Investigating Gravitationally Lensed Quasars Observable by Nancy Grace Roman Space Telescope
Abstract
:1. Introduction
2. Quasars Observed by Roman Space Telescope
3. Review of Strong Lensing
3.1. Single Lensing Systems
3.2. Multiple Lensing Systems
4. Quasar Lensing with Roman Space Telescope
4.1. Simulations
4.2. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | See to https://research.ast.cam.ac.uk/lensedquasars/ (accessed on 21 May 2023). |
2 | In this work, the lens systems consisting of two lenses are called the multiple lensing systems. |
3 | https://roman.gsfc.nasa.gov/science/WFI_technical.html (accessed on 21 May 2023). |
4 | In the case of a point-mass lens, by solving the Einstein field equations, the deflection angle is , where is the closest approach distance |
5 | This definition is only in multiple systems, whereas for its definition in single systems see Equation (4). |
6 | It is the sum of many smaller event samples generated separately due to the rather long time necessary for the Monte Carlo simulation to run. |
References
- Schechter, P. The Hubble constant from gravitational lens time delays. Proc. Int. Astron. Union 2004, 2004, 281–296. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.; Barreiro, R.; Bartolo, N.; Basak, S.; et al. Planck 2018 results-VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Abbott, T.; Abdalla, F.; Annis, J.; Bechtol, K.; Blazek, J.; Benson, B.; Bernstein, R.; Bernstein, G.; Bertin, E.; Brooks, D.; et al. Dark energy survey year 1 results: A precise H0 estimate from DES Y1, BAO, and D/H data. Mon. Not. R. Astron. Soc. 2018, 480, 3879–3888. [Google Scholar] [CrossRef]
- Riess, A.; Casertano, S.; Yuan, W.; Macri, L.; Scolnic, D. Large Magellanic Cloud Cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond ΛCDM. Astrophys. J. 2019, 876, 85. [Google Scholar] [CrossRef]
- Wong, K.; Suyu, S.; Chen, G.; Rusu, C.; Millon, M.; Sluse, D.; Bonvin, V.; Fassnacht, C.; Taubenberger, S.; Auger, M.; et al. H0LiCOW–XIII. A 2.4 per cent measurement of H 0 from lensed quasars: 5.3 σ tension between early-and late-Universe probes. Mon. Not. R. Astron. Soc. 2020, 498, 1420–1439. [Google Scholar] [CrossRef]
- Myers, S.; Jackson, N.; Browne, I.; De Bruyn, A.; Pearson, T.; Readhead, A.; Wilkinson, P.; Biggs, A.; Blandford, R.; Fassnacht, C.; et al. the cosmic lens all-sky survey-I. source selection and observations. Mon. Not. R. Astron. Soc. 2003, 341, 1–12. [Google Scholar] [CrossRef]
- York, D.; Adelman, J.; Anderson, J., Jr.; Anderson, S.; Annis, J.; Bahcall, N.; Bakken, J.; Barkhouser, R.; Bastian, S.; Berman, E.; et al. The sloan digital sky survey: Technical summary. Astron. J. 2000, 120, 1579. [Google Scholar] [CrossRef]
- Keeton, C.; Falco, E.; Impey, C.; Kochanek, C.; Lehár, J.; McLeod, B.; Rix, H.; Munoz, J.; Peng, C. The host galaxy of the lensed quasar Q0957+561. Astrophys. J. 2000, 542, 74. [Google Scholar] [CrossRef]
- Walsh, D.; Carswell, R.; Weymann, R. 0957+ 561 A, B: Twin quasistellar objects or gravitational lens? Nature 1979, 279, 381–384. [Google Scholar] [CrossRef]
- Laureijs, R.; Amiaux, J.; Arduini, S.; Augueres, J.; Brinchmann, J.; Cole, R.; Cropper, M.; Dabin, C.; Duvet, L.; Ealet, A.; et al. Euclid definition study report. arXiv 2011, arXiv:1110.3193. [Google Scholar]
- Beaton, R.; Al-Kowsi, H.; Bellini, A.; Casertano, S.; Christian, C.; Cosentino, R.; De Rosa, G.; Desjardins, T.; Girard, J.; Gomez, S.; et al. The Roman Space Telescope Science Operations Center: Overview and Progress. Am. Astron. Soc. Meet. Abstr. 2023, 55, 207.01. [Google Scholar]
- Spergel, D.; Gehrels, N.; Baltay, C.; Bennett, D.; Breckinridge, J.; Donahue, M.; Dressler, A.; Gaudi, B.; Greene, T.; Guyon, O.; et al. Wide-field infrarred survey telescope-astrophysics focused telescope assets WFIRST-AFTA 2015 report. arXiv 2015, arXiv:1503.03757. [Google Scholar]
- Kochanek, C.; Apostolakis, J. The two-screen gravitational lens. Mon. Not. R. Astron. Soc. 1988, 235, 1073–1109. [Google Scholar] [CrossRef]
- Möller, O.; Blain, A. Strong gravitational lensing by multiple galaxies. Mon. Not. R. Astron. Soc. 2001, 327, 339–349. [Google Scholar] [CrossRef]
- Werner, M.; An, J.; Evans, N. On multiple Einstein rings. Mon. Not. R. Astron. Soc. 2008, 391, 668–674. [Google Scholar] [CrossRef]
- Lacy, M.; Ridgway, S.; Sajina, A.; Petric, A.; Gates, E.; Urrutia, T.; Storrie-Lombardi, L. The Spitzer mid-infrared AGN Survey. II. The demographics and cosmic evolution of the AGN population. Astrophys. J. 2015, 802, 102. [Google Scholar] [CrossRef]
- Hopkins, P.; Richards, G.; Hernquist, L. An observational determination of the bolometric quasar luminosity function. Astrophys. J. 2007, 654, 731. [Google Scholar] [CrossRef]
- Liao, K. Measuring the distances to quasars at high redshifts with strong lensing. Astrophys. J. 2019, 883, 3. [Google Scholar] [CrossRef]
- Schneider, P.; Ehlers, J.; Falco, E. Gravitational Lenses; Astronomy and Astrophysics Library; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999; ISSN 0941-7834. [Google Scholar]
- Shapiro, I. Fourth test of general relativity. Phys. Rev. Lett. 1964, 13, 789. [Google Scholar] [CrossRef]
- Ofek, E.O.; Rix, H.W.; Maoz, D. The redshift distribution of gravitational lenses revisited: Constraints on galaxy mass evolution. Mon. Not. R. Astron. Soc. 2003, 343, 639–652. [Google Scholar] [CrossRef]
- Bolton, A.S.; Treu, T.; Koopmans, L.V.E.; Gavazzi, R.; Moustakas, L.A.; Burles, S.; Schlegel, D.J.; Wayth, R. The Sloan Lens ACS Survey VII. Elliptical galaxy scaling laws from direct observational mass measurements. Astrophys. J. 2008, 684, 248. [Google Scholar]
- Collett, T.; Bacon, D. Compound lensing: Einstein zig-zags and high-multiplicity lensed images. Mon. Not. R. Astron. Soc. 2016, 456, 2210–2220. [Google Scholar] [CrossRef]
- Chae, K.; Mao, S.; Augusto, P. Modelling the first probable two-plane lens system B2114+022: Reproducing two compact radio cores A and D. Mon. Not. R. Astron. Soc. 2001, 326, 1015–1026. [Google Scholar] [CrossRef]
- Hamolli, L.; Hafizi, M.; De Paolis, F.; Nucita, A. Exploiting the IRT-THESEUS capability to observe lensed Quasars. Galaxies 2021, 9, 35. [Google Scholar] [CrossRef]
- Schneider, D.; Hall, P.; Richards, G.; Berk, D.; Anderson, S.; Fan, X.; Jester, S.; Stoughton, C.; Strauss, M.; SubbaRao, M.; et al. The sloan digital sky survey quasar catalog. III. Third data release. Astron. J. 2005, 130, 367. [Google Scholar] [CrossRef]
- Appenzeller, I.; Bender, R.; Böhm, A.; Frank, S.; Fricke, K.; Gabasch, A.; Heidt, J.; Hopp, U.; Jäger, K.; Mehlert, D.; et al. Exploring Cosmic Evolution with the FORS Deep Field. Messenger 2004, 116, 18. [Google Scholar]
- Davidzon, I.; Ilbert, O.; Laigle, C.; Coupon, J.; McCracken, H.; Delvecchio, I.; Masters, D.; Capak, P.; Hsieh, B.; Le Fèvre, O.; et al. The COSMOS2015 galaxy stellar mass function-Thirteen billion years of stellar mass assembly in ten snapshots. Astron. Astrophys. 2017, 605, A70. [Google Scholar] [CrossRef]
- Zahid, H.; Geller, M.; Fabricant, D.; Hwang, H. The scaling of stellar mass and central stellar velocity dispersion for quiescent galaxies at z < 0.7. Astrophys. J. 2016, 832, 203. [Google Scholar]
- Beckwith, S.; Stiavelli, M.; Koekemoer, A.; Caldwell, J.; Ferguson, H.; Hook, R.; Lucas, R.; Bergeron, L.; Corbin, M.; Jogee, S.; et al. The Hubble ultra deep field. Astron. J. 2006, 132, 1729. [Google Scholar] [CrossRef]
- Suyu, S.H.; Treu, T.; Hilbert, S.; Sonnenfeld, A.; Auger, M.W.; Blandford, R.D.; Collett, T.; Courbin, F.; Fassnacht, C.D.; Koopmans, L.V.E.; et al. Cosmology from gravitational lens time delays and Planck data. Astrophys. J. Lett. 2014, 788, L35. [Google Scholar] [CrossRef]
F213 | Number of Quasars | Number of Lensed Quasars | ||
---|---|---|---|---|
1 h, Point | 26.2 | 18.4 | 33.6 | 102,000 |
1 h, r = 0.3 | 25.2 | 6.3 | 22.1 | 35,000 |
55 s, Point | 23.7 | 1.02 | 11.9 | 5660 |
55 s, r = 0.3 | 22.7 | 0.245 | 7.9 | 1360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamolli, L.; Hafizi, M.; De Paolis, F.; Guliqani, E. Investigating Gravitationally Lensed Quasars Observable by Nancy Grace Roman Space Telescope. Galaxies 2023, 11, 71. https://doi.org/10.3390/galaxies11030071
Hamolli L, Hafizi M, De Paolis F, Guliqani E. Investigating Gravitationally Lensed Quasars Observable by Nancy Grace Roman Space Telescope. Galaxies. 2023; 11(3):71. https://doi.org/10.3390/galaxies11030071
Chicago/Turabian StyleHamolli, Lindita, Mimoza Hafizi, Francesco De Paolis, and Esmeralda Guliqani. 2023. "Investigating Gravitationally Lensed Quasars Observable by Nancy Grace Roman Space Telescope" Galaxies 11, no. 3: 71. https://doi.org/10.3390/galaxies11030071
APA StyleHamolli, L., Hafizi, M., De Paolis, F., & Guliqani, E. (2023). Investigating Gravitationally Lensed Quasars Observable by Nancy Grace Roman Space Telescope. Galaxies, 11(3), 71. https://doi.org/10.3390/galaxies11030071