Google Scholar] [CrossRef] [Green Version]
- Asano, K.; Hayashida, M. Synchrotron gamma-ray emission model of the giant outburst of the quasar 3C 279 in 2015: Fast reconnection or stochastic acceleration with electromagnetic cascade? Astrophys. J. 2020, 890, 56. [Google Scholar] [CrossRef] [Green Version]
- Sobacchi, E.; Nattila, J.; Sironi, L. A fully kinetic model for orphan gamma-ray flares in blazars. Mon. Not. R. Astron. Soc. 2021, 503, 688. [Google Scholar] [CrossRef]
- Goldreich, P.; Julian, W.H. Pulsar Electrodynamics. Astrophys. J. 1969, 157, 869. [Google Scholar] [CrossRef]
- Gangadhara, R.T.; Lesch, H. On the nonthermal emission in active galactic nuclei. Astron. Astrophys. 1997, 323, L45. [Google Scholar]
- Osmanov, Z.; Rogava, A.; Bodo, G. On the efficiency of particle acceleration by rotating magnetospheres in AGN. Astron. Astrophys. 2007, 470, 395. [Google Scholar] [CrossRef] [Green Version]
- Beskin, V.S.; Istomin, Y.N.; Pariev, V.I. Filling the magnetosphere of a supermassive black hole with plasma. Sov. Astron. 1992, 36, 64. [Google Scholar]
- Hirotani, K.; Okamoto, I. Pair plasma production in a force-free magnetosphere around a supermassive black hole. Astrophys. J. 1998, 497, 563. [Google Scholar] [CrossRef]
- Neronov, A.; Aharonian, F.A. Production of TeV gamma radiation in the vicinity of the supermassive black hole in the giant radio galaxy M87. Astrophys. J. 2007, 671, 85. [Google Scholar] [CrossRef] [Green Version]
- Rieger, F.M.; Aharonian, F.A. Variable VHE gamma-ray emission from non-blazar AGNs. Astron. Astrophys. 2008, 479, L5. [Google Scholar] [CrossRef]
- Istomin, Y.; Sol, H. Acceleration of particles in the vicinity of a massive black hole. Astrophys. Space Sci. 2009, 321, 57. [Google Scholar] [CrossRef]
- Osmanov, Z. Is very high energy emission from the BL Lac 1ES 0806+524 centrifugally driven? New Astron. 2010, 15, 351. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.E.; Tchekhovskoy, A. Horizon-scale lepton acceleration in jets: Explaining the compact radio emission in M87. Astrophys. J. 2015, 809, 97. [Google Scholar] [CrossRef] [Green Version]
- Katsoulakos, G.; Rieger, F.M. Magnetospheric Gamma-Ray Emission in Active Galactic Nuclei. Astrophys. J. 2018, 852, 112. [Google Scholar] [CrossRef] [Green Version]
- Parfrey, K.; Philippov, A.; Cerruti, B. First-principles plasma simulations of black hole jet launching. Phys. Rev. Lett. 2019, 122, 03521. [Google Scholar] [CrossRef] [Green Version]
- Crinquand, B.; Cerutti, B.; Philippov, A.; Parfrey, K.; Dubus, G. Multidimensional simulations of ergospheric pair discharges around black holes. Phys. Rev. Lett. 2020, 124, 145101. [Google Scholar] [CrossRef] [Green Version]
- Katsoulakos, G.; Rieger, F.M. Gap-type Particle Acceleration in the Magnetospheres of Rotating Supermassive Black Holes. Astrophys. J. 2020, 895, 99. [Google Scholar] [CrossRef]
- Istomin, Y.; Gunya, A. Acceleration of the high-energy protons in active galactic nuclei. Astron. Nachr. 2021, 342, 182. [Google Scholar] [CrossRef]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barrio, J.A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; et al. Black hole lightning due to particle acceleration at subhorizon scales. Science 2014, 346, 1080–1084. [Google Scholar] [CrossRef] [Green Version]
- Crinquand, B.; Cerutti, B.; Dubus, G.; Parfrey, K.; Philippov, A. Synthetic gamma-ray lightcurves of Kerr black hole magnetospheric activity from particle-in-cell simulations. Astron. Astrophys. 2021, 650, A163. [Google Scholar] [CrossRef]
- Kisaka, S.; Levinson, A.; Toma, K.; Niv, I. The Response of Black Hole Spark Gaps to External Changes: A Production Mechanism of Rapid TeV Flares? Astrophys. J. 2022, 924, 22. [Google Scholar] [CrossRef]
- Akiyama, K.; Lu, R.; Fish, V.L.; Doeleman, S.S.; Broderick, A.E.; Dexter, J.; Hada, K.; Kino, M.; Nagai, H.; Honma, M.; et al. 230 GHz VLBI observations of M87: Event-horizon-scale structure during an enhanced very-high-energy gamma-ray state in 2012. Astrophys. J. 2015, 807, 150. [Google Scholar] [CrossRef] [Green Version]
- Jorstad, S.; Marscher, A. The VLBA-BU-BLAZAR multiwavelength monitoring program. Galaxies 2016, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Rani, B.; Jorstad, S.G.; Marscher, A.P.; Agudo, I.; Sokolovsky, K.V.; Larionov, V.M.; Smith, P.; Mosunova, D.A.; Borman, G.A.; Grishina, T.S.; et al. Exploring the connection between parsec-scale jet activity and broadband outbursts in 3C 279. Astrophys. J. 2018, 858, 80. [Google Scholar] [CrossRef] [Green Version]
- Larionov, V.M.; Jorstad, S.G.; Marscher, A.P.; Villata, M.; Raiteri, C.M.; Smith, P.S.; Agudo, I.; Savchenko, S.S.; Morozova, D.A.; Acosta-Pulido, J.A.; et al. Multiwavelength behaviour of the blazar 3C 279: Decade-long study from gamma-ray to radio. Mon. Not. R. Astron. Soc. 2020, 492, 3829. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-Y.; Krichbaum, T.P.; Broderick, A.E.; Wielgus, M.; Blackburn, L.; Gómez, J.L.; Johnson, M.D.; Bouman, K.L.; Chael, A.; Akiyama, K.; et al. Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. Astron. Astrophys. 2020, 640, A69. [Google Scholar] [CrossRef] [Green Version]
- Lico, R.; Casadio, C.; Jorstad, S.G.; Gomez, J.L.; Marscher, A.P.; Traianou, E.; Kim, J.Y.; Zhao, G.Y.; Fuentes, A.; Cho, I.; et al. New jet feature in the parsec-scale jet of the blazar OJ 287 connected to the 2017 teraelectronvolt flaring activity. Astron. Astrophys. 2022, 658, L10. [Google Scholar] [CrossRef]
- Hervet, O.; Williams, D.A.; Falcone, A.D.; Kaur, A. Probing an X-Ray Flare Pattern in Mrk 421 Induced by Multiple Stationary Shocks: A Solution to the Bulk Lorentz Factor Crisis. Astrophys. J. 2019, 877, 26. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, H.; Adam, R.; Aharonian, F.; Benkhali, F.A.; Angüner, E.O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; et al. H.E.S.S. and MAGIC observations of a sudden cessation of a very-high-energy γ-ray flare in PKS 1510-089 in May 2016. Astron. Astrophys. 2021, 648, A23. [Google Scholar]
- The, H.E.S.S. Collaboration. Resolving acceleration to very high energies along the jet of Centaurus A. Nature 2020, 582, 356–359. [Google Scholar]
- Bednarek, W. GeV-TeV γ-rays produced by electrons in the kpc-scale jet as a result of Comptonization of the inner jet emission. Mon. Not. R. Astron. Soc. 2019, 483, 1003. [Google Scholar] [CrossRef] [Green Version]
- Stawarz, L.; Sikora, M.; Ostrowski, M. High-Energy Gamma Rays from FR I Jets A. Astrophys. J. 2003, 597, 186. [Google Scholar] [CrossRef]
- Costamante, L.; Cutini, S.; Tosti, G.; Antolini, E.; Tramacere, A. On the origin of gamma-rays in Fermi blazars: Beyond the broad-line region. Mon. Not. R. Astron. Soc. 2018, 477, 4749. [Google Scholar] [CrossRef]
- Foffano, L.; Vittorini, V.; Tavani, M.; Menegoni, E. Absorption Features in Sub-TeV Gamma-Ray Spectra of BL Lac Objects. Astrophys. J. 2022, 926, 95. [Google Scholar] [CrossRef]
- Isler, J.C.; Urry, C.M.; Bailyn, C. The SMARTS multi-epoch optical spectroscopy atlas (SaMOSA): An analysis of emission line variability in southern hemisphere Fermi blazars. Astrophys. J. 2015, 804, 7. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.A.; Barkov, M.V.; Khangulyan, D. Scenarios for Ultrafast Gamma-Ray Variability in AGN. Astron. Astrophys. 2012, 539, 149. [Google Scholar] [CrossRef]
- Meyer, M.; Scargle, J.D.; Blandford, R.D. Characterizing the Gamma-Ray Variability of the Brightest Flat Spectrum Radio Quasars Observed with the Fermi LAT. Astrophys. J. 2019, 877, 39. [Google Scholar] [CrossRef] [Green Version]
- Narayan, R.; Piran, T. Variability in blazars: Clues from PKS 2155-304. Mon. Not. R. Astron. Soc. 2012, 420, 604. [Google Scholar] [CrossRef]
- Perennes, C.; Sol, H.; Bolmont, J. Modeling spectral lags in active galactic nucleus flares in the context of Lorentz invariance violation searches. Astron. Astrophys. 2020, 633, A143. [Google Scholar] [CrossRef]
- Levy, C.; Sol, H.; Bolmont, J. Modeling intrinsic time-lags in flaring blazars in the context of Lorentz Invariance Violation searches. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 907. Available online: https://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=395 (accessed on 31 July 2022).
- Roy, A.; Sarkar, A.; Chatterjee, A.; Gupta, A.C.; Chitnis, V.R.; Wiita, P.J. Transient quasi-periodic oscillations at γ-rays in the TeV blazar PKS 1510-089. Mon. Not. R. Astron. Soc. 2022, 510, 3641. [Google Scholar] [CrossRef]
- Hervet, O.; et al.; [VERITAS Collaboration] A multiwavelength look at the 2017 flare of OJ287. In Proceedings of the 7th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy, Barcelona, Spain, 4–8 July 2022; Available online: https://indico.icc.ub.edu/event/46/contributions/1257/ (accessed on 31 July 2022).
- Zech, A.; Mazin, D.; Biteau, J.; Kishimoto, M.; Pott, J.-U.; Almeida, C.R.; Surdej, J.; Tristram, K.R.W. Key Science Project: Active Galactic Nuclei. In Science with the Cherenkov Telescope Array; World Scientific: Singapore, 2019; p. 231. [Google Scholar]
- O’Brien, S.; et al.; [VERITAS Collaboration] VERITAS detection of VHE emission from the optically bright quasar OJ 287. In Proceedings of the 35th International Cosmic Ray Conference, Busan, Korea, 10–20 July 2017. [Google Scholar]
- Acciari, V.A.; et al.; [MAGIC Collaboration] Multiwavelength study of the gravitationally lensed blazar QSO B0218+357 between 2016 and 2020. Mon. Not. R. Astron. Soc. 2022, 510, 2344. [Google Scholar] [CrossRef]
- Goldoni, P.; Pita, S.; Boisson, C.; Max-Moerbeck, W.; Kasai, E.; Williams, D.A.; D’Ammando, F.; Navarro-Aranguiz, V.; Backes, M.; Barres de Almeida, U.; et al. Optical spectroscopy of blazars for the Cherenkov Telescope Array. Astron. Astrophys. 2021, 650, A106. [Google Scholar] [CrossRef]
- Ehlert, S.E.; Ferrazzoli, R.; Marinucci, A.; Marshall, H.L.; Middei, R.; Pacciani, L.; Perri, M.; Petrucci, P.-O.; Puccetti, S.; Barnouin, T.; et al. Limits on X-ray polarization at the core of Centaurus A as observed with the imaging X-ray polarimeter explorer. Astrophys. J. 2022, 935, 116. [Google Scholar] [CrossRef]
- Peirson, A.L.; Liodakis, I.; Romani, R.W. Testing high-energy emission models for blazars with X-ray polarimetry. Astrophys. J. 2022, 931, 59. [Google Scholar] [CrossRef]
- Peirson, A.L.; Romani, R.W. The polarization behavior of relativistic synchrotron self-Compton jets. Astrophys. J. 2019, 885, 76. [Google Scholar] [CrossRef]
- Marscher, A.P.; Jorstad, S.G. Frequency and time dependence of linear polarization in turbulent jets of blazars. Galaxies 2021, 9, 27. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Giannios, D.; Guo, F. First-principles prediction of X-ray polarization from magnetic reconnection in high-frequency BL Lacertae objects. Astrophys. J. 2021, 912, 129. [Google Scholar] [CrossRef]
- Di Gesu, L.; Tavecchio, F.; Donnarumma, I.; Marscher, A.; Pesce-Rollins, M.; Landoni, M. Testing particle acceleration models for BL Lac jets with the imaging X-ray polarimeter explorer. Astron. Astrophys. 2022, 662, A83. [Google Scholar] [CrossRef]
- Ramos Almeida, C.; Ricci, C. Nuclear obscuration in active galactic nuclei. Nat. Astron. 2017, 1, 679. [Google Scholar] [CrossRef] [Green Version]
- Hoenig, S.; Kishimoto, M. Dusty winds in active galactic nuclei: Reconciling observations with models. Astrophys. J. Lett. 2017, 838, L20. [Google Scholar] [CrossRef]
- Engel, K.; Goodman, J.; Huentemeyer, P.; Kierans, C.; Lewis, T.R.; Negro, M.; Santander, M.; Williams, D.A.; Allen, A.; Aramaki, T.; et al. Gamma-Ray Experiments: The Future of Gamma-Ray Experiments in the MeV-EeV Range. In Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021), Seattle, WA, USA, 17–27 July 2022; Available online: https://arxiv.org/pdf/2203.07360.pdf (accessed on 31 July 2022).
- Mereghetti, S.; Balman, S.; Caballero-Garcia, M.; Del Santo, M.; Doroshenko, V.; Erkut, M.H.; Hanlon, L.; Hoeflich, P.; Markowitz, A.; Osborne, J.P.; et al. Time domain astronomy with the THESEUS satellite. arXiv 2021, arXiv:2104.09533v1. [Google Scholar] [CrossRef]
- Venturi, T.; Paragi, Z.; Lindqvist, M. (Eds.) VLBI20-30: A Scientific Roadmap for the Next Decade; The Future of the European VLBI Network; JIVE: Dwingeloo, The Netherlands; EVN: Nordrhein-Westfalen, Germany, 2020; Available online: https://arxiv.org/ftp/arxiv/papers/2007/2007.02347.pdf (accessed on 28 October 2022).
- Kovalev, Y.Y.; Zobnina, D.I.; Plavin Blinov, D. Optical polarization properties of AGNs with significant VLBI-Gaia offsets. Mon. Not. R. Astron. Soc. 2020, 493, L54. [Google Scholar] [CrossRef]
- Lambert, S.; Liu, N.; Arias, E.F.; Barache, C.; Souchay, J.; Taris, F.; Liu, J.C.; Zhu, Z. Parsec-scale alignments of radio-optical offsets with jets in AGNs from multifrequency geodetic VLBI, Gaia EDR3, and the MOJAVE program. Astron. Astrophys. 2021, 651, A64. [Google Scholar] [CrossRef]
- Lambert, S.; Pierron, A.; Sol, H. Locating the blazar gamma-ray zone from astrometric VLBI and Gaia data? In Proceedings of the GAMMA2022, 7th Heidelberg International Symposium on High Energy gamma-ray Astronomy, Barcelona, Spain, 4–8 July 2022; to be published. Available online: https://pos.sissa.it/417/ (accessed on 31 July 2022). to be published.
- Coleman, A.; Eser, J.; Mayotte, E.; Sarazin, F.; Schröder, F.G.; Soldin, D.; Venters, T.M.; Aloisio, R.; Alvarez-Muñiz, J.; Batista, R.A.; et al. Ultra-High-Energy Cosmic Rays: The Intersection of the Cosmic and Energy Frontiers. In Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021), Seattle, WA, USA, 17–27 July 2022; Available online: https://arxiv.org/pdf/2205.05845.pdf (accessed on 31 July 2022).
- Matthews, J.H.; Taylor, A.M. Particle acceleration in radio galaxies with flickering jets: GeV electrons to ultrahigh energy cosmic rays. Mon. Not. R. Astron. Soc. 2021, 503, 5948. [Google Scholar] [CrossRef]
- Cerruti, M. Neutrinos from blazars. J. Pharm. Health Care Sci. 2020, 1468, 2094. [Google Scholar] [CrossRef]
- IceCube Collaboration; Aartsen, M.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Samarai, I.A.; Altmann, D.; Andeen, K.; et al. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151. [Google Scholar]
- Plavin, A.; Kovalev, Y.Y.; Kovalev, Y.A.; Troitsky, S. Observational Evidence for the Origin of High-energy Neutrinos in Parsec-scale Nuclei of Radio-bright Active Galaxies. Astrophys. J. 2020, 894, 101. [Google Scholar] [CrossRef]
- Kun, E.; Bartos, I.; Becker Tjus, J. Cosmic Neutrinos from Temporarily Gamma-suppressed Blazars. Astrophys. J. Lett. 2021, 911, L18. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Time-integrated Neutrino Source Searches with 10 years of IceCube Data. Phys. Rev. Lett. 2020, 124, 051103. [Google Scholar] [CrossRef] [Green Version]
- Graham, M.J.; Ford, K.E.S.; McKernan, B.; Ross, N.P.; Stern, D.; Burdge, K.; Coughlin, M.; Djorgovski, S.G.; Drake, A.J.; Duev, D.; et al. Candidate Electromagnetic Counterpart to the Binary Black Hole Merger Gravitational Wave Event S190521g. Phys. Rev. Lett. 2020, 124, 251102. [Google Scholar] [CrossRef]
- Samsing, J.; Bartos, I.; D’Orazio, D.J.; Haiman, Z.; Kocsis, B.; Leigh, N.W.C.; Liu, B.; Pessah, M.E.; Tagawa, H. AGN as Potential Factories for Eccentric Black Hole Mergers. Nature 2022, 603, 237–240. [Google Scholar] [CrossRef]
- McKernan, B.; Ford, K.E.S.; Bartos, I. Ram-pressure Stripping of a Kicked Hill Sphere: Prompt Electromagnetic Emission from the Merger of Stellar Mass Black Holes in an AGN Accretion Disk. Astrophys. J. Lett. 2019, 884, L50. [Google Scholar] [CrossRef] [Green Version]
- Murase, K.; Kashiyama, K.; Mészáros, P. Ultrafast outflows from black hole mergers with a minidisk. Astrophys. J. Lett. 2016, 822, L9. [Google Scholar] [CrossRef] [Green Version]
- Bartos, I.; Kocsis, B.; Haiman, Z.; Márka, S. Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei. Astrophys. J. 2017, 835, 165. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sol, H.; Zech, A. Blazars at Very High Energies: Emission Modelling. Galaxies 2022, 10, 105. https://doi.org/10.3390/galaxies10060105
Sol H, Zech A. Blazars at Very High Energies: Emission Modelling. Galaxies. 2022; 10(6):105. https://doi.org/10.3390/galaxies10060105
Chicago/Turabian StyleSol, Hélène, and Andreas Zech. 2022. "Blazars at Very High Energies: Emission Modelling" Galaxies 10, no. 6: 105. https://doi.org/10.3390/galaxies10060105
APA StyleSol, H., & Zech, A. (2022). Blazars at Very High Energies: Emission Modelling. Galaxies, 10(6), 105. https://doi.org/10.3390/galaxies10060105