Emission Modeling in the EHT–ngEHT Age
Abstract
:1. Introduction
2. Methodology
2.1. “Observing” JAB Systems
- Start with a general relativistic magnetohydrodynamic (GRMHD) simulation or semi-analytic model of a jet (or outflow)/accretion flow/black hole (JAB) system
- Convert GRMHD variables into radiation prescriptions for emission, absorption, polarization, particle acceleration, and/or dissipation to emulate sources, using piecewise models when appropriate to assign parametrizations to each distinct JAB system region
- Add a realistic, synthetic “observer” in postprocessing—which includes all radiating species that significantly contribute to radiative transfer—in order to view sources—specifically, images, spectra, light curves, and Stokes maps.
2.2. GRHMD
2.3. Plasma-Heating-Based Emission Models
2.3.1. Model
2.3.2. Critical Model
2.4. Sub-Equipartition-Based Models
2.4.1. Constant
2.4.2. Magnetic Bias
2.5. Hybrid Models
2.6. Phenomenological Models
2.7. Electron Distribution Functions
2.7.1. Power Law
2.7.2. The Kappa Model
2.8. Emission Modeling in Non-Kerr Spacetimes
3. Commencing the Computing: Emission Models in Numerical Codes
Positrons’ Effects on Radiative Transfer
4. Results: Adding an Observer
4.1. Sgr A*
4.1.1. Parametric Model Comparison
4.1.2. Morphological Classification
- 1
- A thin, compact asymmetric photon ring/crescent with the best fit or flat spectrum (with the spectral energy distribution shown in [9]);
- 2
- Inflow–outflow boundary + thin photon ring with a steep spectrum;
- 3
- Thick photon ring with spectral excesses at high and low frequencies;
- 4
- Extended outflow and a flat low frequency spectrum with excesses at high and low frequencies.
4.2. M87
4.2.1. Parametric Model Comparison
4.2.2. Positron Effects
5. Discussion and Conclusions
- The plasma controls the emitting region size in turbulent heating models, where parameter combinations with greater emission contributions from low tend to have more extended outflow/coronal regions, and those with contributions from high are more compact and dominated by near-horizon inflow, as shown in Figure 2, going from top to bottom.
- Inclination has a pronounced effect on the 230 GHz observer plane image morphology due to special relativistic beaming and the focusing properties of gravitational lensing. Thus, we predict a wide variety of image morphologies beyond ring structures that may be uncovered by the ngEHT, as shown in Figure 6.
- SANE and MAD simulations have widely divergent positron effects that are modulated by the larger Faraday depth of SANE plasmas, which are constrained to achieve the same image fluxes that MADs acquire through magnetic fields, with SANEs having EVPAs that are highly sensitive to positron content and MADs having a circular polarization degree that is greatly suppressed by positrons, as shown in Figure 9.
5.1. Limits of Instrumentation
5.2. Universality of Select Measures
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
(ng)EHT | (Next-Generation) Event Horizon Telescope |
GRMHD | General relativistic magnetohydrodynamics |
GRRT | General relativistic radiative transfer |
SED | Spectral energy distribution |
Appendix A
Appendix A.1. List of Emission Models
Model Name | Parameters | Functional Form |
---|---|---|
R-Beta | ||
Critical Beta | ||
Const. Jet | ||
Magnetic Bias Jet | ||
R Beta w. Const. Jet | Const. in Jet, o.w. | |
Critical Beta w. Const. Jet | Const. in Jet, Crit. o.w | |
Current Density | ||
Jet Alpha | , | |
Shear | , , |
Appendix A.2. Resolution Dependence
1 | There have been some notable recent attempts to bridge the gap through hybrid electron distribution functions (edfs), such as the -model smoothly joining thermal electrons to a high-energy power-law tail [10]. |
2 | Here, is the rest mass density, is the four-velocity, and is the stress–energy–momentum tensor. |
3 | This was written using Parthenon; see https://github.com/lanl/parthenon. |
4 | In this treatment, ions can be treated interchangeably with protons. |
References
- Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett. 2019, 875, L5. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration; Akiyama, K.; Algaba, J.C.; Alberdi, A.; Alef, W.; Anantua, R.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; et al. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett. 2021, 910, L12. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.-K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophys. J. Lett. 2022, 930, L14. [Google Scholar]
- GRAVITY Collaboration; Abuter, R.; Amorim, A.; Anugu, N.; Bauböck, M.; Benisty, M.; Berger, J.P.; Blind, N.; Bonnet, H.; Brandner, W.; et al. Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 2018, 615, L15. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophys. J. Lett. 2022, 930, L16. [Google Scholar]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Anantua, R.; Ressler, S.; Quataert, E. On the comparison of AGN with GRMHD simulations: I. Sgr A*. Mon. Not. R. Astron. Soc. 2020, 493, 1404–1418. [Google Scholar] [CrossRef] [Green Version]
- Fromm, C.M.; Cruz-Osorio, A.; Mizuno, Y.; Nathanail, A.; Younsi, Z.; Porth, O.; Olivares, H.; Davelaar, J.; Falcke, H.; Kramer, M.; et al. Impact of non-thermal particles on the spectral and structural properties of M87. Astron. Astrophys. 2022, 660, A107. [Google Scholar] [CrossRef]
- Ressler, S.M.; Tchekhovskoy, A.; Quataert, E.; Chandra, M.; Gammie, C.F. Electron thermodynamics in GRMHD simulations of low-luminosity black hole accretion. Mon. Not. R. Astron. Soc. 2015, 454, 1848–1870. [Google Scholar] [CrossRef]
- Chatterjee, K.; Younsi, Z.; Liska, M.; Tchekhovskoy, A.; Markoff, S.B.; Yoon, D.; van Eijnatten, D.; Hesp, C.; Ingram, A.; van der Klis, M.B.M. Observational signatures of disc and jet misalignment in images of accreting black holes. Mon. Not. R. Astron. Soc. 2020, 499, 362–378. [Google Scholar] [CrossRef]
- Curd, B.; Emami, R.; Anantua, R.; Palumbo, D.; Doeleman, S.; Narayan, R. Jets from SANE Super-Eddington Accretion Disks: Morphology, Spectra, and Their Potential as Targets for ngEHT. arXiv 2022, arXiv:2206.06358. [Google Scholar] [CrossRef]
- Gammie, C.F.; McKinney, J.C.; Tóth, G. HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics. Astrophys. J. 2003, 589, 444–457. [Google Scholar] [CrossRef]
- Gammie, C.F.; McKinney, J.C.; Tóth, G. HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics. Astrophys. Source Code Libr. Available online: http://ascl.net/1209.005 (accessed on 10 November 2022).
- Wong, G.N.; Prather, B.S.; Dhruv, V.; Ryan, B.R.; Mościbrodzka, M.; Chan, C.k.; Joshi, A.V.; Yarza, R.; Ricarte, A.; Shiokawa, H.; et al. PATOKA: Simulating Electromagnetic Observables of Black Hole Accretion. Astrophys. J. Suppl. Ser. 2022, 259, 64. [Google Scholar] [CrossRef]
- Fishbone, L.G.; Moncrief, V. Relativistic fluid disks in orbit around Kerr black holes. Astrophys. J. 1976, 207, 962–976. [Google Scholar] [CrossRef]
- Prather, B.; Wong, G.; Dhruv, V.; Ryan, B.; Dolence, J.; Ressler, S.; Gammie, C. iharm3D: Vectorized General Relativistic Magnetohydrodynamics. J. Open Source Softw. 2021, 6, 3336. [Google Scholar] [CrossRef]
- Bondi, H. On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 1952, 112, 195. [Google Scholar] [CrossRef]
- Ressler, S.M.; Quataert, E.; White, C.J.; Blaes, O. Magnetically modified spherical accretion in GRMHD: Reconnection-driven convection and jet propagation. Mon. Not. R. Astron. Soc. 2021, 504, 6076–6095. [Google Scholar] [CrossRef]
- Jia, H.; White, C.J.; Quataert, E.; Ressler, S.M. Observational signatures of black hole accretion: Rotating versus spherical flows with tilted magnetic fields. Mon. Not. R. Astron. Soc. 2022, 515, 1392–1403. [Google Scholar] [CrossRef]
- Quataert, E. A Dynamical Model for Hot Gas in the Galactic Center. Astrophys. J. 2004, 613, 322–325. [Google Scholar] [CrossRef] [Green Version]
- Cuadra, J.; Nayakshin, S.; Martins, F. Variable accretion and emission from the stellar winds in the Galactic Centre. Mon. Not. R. Astron. Soc. 2008, 383, 458–466. [Google Scholar] [CrossRef]
- Shcherbakov, R.V.; Baganoff, F.K. Inflow-Outflow Model with Conduction and Self-consistent Feeding for Sgr A*. Astrophys. J. 2010, 716, 504–509. [Google Scholar] [CrossRef]
- Ressler, S.M.; Quataert, E.; Stone, J.M. Hydrodynamic simulations of the inner accretion flow of Sagittarius A* fuelled by stellar winds. Mon. Not. R. Astron. Soc. 2018, 478, 3544–3563. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.E.; Gold, R.; Karami, M.; Preciado-López, J.A.; Tiede, P.; Pu, H.Y.; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; et al. THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophys. J. 2020, 897, 139. [Google Scholar] [CrossRef]
- Yuan, F.; Narayan, R. Hot Accretion Flows Around Black Holes. Annu. Rev. Astron. Astrophys. 2014, 52, 529–588. [Google Scholar] [CrossRef] [Green Version]
- Quataert, E.; Gruzinov, A. Turbulence and Particle Heating in Advection-dominated Accretion Flows. Astrophys. J. 1999, 520, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Howes, G.G. A prescription for the turbulent heating of astrophysical plasmas. Mon. Not. R. Astron. Soc. 2010, 409, L104–L108. [Google Scholar] [CrossRef] [Green Version]
- Mościbrodzka, M.; Falcke, H.; Shiokawa, H. General relativistic magnetohydrodynamical simulations of the jet in M 87. Astron. Astrophys. 2016, 586, A38. [Google Scholar] [CrossRef] [Green Version]
- Davelaar, J.; Olivares, H.; Porth, O.; Bronzwaer, T.; Janssen, M.; Roelofs, F.; Mizuno, Y.; Fromm, C.M.; Falcke, H.; Rezzolla, L. Modeling non-thermal emission from the jet-launching region of M 87 with adaptive mesh refinement. Astron. Astrophys. 2019, 632, A2. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Osorio, A.; Fromm, C.M.; Mizuno, Y.; Nathanail, A.; Younsi, Z.; Porth, O.; Davelaar, J.; Falcke, H.; Kramer, M.; Rezzolla, L. State-of-the-art energetic and morphological modelling of the launching site of the M87 jet. Nat. Astron. 2022, 6, 103–108. [Google Scholar] [CrossRef]
- Röder, J.; Cruz-Osorio, A.; Fromm, C.M.; Mizuno, Y.; Younsi, Z.; Rezzolla, L. Comparison of Kerr and dilaton black hole shadows. In Proceedings of the European VLBI Network Mini-Symposium and Users’ Meeting 2021, Online, 12–14 July 2021; p. 24. [Google Scholar]
- Event Horizon Telescope Collaboration; Akiyama, K.; Algaba, J.C.; Alberdi, A.; Alef, W.; Anantua, R.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; et al. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. Lett. 2021, 910, L13. [Google Scholar] [CrossRef]
- Mizuno, Y.; Fromm, C.M.; Younsi, Z.; Porth, O.; Olivares, H.; Rezzolla, L. Comparison of the ion-to-electron temperature ratio prescription: GRMHD simulations with electron thermodynamics. Mon. Not. R. Astron. Soc. 2021, 506, 741–758. [Google Scholar] [CrossRef]
- Chael, A.; Rowan, M.; Narayan, R.; Johnson, M.; Sironi, L. The role of electron heating physics in images and variability of the Galactic Centre black hole Sagittarius A*. Mon. Not. R. Astron. Soc. 2018, 478, 5209–5229. [Google Scholar] [CrossRef]
- Anantua, R.J. Towards Multi-Wavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2016. [Google Scholar]
- Blandford, R.; Anantua, R. The Future of Black Hole Astrophysics in the LIGO-VIRGO-LPF Era. J. Phys. Conf. Ser. 2017, 840, 012023. [Google Scholar] [CrossRef] [Green Version]
- Anantua, R.; Blandford, R.; Tchekhovskoy, A. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations. Galaxies 2018, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.D.; Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 1979, 232, 34–48. [Google Scholar] [CrossRef]
- McKinney, J.C.; Blandford, R.D. Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations. Mon. Not. R. Astron. Soc. 2009, 394, L126–L130. [Google Scholar] [CrossRef] [Green Version]
- Anantua, R.; Emami, R.; Loeb, A.; Chael, A. Determining the Composition of Relativistic Jets from Polarization Maps. Astrophys. J. 2020, 896, 27. [Google Scholar] [CrossRef]
- Emami, R.; Anantua, R.; Chael, A.; Loeb, A. Positron Effects on Polarized Images and Spectra from Jet and Accretion Flow Models of M87* and Sgr A*. Astrophys. J. 2021, 923, 272. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
- Vasyliunas, V.M. Low-energy electrons on the day side of the magnetosphere. J. Geophys. Res. 1968, 73, 7519–7523. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas. J. Geophys. Res. (Space Phys.) 2009, 114, A11105. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C.; Mendes, R.; Plastino, A.R. The role of constraints within generalized nonextensive statistics. Phys. Stat. Mech. Its Appl. 1998, 261, 534–554. [Google Scholar] [CrossRef]
- Leung, P.K.; Gammie, C.F.; Noble, S.C. Numerical Calculation of Magnetobremsstrahlung Emission and Absorption Coefficients. Astrophys. J. 2011, 737, 21. [Google Scholar] [CrossRef]
- Xiao, F. Modelling energetic particles by a relativistic kappa-loss-cone distribution function in plasmas. Plasma Phys. Control. Fusion 2006, 48, 203–213. [Google Scholar] [CrossRef]
- Pandya, A.; Zhang, Z.; Chandra, M.; Gammie, C.F. Polarized Synchrotron Emissivities and Absorptivities for Relativistic Thermal, Power-law, and Kappa Distribution Functions. Astrophys. J. 2016, 822, 34. [Google Scholar] [CrossRef] [Green Version]
- Ball, D.; Sironi, L.; Özel, F. Electron and Proton Acceleration in Trans-relativistic Magnetic Reconnection: Dependence on Plasma Beta and Magnetization. Astrophys. J. 2018, 862, 80. [Google Scholar] [CrossRef] [Green Version]
- Röder, J.; Cruz-Osorio, A.; Fromm, C.M.; Mizuno, Y.; Younsi, Z.; Rezzolla, L. Probing spacetime and accretion model for the Galactic Center: Comparison of Kerr and dilaton black hole shadows. 2022; manuscript in preparation. [Google Scholar]
- Pound, R.V.; Rebka, G.A. Gravitational Red-Shift in Nuclear Resonance. Phys. Rev. Lett. 1959, 3, 439–441. [Google Scholar] [CrossRef] [Green Version]
- Pound, R.V.; Rebka, G.A. Apparent Weight of Photons. Phys. Rev. Lett. 1960, 4, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Pound, R.V.; Snider, J.L. Effect of Gravity on Nuclear Resonance. Phys. Rev. Lett. 1964, 13, 539–540. [Google Scholar] [CrossRef] [Green Version]
- Weisberg, J.M.; Taylor, J.H.; Fowler, L.A. Gravitational waves from an orbiting pulsar. Sci. Am. 1981, 245, 74–82. [Google Scholar] [CrossRef]
- Hafele, J.C.; Keating, R.E. Around-the-World Atomic Clocks: Predicted Relativistic Time Gains. Science 1972, 177, 166–168. [Google Scholar] [CrossRef] [Green Version]
- Hafele, J.C.; Keating, R.E. Around-the-World Atomic Clocks: Observed Relativistic Time Gains. Science 1972, 177, 168–170. [Google Scholar] [CrossRef]
- Kramer, M.; Stairs, I.H.; Manchester, R.N.; McLaughlin, M.A.; Lyne, A.G.; Ferdman, R.D.; Burgay, M.; Lorimer, D.R.; Possenti, A.; D’Amico, N.; et al. Tests of General Relativity from Timing the Double Pulsar. Science 2006, 314, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Stairs, I.H. Testing General Relativity with Pulsar Timing. Living Rev. Relativ. 2003, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. Testing the General Relativistic “No-Hair” Theorems Using the Galactic Center Black Hole Sagittarius A*. Astrophys. J. Lett. 2008, 674, L25. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.D.; Lupsasca, A.; Strominger, A.; Wong, G.N.; Hadar, S.; Kapec, D.; Narayan, R.; Chael, A.; Gammie, C.F.; Galison, P.; et al. Universal interferometric signatures of a black hole’s photon ring. Sci. Adv. 2020, 6, eaaz1310. [Google Scholar] [CrossRef] [Green Version]
- Kocherlakota, P.; Rezzolla, L. Distinguishing gravitational and emission physics in black hole imaging: Spherical symmetry. Mon. Not. R. Astron. Soc. 2022, 513, 1229–1243. [Google Scholar] [CrossRef]
- Younsi, Z.; Psaltis, D.; Özel, F. Black Hole Images as Tests of General Relativity: Effects of Spacetime Geometry. arXiv 2021, arXiv:2111.01752. [Google Scholar]
- Özel, F.; Psaltis, D.; Younsi, Z. Black Hole Images as Tests of General Relativity: Effects of Plasma Physics. arXiv 2021, arXiv:2111.01123. [Google Scholar] [CrossRef]
- Mizuno, Y.; Younsi, Z.; Fromm, C.M.; Porth, O.; De Laurentis, M.; Olivares, H.; Falcke, H.; Kramer, M.; Rezzolla, L. The current ability to test theories of gravity with black hole shadows. Nat. Astron. 2018, 2, 585–590. [Google Scholar] [CrossRef]
- Olivares, H.; Younsi, Z.; Fromm, C.M.; De Laurentis, M.; Porth, O.; Mizuno, Y.; Falcke, H.; Kramer, M.; Rezzolla, L. How to tell an accreting boson star from a black hole. Mon. Not. R. Astron. Soc. 2020, 497, 521–535. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett. 2022, 930, L17. [Google Scholar] [CrossRef]
- Younsi, Z.; Porth, O.; Mizuno, Y.; Fromm, C.M.; Olivares, H. Modelling the polarised emission from black holes on event horizon-scales. Proc. Int. Astron. Union 2020, 14, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Pu, H.Y.; Yun, K.; Younsi, Z.; Yoon, S.J. Odyssey: A Public GPU-based Code for General Relativistic Radiative Transfer in Kerr Spacetime. Astrophys. J. 2016, 820, 105. [Google Scholar] [CrossRef] [Green Version]
- Dexter, J. A public code for general relativistic, polarised radiative transfer around spinning black holes. Mon. Not. R. Astron. Soc. 2016, 462, 115–136. [Google Scholar] [CrossRef]
- Mościbrodzka, M.; Gammie, C.F. IPOLE - semi-analytic scheme for relativistic polarized radiative transport. Mon. Not. R. Astron. Soc. 2018, 475, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.k.; Psaltis, D.; Özel, F. GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes. Astrophys. J. 2013, 777, 13. [Google Scholar] [CrossRef]
- Kawashima, T.; Ohsuga, K.; Takahashi, H.R. RAIKOU: A General Relativistic, Multi-wavelength Radiative Transfer Code. arXiv 2021, arXiv:2108.05131. [Google Scholar]
- Bronzwaer, T.; Davelaar, J.; Younsi, Z.; Mościbrodzka, M.; Falcke, H.; Kramer, M.; Rezzolla, L. RAPTOR. I. Time-dependent radiative transfer in arbitrary spacetimes. Astron. Astrophys. 2018, 613, A2. [Google Scholar] [CrossRef]
- Gold, R.; Broderick, A.E.; Younsi, Z.; Fromm, C.M.; Gammie, C.F.; Mościbrodzka, M.; Pu, H.Y.; Bronzwaer, T.; Davelaar, J.; Dexter, J.; et al. Verification of Radiative Transfer Schemes for the EHT. Astrophys. J. 2020, 897, 148. [Google Scholar] [CrossRef]
- Mignone, A.; Bodo, G.; Massaglia, S.; Matsakos, T.; Tesileanu, O.; Zanni, C.; Ferrari, A. PLUTO: A Numerical Code for Computational Astrophysics. Astrophys. J. Suppl. Ser. 2007, 170, 228–242. [Google Scholar] [CrossRef]
- Mignone, A.; Zanni, C.; Tzeferacos, P.; van Straalen, B.; Colella, P.; Bodo, G. The PLUTO Code for Adaptive Mesh Computations in Astrophysical Fluid Dynamics. Astrophys. J. Suppl. Ser. 2012, 198, 7. [Google Scholar] [CrossRef]
- Perucho, M.; Martí, J.M.; Cela, J.M.; Hanasz, M.; de La Cruz, R.; Rubio, F. Stability of three-dimensional relativistic jets: Implications for jet collimation. Astron. Astrophys. 2010, 519, A41. [Google Scholar] [CrossRef] [Green Version]
- Kramer, J.A.; MacDonald, N.R. Ray-tracing in relativistic jet simulations: A polarimetric study of magnetic field morphology and electron scaling relations. Astron. Astrophys. 2021, 656, A143. [Google Scholar] [CrossRef]
- MacDonald, N.R.; Nishikawa, K.I. From electrons to Janskys: Full stokes polarized radiative transfer in 3D relativistic particle-in-cell jet simulations. Astron. Astrophys. 2021, 653, A10. [Google Scholar] [CrossRef]
- Mościbrodzka, M.; Gammie, C.F.; Dolence, J.C.; Shiokawa, H. Pair Production in Low-luminosity Galactic Nuclei. Astrophys. J. 2011, 735, 9. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.E.; Tchekhovskoy, A. Horizon-Scale Lepton Acceleration in jets: Explaining the Compact Radio Emission in M87. Astrophys. J. 2015, 809, 97. [Google Scholar] [CrossRef] [Green Version]
- Goldreich, P.; Julian, W.H. Pulsar Electrodynamics. Astrophys. J. 1969, 157, 869. [Google Scholar] [CrossRef]
- Raymond, A.W.; Palumbo, D.; Paine, S.N.; Blackburn, L.; Córdova Rosado, R.; Doeleman, S.S.; Farah, J.R.; Johnson, M.D.; Roelofs, F.; Tilanus, R.P.J.; et al. Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope. Astrophys. J. Suppl. Ser. 2021, 253, 5. [Google Scholar] [CrossRef]
- Emami, R.; Anantua, R.; Ricarte, A.; Doeleman, S.S.; Broderick, A.; Wong, G.; Blackburn, L.; Wielgus, M.; Narayan, R.; Tremblay, G.; et al. Probing plasma composition with the next generation Event Horizon Telescope (ngEHT). arXiv 2022, arXiv:2211.07306. [Google Scholar]
- Broderick, A.; Loeb, A. Local Universality of Nonthermal Synchrotron Emission from EHT Targets. 2022; manuscript in preparation. [Google Scholar]
- Rybicki, G.B.; Lightman, A.P. Radiative Processes in Astrophysics; Wiley-VCH: Weinheim, Germany, 1986. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anantua, R.; Dúran, J.; Ngata, N.; Oramas, L.; Röder, J.; Emami, R.; Ricarte, A.; Curd, B.; Broderick, A.E.; Wayland, J.; et al. Emission Modeling in the EHT–ngEHT Age. Galaxies 2023, 11, 4. https://doi.org/10.3390/galaxies11010004
Anantua R, Dúran J, Ngata N, Oramas L, Röder J, Emami R, Ricarte A, Curd B, Broderick AE, Wayland J, et al. Emission Modeling in the EHT–ngEHT Age. Galaxies. 2023; 11(1):4. https://doi.org/10.3390/galaxies11010004
Chicago/Turabian StyleAnantua, Richard, Joaquín Dúran, Nathan Ngata, Lani Oramas, Jan Röder, Razieh Emami, Angelo Ricarte, Brandon Curd, Avery E. Broderick, Jeremy Wayland, and et al. 2023. "Emission Modeling in the EHT–ngEHT Age" Galaxies 11, no. 1: 4. https://doi.org/10.3390/galaxies11010004
APA StyleAnantua, R., Dúran, J., Ngata, N., Oramas, L., Röder, J., Emami, R., Ricarte, A., Curd, B., Broderick, A. E., Wayland, J., Wong, G. N., Ressler, S., Nigam, N., & Durodola, E. (2023). Emission Modeling in the EHT–ngEHT Age. Galaxies, 11(1), 4. https://doi.org/10.3390/galaxies11010004