The ngEHT’s Role in Measuring Supermassive Black Hole Spins
Abstract
:1. Introduction
2. Novel Techniques to Infer Spin with ngEHT
2.1. Spin from Sub-Images: Theoretically Cleaner, Observationally Harder
2.2. Spin from Accretion Flows: Theoretically Dirtier, Observationally Easier
2.3. Spin from the Time Domain: Movies and Motion
3. Implications of SMBH Spin
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kerr, R.P. Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett. 1963, 11, 237–238. [Google Scholar] [CrossRef]
- Peterson, B.M. Reverberation Mapping of Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1993, 105, 247. [Google Scholar] [CrossRef]
- Wandel, A.; Peterson, B.M.; Malkan, M.A. Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. I. Comparing the Photoionization and Reverberation Techniques. Astrophys. J. 1999, 526, 579–591. [Google Scholar] [CrossRef] [Green Version]
- Greene, J.E.; Peng, C.Y.; Kim, M.; Kuo, C.Y.; Braatz, J.A.; Impellizzeri, C.M.V.; Condon, J.J.; Lo, K.Y.; Henkel, C.; Reid, M.J. Precise Black Hole Masses from Megamaser Disks: Black Hole-Bulge Relations at Low Mass. Astrophys. J. 2010, 721, 26–45. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Strauss, M.A.; Schneider, D.P.; Becker, R.H.; White, R.L.; Haiman, Z.; Gregg, M.; Pentericci, L.; Grebel, E.K.; Narayanan, V.K.; et al. A Survey of z>5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z>6. Astron. J. 2003, 125, 1649–1659. [Google Scholar] [CrossRef]
- Bañados, E.; Venemans, B.P.; Mazzucchelli, C.; Farina, E.P.; Walter, F.; Wang, F.; Decarli, R.; Stern, D.; Fan, X.; Davies, F.B.; et al. An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. Nature 2018, 553, 473–476. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Yang, J.; Fan, X.; Hennawi, J.F.; Barth, A.J.; Banados, E.; Bian, F.; Boutsia, K.; Connor, T.; Davies, F.B.; et al. A Luminous Quasar at Redshift 7.642. Astrophys. J. 2021, 907, L1. [Google Scholar] [CrossRef]
- Magorrian, J.; Tremaine, S.; Richstone, D.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Gebhardt, K.; Green, R.; Grillmair, C.; et al. The Demography of Massive Dark Objects in Galaxy Centers. Astron. J. 1998, 115, 2285–2305. [Google Scholar] [CrossRef] [Green Version]
- Ferrarese, L.; Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. 2000, 539, L9–L12. [Google Scholar] [CrossRef] [Green Version]
- Gebhardt, K.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; Green, R.; Grillmair, C.; Ho, L.C.; Kormendy, J.; et al. A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion. Astrophys. J. 2000, 539, L13–L16. [Google Scholar] [CrossRef]
- Tremaine, S.; Gebhardt, K.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; Green, R.; Grillmair, C.; Ho, L.C.; et al. The Slope of the Black Hole Mass versus Velocity Dispersion Correlation. Astrophys. J. 2002, 574, 740–753. [Google Scholar] [CrossRef]
- Gültekin, K.; Richstone, D.O.; Gebhardt, K.; Lauer, T.R.; Tremaine, S.; Aller, M.C.; Bender, R.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; et al. The M-σ and M-L Relations in Galactic Bulges, and Determinations of Their Intrinsic Scatter. Astrophys. J. 2009, 698, 198–221. [Google Scholar] [CrossRef] [Green Version]
- Kormendy, J.; Ho, L.C. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 511–653. [Google Scholar] [CrossRef] [Green Version]
- Heckman, T.M.; Best, P.N. The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe. Annu. Rev. Astron. Astrophys. 2014, 52, 589–660. [Google Scholar] [CrossRef] [Green Version]
- Vogelsberger, M.; Genel, S.; Sijacki, D.; Torrey, P.; Springel, V.; Hernquist, L. A model for cosmological simulations of galaxy formation physics. Mon. Not. R. Astron. Soc. 2013, 436, 3031–3067. [Google Scholar] [CrossRef] [Green Version]
- Schaye, J.; Crain, R.A.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 2015, 446, 521–554. [Google Scholar] [CrossRef]
- Khandai, N.; Di Matteo, T.; Croft, R.; Wilkins, S.; Feng, Y.; Tucker, E.; DeGraf, C.; Liu, M.S. The MassiveBlack-II simulation: The evolution of haloes and galaxies to z ∼ 0. Mon. Not. R. Astron. Soc. 2015, 450, 1349–1374. [Google Scholar] [CrossRef] [Green Version]
- Dubois, Y.; Peirani, S.; Pichon, C.; Devriendt, J.; Gavazzi, R.; Welker, C.; Volonteri, M. The HORIZON-AGN simulation: Morphological diversity of galaxies promoted by AGN feedback. Mon. Not. R. Astron. Soc. 2016, 463, 3948–3964. [Google Scholar] [CrossRef] [Green Version]
- Steinborn, L.K.; Dolag, K.; Comerford, J.M.; Hirschmann, M.; Remus, R.S.; Teklu, A.F. Origin and properties of dual and offset active galactic nuclei in a cosmological simulation at z=2. Mon. Not. R. Astron. Soc. 2016, 458, 1013–1028. [Google Scholar] [CrossRef] [Green Version]
- Tremmel, M.; Karcher, M.; Governato, F.; Volonteri, M.; Quinn, T.R.; Pontzen, A.; Anderson, L.; Bellovary, J. The Romulus cosmological simulations: A physical approach to the formation, dynamics and accretion models of SMBHs. Mon. Not. R. Astron. Soc. 2017, 470, 1121–1139. [Google Scholar] [CrossRef]
- Davé, R.; Anglés-Alcázar, D.; Narayanan, D.; Li, Q.; Rafieferantsoa, M.H.; Appleby, S. SIMBA: Cosmological simulations with black hole growth and feedback. Mon. Not. R. Astron. Soc. 2019, 486, 2827–2849. [Google Scholar] [CrossRef]
- Ni, Y.; Di Matteo, T.; Bird, S.; Croft, R.; Feng, Y.; Chen, N.; Tremmel, M.; DeGraf, C.; Li, Y. The ASTRID simulation: The evolution of supermassive black holes. Mon. Not. R. Astron. Soc. 2022, 513, 670–692. [Google Scholar] [CrossRef]
- Remillard, R.A.; McClintock, J.E. X-ray Properties of Black-Hole Binaries. Annu. Rev. Astron. Astrophys. 2006, 44, 49–92. [Google Scholar] [CrossRef] [Green Version]
- Brenneman, L. Measuring the Angular Momentum of Supermassive Black Holes; Springer: Berlin, Germany, 2013. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, C.S. Observational Constraints on Black Hole Spin. Annu. Rev. Astron. Astrophys. 2021, 59, 117–154. [Google Scholar] [CrossRef]
- Mallick, L.; Fabian, A.C.; García, J.A.; Tomsick, J.A.; Parker, M.L.; Dauser, T.; Wilkins, D.R.; De Marco, B.; Steiner, J.F.; Connors, R.M.T.; et al. High-density disc reflection spectroscopy of low-mass active galactic nuclei. Mon. Not. R. Astron. Soc. 2022, 513, 4361–4379. [Google Scholar] [CrossRef]
- Chiaberge, M.; Gilli, R.; Lotz, J.M.; Norman, C. Radio Loud AGNs are Mergers. Astrophys. J. 2015, 806, 147. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.; Callister, T.A.; Farr, W.M. The Low Effective Spin of Binary Black Holes and Implications for Individual Gravitational-wave Events. Astrophys. J. 2020, 895, 128. [Google Scholar] [CrossRef]
- Callister, T.A.; Miller, S.J.; Chatziioannou, K.; Farr, W.M. No Evidence that the Majority of Black Holes in Binaries Have Zero Spin. Astrophys. J. 2022, 937, L13. [Google Scholar] [CrossRef]
- Fragione, G.; Loeb, A. An Upper Limit on the Spin of SgrA* Based on Stellar Orbits in Its Vicinity. Astrophys. J. 2020, 901, L32. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. 2019, 875, L5. [Google Scholar] [CrossRef]
- Akiyama, K.; Algaba, J.C.; Alberdi, A.; Alef, W.; Anantua, R.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; et al. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. 2021, 910, L13. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophys. J. 2022, 930, L16. [Google Scholar] [CrossRef]
- Mościbrodzka, M.; Falcke, H.; Noble, S. Scale-invariant radio jets and varying black hole spin. Astron. Astrophys. 2016, 596, A13. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Wu, Q. Constraint on the black hole spin of M87 from the accretion-jet model. Mon. Not. R. Astron. Soc. 2017, 470, 612–616. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Osorio, A.; Fromm, C.M.; Mizuno, Y.; Nathanail, A.; Younsi, Z.; Porth, O.; Davelaar, J.; Falcke, H.; Kramer, M.; Rezzolla, L. State-of-the-art energetic and morphological modelling of the launching site of the M87 jet. Nat. Astron. 2022, 6, 103–108. [Google Scholar] [CrossRef]
- Dokuchaev, V.I. Spin and mass of the nearest supermassive black hole. Gen. Relativ. Gravit. 2014, 46, 1832. [Google Scholar] [CrossRef] [Green Version]
- Brink, J.; Geyer, M.; Hinderer, T. Astrophysics of resonant orbits in the Kerr metric. Phys. Rev. D 2015, 91, 083001. [Google Scholar] [CrossRef] [Green Version]
- Dolence, J.C.; Gammie, C.F.; Shiokawa, H.; Noble, S.C. Near-infrared and X-Ray Quasi-periodic Oscillations in Numerical Models of Sgr A*. Astrophys. J. 2012, 746, L10. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y.; Miyoshi, M.; Takahashi, R.; Negoro, H.; Matsumoto, R. Measuring spin of a supermassive black hole at the Galactic centre—implications for a unique spin. Mon. Not. R. Astron. Soc. 2010, 403, L74–L78. [Google Scholar] [CrossRef]
- Dovčiak, M.; Karas, V.; Yaqoob, T. An Extended Scheme for Fitting X-ray Data with Accretion Disk Spectra in the Strong Gravity Regime. Astrophys. J. Suppl. Ser. 2004, 153, 205–221. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.E.; Loeb, A. Imaging bright-spots in the accretion flow near the black hole horizon of Sgr A*. Mon. Not. R. Astron. Soc. 2005, 363, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.E.; Loeb, A. Imaging optically-thin hotspots near the black hole horizon of Sgr A* at radio and near-infrared wavelengths. Mon. Not. R. Astron. Soc. 2006, 367, 905–916. [Google Scholar] [CrossRef]
- Eckart, A.; Schödel, R.; Meyer, L.; Trippe, S.; Ott, T.; Genzel, R. Polarimetry of near-infrared flares from Sagittarius A*. Astron. Astrophys. 2006, 455, 1–10. [Google Scholar] [CrossRef]
- Gravity Collaboration; Bauböck, M.; Dexter, J.; Abuter, R.; Amorim, A.; Berger, J.P.; Bonnet, H.; Brandner, W.; Clénet, Y.; Coudé Du Foresto, V.; et al. Modeling the orbital motion of Sgr A*’s near-infrared flares. Astron. Astrophys. 2020, 635, A143. [Google Scholar] [CrossRef]
- Doeleman, S.S.; Fish, V.L.; Broderick, A.E.; Loeb, A.; Rogers, A.E.E. Detecting Flaring Structures in Sagittarius A* with High-Frequency VLBI. Astrophys. J. 2009, 695, 59–74. [Google Scholar] [CrossRef]
- Fraga-Encinas, R.; Mościbrodzka, M.; Brinkerink, C.; Falcke, H. Probing spacetime around Sagittarius A* using modeled VLBI closure phases. Astron. Astrophys. 2016, 588, A57. [Google Scholar] [CrossRef] [Green Version]
- Raymond, A.W.; Palumbo, D.; Paine, S.N.; Blackburn, L.; Córdova Rosado, R.; Doeleman, S.S.; Farah, J.R.; Johnson, M.D.; Roelofs, F.; Tilanus, R.P.J.; et al. Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope. Astrophys. J. Suppl. Ser. 2021, 253, 5. [Google Scholar] [CrossRef]
- Pesce, D.W.; Palumbo, D.C.M.; Ricarte, A.; Broderick, A.E.; Johnson, M.D.; Nagar, N.M.; Natarajan, P.; Gómez, J.L. Expectations for Horizon-Scale Supermassive Black Hole Population Studies with the ngEHT. Galaxies 2022, 10, 109. [Google Scholar] [CrossRef]
- Roelofs, F.; Fromm, C.M.; Mizuno, Y.; Davelaar, J.; Janssen, M.; Younsi, Z.; Rezzolla, L.; Falcke, H. Black hole parameter estimation with synthetic very long baseline interferometry data from the ground and from space. Astron. Astrophys. 2021, 650, A56. [Google Scholar] [CrossRef]
- Johnson, M.D.; Lupsasca, A.; Strominger, A.; Wong, G.N.; Hadar, S.; Kapec, D.; Narayan, R.; Chael, A.; Gammie, C.F.; Galison, P.; et al. Universal interferometric signatures of a black hole’s photon ring. Sci. Adv. 2020, 6, eaaz1310. [Google Scholar] [CrossRef] [Green Version]
- Gralla, S.E.; Holz, D.E.; Wald, R.M. Black hole shadows, photon rings, and lensing rings. Phys. Rev. D 2019, 100, 024018. [Google Scholar] [CrossRef] [Green Version]
- Chael, A.; Johnson, M.D.; Lupsasca, A. Observing the Inner Shadow of a Black Hole: A Direct View of the Event Horizon. Astrophys. J. 2021, 918, 6. [Google Scholar] [CrossRef]
- Walker, R.C.; Hardee, P.E.; Davies, F.B.; Ly, C.; Junor, W. The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz. Astrophys. J. 2018, 855, 128. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.E.; Tiede, P.; Pesce, D.W.; Gold, R. Measuring Spin from Relative Photon-ring Sizes. Astrophys. J. 2022, 927, 6. [Google Scholar] [CrossRef]
- Broderick, A.E.; Pesce, D.W.; Tiede, P.; Pu, H.Y.; Gold, R. Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J. 2020, 898, 9. [Google Scholar] [CrossRef]
- Broderick, A.E.; Pesce, D.W.; Gold, R.; Tiede, P.; Pu, H.Y.; Anantua, R.; Britzen, S.; Ceccobello, C.; Chatterjee, K.; Chen, Y.; et al. The Photon Ring in M87*. Astrophys. J. 2022, 935, 61. [Google Scholar] [CrossRef]
- Palumbo, D.C.M.; Wong, G.N.; Prather, B.S. Discriminating Accretion States via Rotational Symmetry in Simulated Polarimetric Images of M87. Astrophys. J. 2020, 894, 156. [Google Scholar] [CrossRef]
- Emami, R.; Ricarte, A.; Wong, G.N.; Palumbo, D.; Chang, D.; Doeleman, S.S.; Broaderick, A.; Narayan, R.; Weintroub, J.; Wielgus, M.; et al. Unraveling Twisty Linear Polarization Morphologies in Black Hole Images. arXiv 2022, arXiv:2210.01218. [Google Scholar]
- Qiu, R.; Ricarte, A.; Narayan, R.; Wong, G.N.; Chael, A.; Palumbo, D. Using Machine Learning to Link Black Hole Accretion Flows with Spatially Resolved Polarimetric Observables. arXiv 2022, arXiv:2212.04852. [Google Scholar]
- Medeiros, L.; Chan, C.K.; Narayan, R.; Özel, F.; Psaltis, D. Brightness Asymmetry of Black Hole Images as a Probe of Observer Inclination. Astrophys. J. 2022, 924, 46. [Google Scholar] [CrossRef]
- Ricarte, A.; Palumbo, D.C.M.; Narayan, R.; Roelofs, F.; Emami, R. Observational Signatures of Frame Dragging in Strong Gravity. arXiv 2022, arXiv:2211.01810. [Google Scholar] [CrossRef]
- Fragile, P.C.; Blaes, O.M.; Anninos, P.; Salmonson, J.D. Global General Relativistic Magnetohydrodynamic Simulation of a Tilted Black Hole Accretion Disk. Astrophys. J. 2007, 668, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Liska, M.; Hesp, C.; Tchekhovskoy, A.; Ingram, A.; van der Klis, M.; Markoff, S.B.; Van Moer, M. Disc tearing and Bardeen-Petterson alignment in GRMHD simulations of highly tilted thin accretion discs. Mon. Not. R. Astron. Soc. 2021, 507, 983–990. [Google Scholar] [CrossRef] [Green Version]
- Wex, N.; Kopeikin, S.M. Frame Dragging and Other Precessional Effects in Black Hole Pulsar Binaries. Astrophys. J. 1999, 514, 388–401. [Google Scholar] [CrossRef] [Green Version]
- Pfahl, E.; Loeb, A. Probing the Spacetime around Sagittarius A* with Radio Pulsars. Astrophys. J. 2004, 615, 253–258. [Google Scholar] [CrossRef]
- Psaltis, D.; Wex, N.; Kramer, M. A Quantitative Test of the No-hair Theorem with Sgr A* Using Stars, Pulsars, and the Event Horizon Telescope. Astrophys. J. 2016, 818, 121. [Google Scholar] [CrossRef] [Green Version]
- De Laurentis, M.; Younsi, Z.; Porth, O.; Mizuno, Y.; Rezzolla, L. Test-particle dynamics in general spherically symmetric black hole spacetimes. Phys. Rev. D 2018, 97, 104024. [Google Scholar] [CrossRef]
- Liu, K.; Desvignes, G.; Eatough, R.P.; Karuppusamy, R.; Kramer, M.; Torne, P.; Wharton, R.; Chatterjee, S.; Cordes, J.M.; Crew, G.B.; et al. An 86 GHz Search for Pulsars in the Galactic Center with the Atacama Large Millimeter/submillimeter Array. Astrophys. J. 2021, 914, 30. [Google Scholar] [CrossRef]
- Mus, A.; Martí-Vidal, I.; Wielgus, M.; Stroud, G. A first search of transients in the Galactic center from 230 GHz ALMA observations. Astron. Astrophys. 2022, 666, A39. [Google Scholar] [CrossRef]
- Wong, G.N. Black Hole Glimmer Signatures of Mass, Spin, and Inclination. Astrophys. J. 2021, 909, 217. [Google Scholar] [CrossRef]
- Hadar, S.; Johnson, M.D.; Lupsasca, A.; Wong, G.N. Photon ring autocorrelations. Phys. Rev. D 2021, 103, 104038. [Google Scholar] [CrossRef]
- Chesler, P.M.; Blackburn, L.; Doeleman, S.S.; Johnson, M.D.; Moran, J.M.; Narayan, R.; Wielgus, M. Light echos and coherent autocorrelations in a black hole spacetime. Class. Quantum Gravity 2021, 38, 125006. [Google Scholar] [CrossRef]
- Tiede, P.; Pu, H.Y.; Broderick, A.E.; Gold, R.; Karami, M.; Preciado-López, J.A. Spacetime Tomography Using the Event Horizon Telescope. Astrophys. J. 2020, 892, 132. [Google Scholar] [CrossRef]
- Moriyama, K.; Mineshige, S.; Honma, M.; Akiyama, K. Black Hole Spin Measurement Based on Time-domain VLBI Observations of Infalling Gas Clouds. Astrophys. J. 2019, 887, 227. [Google Scholar] [CrossRef]
- Levis, A.; Srinivasan, P.P.; Chael, A.A.; Ng, R.; Bouman, K.L. Gravitationally Lensed Black Hole Emission Tomography. arXiv 2022, arXiv:2204.03715. [Google Scholar]
- Johnson, M.D.; Bouman, K.L.; Blackburn, L.; Chael, A.A.; Rosen, J.; Shiokawa, H.; Roelofs, F.; Akiyama, K.; Fish, V.L.; Doeleman, S.S. Dynamical Imaging with Interferometry. Astrophys. J. 2017, 850, 172. [Google Scholar] [CrossRef] [Green Version]
- Arras, P.; Frank, P.; Haim, P.; Knollmüller, J.; Leike, R.; Reinecke, M.; Enßlin, T. Variable structures in M87* from space, time and frequency resolved interferometry. Nat. Astron. 2022, 6, 259–269. [Google Scholar] [CrossRef]
- Bouman, K.L.; Johnson, M.D.; Dalca, A.V.; Chael, A.A.; Roelofs, F.; Doeleman, S.S.; Freeman, W.T. Reconstructing Video from Interferometric Measurements of Time-Varying Sources. arXiv 2017, arXiv:1711.01357. [Google Scholar] [CrossRef] [Green Version]
- Emami, R.; Tiede, P.; Doeleman, S.S.; Roelofs, F.; Wielgus, M.; Blackburn, L.; Liska, M.; Chatterjee, K.; Ripperda, B.; Fuentes, A.; et al. Tracing the hot spot motion using the next generation Event Horizon Telescope (ngEHT). arXiv 2022, arXiv:2211.06773. [Google Scholar]
- Thorne, K.S. Disk-Accretion onto a Black Hole. II. Evolution of the Hole. Astrophys. J. 1974, 191, 507–520. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Narayan, R.; Chael, A.; Chatterjee, K.; Ricarte, A.; Curd, B. Jets in magnetically arrested hot accretion flows: Geometry, power, and black hole spin-down. Mon. Not. R. Astron. Soc. 2022, 511, 3795–3813. [Google Scholar] [CrossRef]
- King, A.R.; Pringle, J.E.; Hofmann, J.A. The evolution of black hole mass and spin in active galactic nuclei. Mon. Not. R. Astron. Soc. 2008, 385, 1621–1627. [Google Scholar] [CrossRef]
- Volonteri, M.; Sikora, M.; Lasota, J.P.; Merloni, A. The Evolution of Active Galactic Nuclei and their Spins. Astrophys. J. 2013, 775, 94. [Google Scholar] [CrossRef]
- Murchikova, E.M.; Phinney, E.S.; Pancoast, A.; Blandford, R.D. A cool accretion disk around the Galactic Centre black hole. Nature 2019, 570, 83–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ressler, S.M.; Quataert, E.; Stone, J.M. Hydrodynamic simulations of the inner accretion flow of Sagittarius A* fuelled by stellar winds. Mon. Not. R. Astron. Soc. 2018, 478, 3544–3563. [Google Scholar] [CrossRef] [Green Version]
- Anglés-Alcázar, D.; Quataert, E.; Hopkins, P.F.; Somerville, R.S.; Hayward, C.C.; Faucher-Giguère, C.A.; Bryan, G.L.; Kereš, D.; Hernquist, L.; Stone, J.M. Cosmological Simulations of Quasar Fueling to Subparsec Scales Using Lagrangian Hyper-refinement. Astrophys. J. 2021, 917, 53. [Google Scholar] [CrossRef]
- Rezzolla, L.; Barausse, E.; Dorband, E.N.; Pollney, D.; Reisswig, C.; Seiler, J.; Husa, S. Final spin from the coalescence of two black holes. Phys. Rev. D 2008, 78, 044002. [Google Scholar] [CrossRef] [Green Version]
- Volonteri, M.; Madau, P.; Quataert, E.; Rees, M.J. The Distribution and Cosmic Evolution of Massive Black Hole Spins. Astrophys. J. 2005, 620, 69–77. [Google Scholar] [CrossRef]
- Berti, E.; Volonteri, M. Cosmological Black Hole Spin Evolution by Mergers and Accretion. Astrophys. J. 2008, 684, 822–828. [Google Scholar] [CrossRef] [Green Version]
- Ricarte, A.; Natarajan, P. The observational signatures of supermassive black hole seeds. Mon. Not. R. Astron. Soc. 2018, 481, 3278–3292. [Google Scholar] [CrossRef] [Green Version]
- Ricarte, A.; Natarajan, P. Exploring SMBH assembly with semi-analytic modelling. Mon. Not. R. Astron. Soc. 2018, 474, 1995–2011. [Google Scholar] [CrossRef]
- Ricarte, A.; Pacucci, F.; Cappelluti, N.; Natarajan, P. The clustering of undetected high-redshift black holes and their signatures in cosmic backgrounds. Mon. Not. R. Astron. Soc. 2019, 489, 1006–1022. [Google Scholar] [CrossRef]
- Kelly, B.C.; Shen, Y. The Demographics of Broad-line Quasars in the Mass-Luminosity Plane. II. Black Hole Mass and Eddington Ratio Functions. Astrophys. J. 2013, 764, 45. [Google Scholar] [CrossRef] [Green Version]
- Bardeen, J.M. Kerr Metric Black Holes. Nature 1970, 226, 64–65. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, R.; Springel, V.; Pakmor, R.; Nelson, D.; Genel, S.; Pillepich, A.; Vogelsberger, M.; Marinacci, F.; Naiman, J.; Torrey, P.; et al. Supermassive black holes and their feedback effects in the IllustrisTNG simulation. Mon. Not. R. Astron. Soc. 2018, 479, 4056–4072. [Google Scholar] [CrossRef] [Green Version]
- Pacucci, F.; Loeb, A. Separating Accretion and Mergers in the Cosmic Growth of Black Holes with X-Ray and Gravitational-wave Observations. Astrophys. J. 2020, 895, 95. [Google Scholar] [CrossRef]
- Begelman, M.C.; Blandford, R.D.; Rees, M.J. Massive black hole binaries in active galactic nuclei. Nature 1980, 287, 307–309. [Google Scholar] [CrossRef]
- Colpi, M. Massive Binary Black Holes in Galactic Nuclei and Their Path to Coalescence. Space Sci. Rev. 2014, 183, 189–221. [Google Scholar] [CrossRef] [Green Version]
- Bortolas, E.; Capelo, P.R.; Zana, T.; Mayer, L.; Bonetti, M.; Dotti, M.; Davies, M.B.; Madau, P. Global torques and stochasticity as the drivers of massive black hole pairing in the young Universe. Mon. Not. R. Astron. Soc. 2020, 498, 3601–3615. [Google Scholar] [CrossRef]
- Izquierdo-Villalba, D.; Bonoli, S.; Dotti, M.; Sesana, A.; Rosas-Guevara, Y.; Spinoso, D. From galactic nuclei to the halo outskirts: Tracing supermassive black holes across cosmic history and environments. Mon. Not. R. Astron. Soc. 2020, 495, 4681–4706. [Google Scholar] [CrossRef]
- Ricarte, A.; Tremmel, M.; Natarajan, P.; Zimmer, C.; Quinn, T. Origins and demographics of wandering black holes. Mon. Not. R. Astron. Soc. 2021, 503, 6098–6111. [Google Scholar] [CrossRef]
- Milosavljević, M.; Merritt, D. Formation of Galactic Nuclei. Astrophys. J. 2001, 563, 34–62. [Google Scholar] [CrossRef]
- Volonteri, M.; Haardt, F.; Madau, P. The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation. Astrophys. J. 2003, 582, 559–573. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 2011, 418, L79–L83. [Google Scholar] [CrossRef] [Green Version]
- Volonteri, M.; Perna, R. Dynamical evolution of intermediate-mass black holes and their observable signatures in the nearby Universe. Mon. Not. R. Astron. Soc. 2005, 358, 913–922. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricarte, A.; Tiede, P.; Emami, R.; Tamar, A.; Natarajan, P. The ngEHT’s Role in Measuring Supermassive Black Hole Spins. Galaxies 2023, 11, 6. https://doi.org/10.3390/galaxies11010006
Ricarte A, Tiede P, Emami R, Tamar A, Natarajan P. The ngEHT’s Role in Measuring Supermassive Black Hole Spins. Galaxies. 2023; 11(1):6. https://doi.org/10.3390/galaxies11010006
Chicago/Turabian StyleRicarte, Angelo, Paul Tiede, Razieh Emami, Aditya Tamar, and Priyamvada Natarajan. 2023. "The ngEHT’s Role in Measuring Supermassive Black Hole Spins" Galaxies 11, no. 1: 6. https://doi.org/10.3390/galaxies11010006
APA StyleRicarte, A., Tiede, P., Emami, R., Tamar, A., & Natarajan, P. (2023). The ngEHT’s Role in Measuring Supermassive Black Hole Spins. Galaxies, 11(1), 6. https://doi.org/10.3390/galaxies11010006