The Dynamics and Energetics of Remnant and Restarting RLAGN
Abstract
:1. Introduction
2. Observations
2.1. Radio
2.1.1. Historical Overview of Remnant RLAGN
2.1.2. Historical Overview of Restarting RLAGN
2.1.3. Low-Frequency Observations and Surveys
- Robust remnant and restarting source fractions are ~10% at most;
- Restarted activity is a very rapid phenomenon;
- Remnants with radiative ages as old as a few hundreds of Myr have been found, particularly those sources with very steep spectral indices;
- Certain genuine remnants may not have very steep spectral index lobes, such as recently switched-off sources that may have hotspots, as the radio structure has strong evolution in the remnant or restarting phase;
- Disrupted jets are not associated with a particular type of host galaxy.
- Is episodic activity related to instabilities or episodic accretion flow, and how sensitive is the consequent jet production to changes in the accretion system?
- Are remnant lobes capable of AGN feedback, and do they contribute to the existence of diffuse cluster sources?
- To what extent does the large-scale environment play a role in episodic behaviour?
- Has every RLAGN passed through the remnant and restarted phases?
2.2. Multi-Wavelength Observations
2.2.1. X-rays and Gamma Rays
2.2.2. Optical and Infrared
3. Models and Simulations
- We know from observations of remnants and restarting sources that the jet power can drop substantially below radio-detection limits’ however, there is no information on whether this drops to zero. Most models assume that the jet turns off completely, but there is no a priori physical reason to assume this. Without information on the power spectrum of jet power variations across the lifetime of a given source, our understanding of their energetics is limited. Hydrodynamical simulations (e.g., [253]) have shown results in natural jet power modulation (over a few orders of magnitude in power) related to cycles of accretion activity, and this may be the case in a more substantial way for remnant and restarting sources.
- Many models include prescriptions for the evolution of classical double-lobed (FR-II) sources, as their dynamics are well-constrained and their models are understood with an observational perspective. Only a few nearby FR-I sources with jets close to the plane of the sky have been robustly modelled (e.g., 3C 31; [261]), but the vast majority of sources at low-redshift are FR-I; thus, the majority of nearby systems that may genuinely be remnant or restarting may be of this type. Moreover, the majority of steep-spectrum sources are found in clusters and are tailed objects, which are difficult to model. Therefore, population models have the major caveat that they are modelled with different jet dynamics than what may actually be true, although the principle nature of jet deceleration on large scales is thought to be the same for both FR-I and FR-II sources.
4. Summary and Open Questions
4.1. Jet Disruption, Morphology, and Accretion Rate
4.2. Role in Galaxy and Cluster Evolution
4.3. Conclusions
- Restarted activity, or jet disruption in general, occurs on a variety of timescales ranging from tens of kilo-years to Myr.
- Restarted and remnant activity is not exclusive to radio-loud objects or to host galaxies of a particular type. Jet disruption is likely stochastic and related to the accretion system.
- Jets are more likely to restart along the same axis as the previous outburst, while having similar jet powers between episodes, so that the central engine processes that control jet launching are not significantly changed.
- The remnant and restarting phase remains energetically important on all physical scales, and these phases can be required in order for the AGN feedback cycle to be effective in offsetting cooling in and around galaxies.
4.4. Next-Generation Radio Telescopes
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AGN | Active Galactic Nuclei |
RLAGN | Radio-Loud AGN |
ISM | InterStellar Medium |
IGM | InterGalactic Medium |
ICM | IntraCluster Medium |
DDRG | Double-Double Radio Galaxy |
CSS | Compact Steep Spectrum |
GPS | Gigahertz Steep Spectrum |
VLA | Very Large Array |
LOFAR | LOw Frequency ARray |
GMRT | Giant Metrewave Radio Telescope |
MWA | Murchinson Wide-field Array |
SKA | Square Kilometer Array |
References
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Begelman, M.C.; Blandford, R.D.; Rees, M.J. Theory of extragalactic radio sources. Rev. Mod. Phys. 1984, 56, 255–351. [Google Scholar] [CrossRef]
- Blandford, R.; Meier, D.; Readhead, A. Relativistic Jets from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2019, 57, 467–509. [Google Scholar] [CrossRef] [Green Version]
- Curtis, H.D. Descriptions of 762 Nebulae and Clusters Photographed with the Crossley Reflector. Publ. Lick Obs. 1918, 13, 9–42. [Google Scholar]
- Laing, R.A. A model for the magnetic-field structure in extended radio sources. Mon. Not. R. Astron. Soc. 1980, 193, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Black, A.R.S.; Baum, S.A.; Leahy, J.P.; Perley, R.A.; Riley, J.M.; Scheuer, P.A.G. A study of FRII radio galaxies with z < 0.15. I. High-resolution maps of eight sources at 3.6 cm. Mon. Not. R. Astron. Soc. 1992, 256, 186–208. [Google Scholar] [CrossRef] [Green Version]
- Hardcastle, M.J.; Alexander, P.; Pooley, G.G.; Riley, J.M. High-resolution observations at 3.6 cm of seventeen FR II radio galaxies with 0.15 < z < 0.30. Mon. Not. R. Astron. Soc. 1997, 288, 859–890. [Google Scholar] [CrossRef] [Green Version]
- Fernini, I.; Burns, J.O.; Perley, R.A. VLA Imaging of Fanaroff-Riley II 3CR Radio Galaxies.II.Eight New Images and Comparisons with 3CR Quasars. Astron. J. 1997, 114, 2292. [Google Scholar] [CrossRef]
- Mullin, L.M.; Hardcastle, M.J.; Riley, J.M. High-resolution observations of radio sources with 0.6 < z <= 1.0. Mon. Not. R. Astron. Soc. 2006, 372, 113–135. [Google Scholar] [CrossRef] [Green Version]
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. Ann. Rev. Astron. Astrophys. 2012, 50, 455–489. [Google Scholar] [CrossRef] [Green Version]
- Kellermann, K.I.; Sramek, R.; Schmidt, M.; Shaffer, D.B.; Green, R. VLA Observations of Objects in the Palomar Bright Quasar Survey. Astron. J. 1989, 98, 1195. [Google Scholar] [CrossRef]
- Wilson, A.S.; Colbert, E.J.M. The Difference between Radio-loud and Radio-quiet Active Galaxies. Astrophys. J. 1995, 438, 62. [Google Scholar] [CrossRef] [Green Version]
- Terashima, Y.; Wilson, A.S. Chandra Snapshot Observations of Low-Luminosity Active Galactic Nuclei with a Compact Radio Source. Astrophys. J. 2003, 583, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Yang, X.; Gu, M.; An, T.; Yang, J.; Ho, L.C.; Liu, X.; Wang, R.; Wu, X.B.; Yuan, W. Detection of a parsec-scale jet in a radio-quiet narrow-line Seyfert 1 galaxy with highly accreting supermassive black hole. Mon. Not. R. Astron. Soc. 2021, 508, 1305–1313. [Google Scholar] [CrossRef]
- Mingo, B.; Croston, J.H.; Hardcastle, M.J.; Best, P.N.; Duncan, K.J.; Morganti, R.; Rottgering, H.J.A.; Sabater, J.; Shimwell, T.W.; Williams, W.L.; et al. Revisiting the Fanaroff-Riley dichotomy and radio-galaxy morphology with the LOFAR Two-Metre Sky Survey (LoTSS). Mon. Not. R. Astron. Soc. 2019, 488, 2701–2721. [Google Scholar] [CrossRef] [Green Version]
- Hardcastle, M.J.; Croston, J.H. Radio galaxies and feedback from AGN jets. New Astron. Rev. 2020, 88, 101539. [Google Scholar] [CrossRef]
- O’Dea, C.P. The Compact Steep-Spectrum and Gigahertz Peaked-Spectrum Radio Sources. Publ. Astron. Soc. Pac. 1998, 110, 493–532. [Google Scholar] [CrossRef] [Green Version]
- Fanaroff, B.L.; Riley, J.M. The morphology of extragalactic radio sources of high and low luminosity. Mon. Not. R. Astron. Soc. 1974, 167, 31P–36P. [Google Scholar] [CrossRef] [Green Version]
- Saripalli, L. Understanding the Fanaroff-Riley Radio Galaxy Classification. Astron. J. 2012, 144, 85. [Google Scholar] [CrossRef]
- Morganti, R. Radio jets: Properties, life and impact. Proc. Int. Astron. Union 2019, 15, 229–242. [Google Scholar] [CrossRef]
- Andernach, H.; Jiménez-Andrade, E.F.; Willis, A.G. Discovery of 178 Giant Radio Galaxies in 1059 deg2 of the Rapid ASKAP Continuum Survey at 888 MHz. Galaxies 2021, 9, 99. [Google Scholar] [CrossRef]
- Feretti, L.; Giovannini, G.; Gregorini, L.; Parma, P.; Zamorani, G. Statistical properties of the radio cores in elliptical galaxies. Astron. Astrophys. 1984, 139, 55–63. [Google Scholar]
- Giovannini, G.; Feretti, L.; Gregorini, L.; Parma, P. Radio nuclei in elliptical galaxies. Astron. Astrophys. 1988, 199, 73–84. [Google Scholar]
- Laing, R.A.; Riley, J.M.; Longair, M.S. Bright radio sources at 178 MHz—Flux densities, optical identifications and the cosmological evolution of powerful radio galaxies. Mon. Not. R. Astron. Soc. 1983, 204, 151–187. [Google Scholar] [CrossRef] [Green Version]
- Mullin, L.M.; Riley, J.M.; Hardcastle, M.J. Observed properties of FRII quasars and radio galaxies at z < 1.0. Mon. Not. R. Astron. Soc. 2008, 390, 595–621. [Google Scholar] [CrossRef] [Green Version]
- Cordey, R.A. Radio sources in giant E and SO galaxies. Mon. Not. R. Astron. Soc. 1986, 219, 575–588. [Google Scholar] [CrossRef] [Green Version]
- Burns, J.O.; Gregory, S.A. The structure of 4C radio galaxies in poor clusters. Astron. J. 1982, 87, 1245–1265. [Google Scholar] [CrossRef]
- Burns, J.O.; Basart, J.P.; De Young, D.S.; Ghiglia, D.C. Radio jets in classical double radio sources with strong cores. Astrophys. J. 1984, 283, 515–528. [Google Scholar] [CrossRef]
- Fabbiano, G.; Miller, L.; Trinchieri, G.; Longair, M.; Elvis, M. An X-ray survey of a complete sample of 3CR radio galaxies. Adv. Space Res. 1984, 277, 115–131. [Google Scholar] [CrossRef]
- Pacholczyk, A.G. Radio Astrophysics. Nonthermal Processes in Galactic and Extragalactic Sources. Phys. Today 1970, 24, 57. [Google Scholar] [CrossRef]
- Andernach, H.; Tie, H.; Sievers, A.; Reuter, H.P.; Junkes, N.; Wielebinski, R. A Radio Survey of Clusters of Galaxies. VI-More Observations of 34 Abell Cluster Areas at 11.1, 6.3, and 2.8 CM and a Preliminary Statistical Review of Data in Papers 1-VI. Astron. Astrophys. Suppl. Ser. 1988, 2, 265–324. [Google Scholar]
- Giovannini, G.; Feretti, L.; Stanghellini, C. The Coma cluster radio source 1253 + 275, revisited. Astron. Astrophys. 1991, 252, 528–537. [Google Scholar]
- Gregorini, L.; Klein, U.; Parma, P.; Schlickeiser, R.; Wielebinski, R. High-frequency radio continuum observations of low-luminosity radio galaxies. I. A sample of sources with angular sizes 4′. Astron. Astrophys. Suppl. Ser. 1992, 94, 13–35. [Google Scholar]
- Cordey, R.A. IC 2476: A possible relic radio galaxy. Mon. Not. R. Astron. Soc. 1987, 227, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Goss, W.M.; McAdam, W.B.; Wellington, K.J.; Ekers, R.D. The very low-brightness relic radio galaxy 1401-33. Mon. Not. R. Astron. Soc. 1987, 226, 979–988. [Google Scholar] [CrossRef] [Green Version]
- Valentijn, E.A. Radio Investigations of Clusters of Galaxies. Ph.D. Thesis, Elve/Labor Vincit, Leiden, The Netherlands, 1978. [Google Scholar]
- Feretti, L.; Boehringer, H.; Giovannini, G.; Neumann, D. The radio and X-ray properties of Abell 2255. Astrophysics 1997, 317, 432–440. [Google Scholar] [CrossRef]
- Goldshmidt, O.; Rephaeli, Y. Relic Sources and Diffuse Cluster Radio Emission. Astrophys. J. 1994, 431, 586. [Google Scholar] [CrossRef]
- Slee, O.B.; Roy, A.L. An extreme example of a radio relic in Abell 4038. Mon. Not. R. Astron. Soc. 1998, 297, L86–L92. [Google Scholar] [CrossRef] [Green Version]
- Ekers, R.D.; Fanti, R.; Lari, C.; Parma, P. The structure of a sample of low radio galaxies. Astron. Astrophys. 1981, 101, 194–214. [Google Scholar]
- Jamrozy, M.; Klein, U.; Mack, K.H.; Gregorini, L.; Parma, P. Spectral ageing in the relic radio galaxy B2 0924 + 30. Astron. Astrophys. 2004, 427, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.J. Duty-cycle and energetics of remnant radio-loud AGN. Mon. Not. R. Astron. Soc. 2018, 476, 2522–2529. [Google Scholar] [CrossRef] [Green Version]
- Harris, D.E.; Stern, C.P.; Willis, A.G.; Dewdney, P.E. The Megaparsec radio Relic in Supercluster, Rood #27. Astron. J. 1993, 105, 769. [Google Scholar] [CrossRef]
- Venturi, T.; Bardelli, S.; Morganti, R.; Hunstead, R.W. Radio properties of the Shapley Concentration-II. J1324-3138: A remnant of a radio galaxy in the Abell cluster A3556? Mon. Not. R. Astron. Soc. 1998, 298, 1113–1122. [Google Scholar] [CrossRef] [Green Version]
- Giacintucci, S.; Clarke, T.; Kassim, N.E.; Peters, W.; Polisensky, E. Radio and X-ray Observations of the Restarted Radio Galaxy in the Galaxy Cluster CL 0838 + 1948. Galaxies 2021, 9, 108. [Google Scholar] [CrossRef]
- Kardashev, N.S. Nonstationarity of Spectra of Young Sources of Nonthermal Radio Emission. Sov. Astron. 1962, 6, 317. [Google Scholar]
- Komissarov, S.S.; Gubanov, A.G. Relic radio galaxies: Evolution of synchrotron spectrum. Astron. Astrophys. 1994, 285, 27–43. [Google Scholar]
- Harwood, J.J.; Hardcastle, M.J.; Croston, J.H.; Goodger, J.L. Spectral ageing in the lobes of FR-II radio galaxies: New methods of analysis for broad-band radio data. Mon. Not. R. Astron. Soc. 2013, 435, 3353–3375. [Google Scholar] [CrossRef] [Green Version]
- Harwood, J.J.; Hardcastle, M.J.; Croston, J.H. Spectral ageing in the lobes of cluster-centre FR II radio galaxies. Mon. Not. R. Astron. Soc. 2015, 454, 3403–3422. [Google Scholar] [CrossRef] [Green Version]
- Harwood, J.J. Spectral ageing in the era of big data: Integrated versus resolved models. Mon. Not. R. Astron. Soc. 2017, 466, 2888–2894. [Google Scholar] [CrossRef] [Green Version]
- Croston, J.H.; Hardcastle, M.J.; Harris, D.E.; Belsole, E.; Birkinshaw, M.; Worrall, D.M. An X-ray Study of Magnetic Field Strengths and Particle Content in the Lobes of FR II Radio Sources. Astrophys. J. 2005, 626, 733–747. [Google Scholar] [CrossRef] [Green Version]
- Hardcastle, M.J.; Birkinshaw, M.; Worrall, D.M. Magnetic field strengths in the hotspots of 3C 33 and 111. Mon. Not. R. Astron. Soc. 1998, 294, 615. [Google Scholar] [CrossRef] [Green Version]
- Mahatma, V.H.; Hardcastle, M.J.; Croston, J.H.; Harwood, J.; Ineson, J.; Moldon, J. Investigating the spectral age problem with powerful radio galaxies. Mon. Not. R. Astron. Soc. 2020, 491, 5015–5034. [Google Scholar] [CrossRef] [Green Version]
- Burbidge, E.M.; Burbidge, G.R. Optical Evidence Suggesting the Occurrence of a Violent Outburst in NGC 1275. Astrophys. J. 1965, 142, 1351. [Google Scholar] [CrossRef]
- Kellermann, K.I. On the Interpretation of Radio-Source Spectra and the Evolution of Radio Galaxies and Quasi-Stellar Sources. Astrophys. J. 1966, 146, 621. [Google Scholar] [CrossRef]
- O’Dea, C.P.; Baum, S.A. Constraints on Radio Source Evolution from the Compact Steep Spectrum and GHz Peaked Spectrum Radio Sources. Astron. J. 1997, 113, 148–161. [Google Scholar] [CrossRef]
- Roettiger, K.; Burns, J.O.; Clarke, D.A.; Christiansen, W.A. Relic radio emission in 3C 388. Astrophys. J. Lett. 1994, 421, L23–L26. [Google Scholar] [CrossRef]
- Burns, J.O.; Christiansen, W.A.; Hough, D.H. Multifrequency VLA observations of 3C 388: Evidence for an intermittent jet? Astrophys. J. 1982, 257, 538–558. [Google Scholar] [CrossRef]
- Gizani, N.A.B.; Leahy, J.P. A multiband study of Hercules A - II. Multifrequency Very Large Array imaging. Mon. Not. R. Astron. Soc. 2003, 342, 399–421. [Google Scholar] [CrossRef] [Green Version]
- Timmerman, R.; van Weeren, R.J.; Callingham, J.R.; Cotton, W.D.; Perley, R.; Morabito, L.K.; Gizani, N.A.B.; Bridle, A.H.; O’Dea, C.P.; Baum, S.A.; et al. Origin of the ring structures in Hercules A. Sub-arcsecond 144 MHz to 7 GHz observations. Astron. Astrophys. 2022, 658, A5. [Google Scholar] [CrossRef]
- Spoelstra, T.A.T.; Patnaik, A.R.; Gopal-Krishna. A sample of 25 extragalactic radio sources having a spectrum peaked around 1 GHz (list 2). Astron. Astrophys. 1985, 152, 38–41. [Google Scholar]
- Fanti, C.; Fanti, R.; Parma, P.; Venturi, T.; Schilizzi, R.T.; Nan, R.; Spencer, R.E.; Muxlow, T.W.B.; van Breugel, W. Three prototype compact steep spectrum radio sources. Astron. Astrophys. 1989, 217, 44–56. [Google Scholar]
- O’Dea, C.P.; Saikia, D.J. Compact steep-spectrum and peaked-spectrum radio sources. Astron. Astrophys. Rev. 2021, 29, 3. [Google Scholar] [CrossRef]
- Dallacasa, D.; Fanti, C.; Fanti, R.; Schilizzi, R.T.; Spencer, R.E. A sample of small size compact steep-spectrum radio sources. I. VLBI images at 18 cm. Astron. Astrophys. 1995, 295, 27–42. [Google Scholar]
- Stanghellini, C.; O’Dea, C.P.; Baum, S.A.; Dallacasa, D.; Fanti, R.; Fanti, C. A VLBI study of GHz-peaked-spectrum radio sources. I. VLBI images at 6cm. Astron. Astrophys. 1997, 325, 943–953. [Google Scholar]
- Wilkinson, P.N.; Polatidis, A.G.; Readhead, A.C.S.; Xu, W.; Pearson, T.J. Two-sided Ejection in Powerful Radio Sources: The Compact Symmetric Objects. Astrophys. J. 1994, 432, L87. [Google Scholar] [CrossRef] [Green Version]
- van Breugel, W. Steep Spectrum Radio Cores and Far-Sightedness. In VLBI and Compact Radio Sources; Fanti, R., Kellermann, K.I., Setti, G., Eds.; Cambridge University Press: Cambridge, UK, 1984; Volume 110, p. 59. [Google Scholar]
- O’Dea, C.P.; Baum, S.A.; Stanghellini, C. What Are the Gigahertz Peaked-Spectrum Radio Sources? Astrophys. J. 1991, 380, 66. [Google Scholar] [CrossRef]
- Hancock, P.J.; Sadler, E.M.; Mahony, E.K.; Ricci, R. Observations and properties of candidate high-frequency GPS radio sources in the AT20G survey. Mon. Not. R. Astron. Soc. 2010, 408, 1187–1206. [Google Scholar] [CrossRef] [Green Version]
- Venturi, T.; Dallacasa, D.; Stefanachi, F. Radio galaxies in cooling core clusters. Renewed activity in the nucleus of 3C 317? Astron. Astrophys. 2004, 422, 515–522. [Google Scholar] [CrossRef]
- Boehringer, H.; Voges, W.; Fabian, A.C.; Edge, A.C.; Neumann, D.M. A ROSAT HRI study of the interaction of the X-ray emitting gas and radio lobes of NGC 1275. Mon. Not. R. Astron. Soc. 1993, 264, L25–L28. [Google Scholar] [CrossRef] [Green Version]
- Nagai, H.; Suzuki, K.; Asada, K.; Kino, M.; Kameno, S.; Doi, A.; Inoue, M.; Kataoka, J.; Bach, U.; Hirota, T.; et al. VLBI Monitoring of 3C 84 (NGC 1275) in Early Phase of the 2005 Outburst. Publ. Astron. Soc. Jpn. 2010, 62, L11. [Google Scholar] [CrossRef] [Green Version]
- Nagai, H.; Fujita, Y.; Nakamura, M.; Orienti, M.; Kino, M.; Asada, K.; Giovannini, G. Enhanced Polarized Emission from the One-parsec-scale Hotspot of 3C 84 as a Result of the Interaction with the Clumpy Ambient Medium. Astrophys. J. 2017, 849, 52. [Google Scholar] [CrossRef] [Green Version]
- Owsianik, I.; Conway, J.E.; Polatidis, A.G. Renewed Radio Activity of Age 370 years in the Extragalactic Source 0108+388. Astrophysics 1998, 336, L37–L40. [Google Scholar]
- Schoenmakers, A.P.; de Bruyn, A.G.; Röttgering, H.J.A.; van der Laan, H. The Mpc-scale radio source associated with the GPS galaxy B1144+352. Astrophysics 1999, 341, 44–57. [Google Scholar]
- Morganti, R.; Oosterloo, T.; Tsvetanov, Z. A Radio Study of the Seyfert Galaxy IC 5063: Evidence for Fast Gas Outflow. Astron. J. 1998, 115, 915–927. [Google Scholar] [CrossRef] [Green Version]
- Morganti, R.; Tadhunter, C.N.; Oosterloo, T.A. Fast neutral outflows in powerful radio galaxies: A major source of feedback in massive galaxies. Astron. Astrophys. 2005, 444, L9–L13. [Google Scholar] [CrossRef] [Green Version]
- Chandola, Y.; Sirothia, S.K.; Saikia, D.J. H I absorption towards nearby compact radio sources. Mon. Not. R. Astron. Soc. 2011, 418, 1787–1795. [Google Scholar] [CrossRef]
- Morganti, R.; Fogasy, J.; Paragi, Z.; Oosterloo, T.; Orienti, M. Radio Jets Clearing the Way Through a Galaxy: Watching Feedback in Action. Science 2013, 341, 1082–1085. [Google Scholar] [CrossRef] [Green Version]
- Emonts, B.H.C.; Morganti, R.; Villar-Martín, M.; Hodgson, J.; Brogt, E.; Tadhunter, C.N.; Mahony, E.; Oosterloo, T.A. From galaxy-scale fueling to nuclear-scale feedback. The merger-state of radio galaxies 3C 293, 3C 305, and 4C 12.50. Astron. Astrophys. 2016, 596, A19. [Google Scholar] [CrossRef] [Green Version]
- Oosterloo, T.A.; Morganti, R.; Tzioumis, A.; Reynolds, J.; King, E.; McCulloch, P.; Tsvetanov, Z. A Strong Jet-Cloud Interaction in the Seyfert Galaxy IC 5063: VLBI Observations. Astron. J. 2000, 119, 2085–2091. [Google Scholar] [CrossRef] [Green Version]
- Morganti, R.; Frieswijk, W.; Oonk, R.J.B.; Oosterloo, T.; Tadhunter, C. Tracing the extreme interplay between radio jets and the ISM in IC 5063. Astron. Astrophys. 2013, 552, L4. [Google Scholar] [CrossRef]
- Mukherjee, D.; Wagner, A.Y.; Bicknell, G.V.; Morganti, R.; Oosterloo, T.; Nesvadba, N.; Sutherland, R.S. The jet-ISM interactions in IC 5063. Mon. Not. R. Astron. Soc. 2018, 476, 80–95. [Google Scholar] [CrossRef]
- Holt, J.; Tadhunter, C.N.; Morganti, R. Fast outflows in compact radio sources: Evidence for AGN-induced feedback in the early stages of radio source evolution. Mon. Not. R. Astron. Soc. 2008, 387, 639–659. [Google Scholar] [CrossRef] [Green Version]
- Cicone, C.; Maiolino, R.; Sturm, E.; Graciá-Carpio, J.; Feruglio, C.; Neri, R.; Aalto, S.; Davies, R.; Fiore, F.; Fischer, J.; et al. Massive molecular outflows and evidence for AGN feedback from CO observations. Astron. Astrophys. 2014, 562, A21. [Google Scholar] [CrossRef] [Green Version]
- Veilleux, S.; Maiolino, R.; Bolatto, A.D.; Aalto, S. Cool outflows in galaxies and their implications. Astron. Astrophys. Rev. 2020, 28, 2. [Google Scholar] [CrossRef] [Green Version]
- Schulz, R.; Morganti, R.; Nyland, K.; Paragi, Z.; Mahony, E.K.; Oosterloo, T. Mapping the neutral atomic hydrogen gas outflow in the restarted radio galaxy 3C 236. Astron. Astrophys. 2018, 617, A38. [Google Scholar] [CrossRef] [Green Version]
- Schulz, R.; Morganti, R.; Nyland, K.; Paragi, Z.; Mahony, E.K.; Oosterloo, T. Parsec-scale HI outflows in powerful radio galaxies. Astron. Astrophys. 2021, 647, A63. [Google Scholar] [CrossRef]
- Schoenmakers, A.P.; Röttgering, H.J.A.; de Bruyn, A.G. Double-Double Radio Galaxies. In The Most Distant Radio Galaxies, Proceedings of the Colloquium, Amsterdam, The Netherlands, 15–17 October 1997; Röttgering, H.J.A., Best, P.N., Lehnert, M.D., Eds.; Royal Netherlands Academy of Arts and Sciences: Amsterdam, The Netherlands, 1999; p. 497. [Google Scholar]
- Schoenmakers, A.P.; de Bruyn, A.G.; Röttgering, H.J.A.; van der Laan, H.; Kaiser, C.R. Radio galaxies with a ‘double-double morphology’—I. Analysis of the radio properties and evidence for interrupted activity in active galactic nuclei. Mon. Not. R. Astron. Soc. 2000, 315, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Leahy, J.P.; Black, A.R.S.; Dennett-Thorpe, J.; Hardcastle, M.J.; Komissarov, S.; Perley, R.A.; Riley, J.M.; Scheuer, P.A.G. A study of FRII radio galaxies with z < 0.15—II. High-resolution maps of 11 sources at 3.6 CM. Mon. Not. R. Astron. Soc. 1997, 291, 20–53. [Google Scholar] [CrossRef] [Green Version]
- Owen, F.N.; Ledlow, M.J. A 20 Centimeter VLA Survey of Abell Clusters of Galaxies. VII. Detailed Radio Images. Astrophys. J. Suppl. Ser. 1997, 108, 41–98. [Google Scholar] [CrossRef]
- Leahy, J.P.; Perley, R.A. VLA Images of 23 Extragalactic Radio Sources. Astron. J. 1991, 102, 537. [Google Scholar] [CrossRef]
- Kaiser, C.R.; Schoenmakers, A.P.; Röttgering, H.J.A. Radio galaxies with a ‘double-double’ morphology-II. The evolution of double-double radio galaxies and implications for the alignment effect in FRII sources. Mon. Not. R. Astron. Soc. 2000, 315, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Shulevski, A.; Morganti, R.; Harwood, J.J.; Barthel, P.D.; Jamrozy, M.; Brienza, M.; Brunetti, G.; Röttgering, H.J.A.; Murgia, M.; White, G.J.; et al. Radiative age mapping of the remnant radio galaxy B2 0924 + 30: The LOFAR perspective. Astron. Astrophys. 2017, 600, A65. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, K.; Ueda, J.; Shidatsu, M.; Kawamuro, T.; Matsuoka, K. Signs of active galactic nucleus quenching in a merger remnant with radio jets. Publ. Astron. Soc. Jpn. 2016, 68, 9. [Google Scholar] [CrossRef] [Green Version]
- Randriamanakoto, Z.; Ishwara-Chandra, C.H.; Taylor, A.R. J1615+5452: A remnant radio galaxy in the ELAIS-N1 field. Mon. Not. R. Astron. Soc. 2020, 496, 3381–3389. [Google Scholar] [CrossRef]
- Brienza, M.; Godfrey, L.; Morganti, R.; Vilchez, N.; Maddox, N.; Murgia, M.; Orru, E.; Shulevski, A.; Best, P.N.; Brüggen, M.; et al. LOFAR discovery of a 700-kpc remnant radio galaxy at low redshift. Astron. Astrophys. 2016, 585, A29. [Google Scholar] [CrossRef] [Green Version]
- Brienza, M.; Morganti, R.; Harwood, J.; Duchet, T.; Rajpurohit, K.; Shulevski, A.; Hardcastle, M.J.; Mahatma, V.; Godfrey, L.E.H.; Prandoni, I.; et al. Radio spectral properties and jet duty cycle in the restarted radio galaxy 3C388. Astron. Astrophys. 2020, 638, A29. [Google Scholar] [CrossRef] [Green Version]
- Siemiginowska, A.; Stawarz, Ł.; Cheung, C.C.; Aldcroft, T.L.; Bechtold, J.; Burke, D.J.; Evans, D.; Holt, J.; Jamrozy, M.; Migliori, G. Deep Chandra X-ray Imaging of a nearby Radio Galaxy 4C+29.30: X-ray/Radio Connection. Astrophys. J. 2012, 750, 124. [Google Scholar] [CrossRef] [Green Version]
- Shulevski, A.; Barthel, P.D.; Morganti, R.; Harwood, J.J.; Brienza, M.; Shimwell, T.W.; Röttgering, H.J.A.; White, G.J.; Callingham, J.R.; Mooney, S.; et al. First look at the giant radio galaxy 3C 236 with LOFAR. Astron. Astrophys. 2019, 628, A69. [Google Scholar] [CrossRef] [Green Version]
- Bridle, A.H.; Fomalont, E.B.; Cornwell, T.J. The large and small-scale structure of 3C 293. Astron. J. 1981, 86, 1294–1305. [Google Scholar] [CrossRef]
- Akujor, C.E.; Leahy, J.P.; Garrington, S.T.; Sanghera, H.; Spencer, R.E.; Schilizzi, R.T. A two-sided jet structure in the ‘steep-spectrum core’ of 3C293. Mon. Not. R. Astron. Soc. 1996, 278, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Beswick, R.J.; Pedlar, A.; Holloway, A.J. A radio study of neutral gas and dust in the radio galaxy 3C 293. Mon. Not. R. Astron. Soc. 2002, 329, 620–628. [Google Scholar] [CrossRef] [Green Version]
- Machalski, J.; Jamrozy, M.; Stawarz, Ł.; Weżgowiec, M. Dynamical analysis of the complex radio structure in 3C 293: Clues on a rapid jet realignment in X-shaped radio galaxies. Astron. Astrophys. 2016, 595, A46. [Google Scholar] [CrossRef] [Green Version]
- Kukreti, P.; Morganti, R.; Shimwell, T.W.; Morabito, L.K.; Beswick, R.J.; Brienza, M.; Hardcastle, M.J.; Sweijen, F.; Jackson, N.; Miley, G.K.; et al. Unmasking the history of 3C 293 with LOFAR sub-arcsecond imaging. Astron. Astrophys. 2022, 658, A6. [Google Scholar] [CrossRef]
- Capetti, A.; Zamfir, S.; Rossi, P.; Bodo, G.; Zanni, C.; Massaglia, S. On the origin of X-shaped radio-sources: New insights from the properties of their host galaxies. Astron. Astrophys. 2002, 394, 39–45. [Google Scholar] [CrossRef]
- Gopal-Krishna; Biermann, P.L.; Gergely, L.Á.; Wiita, P.J. On the origin of X-shaped radio galaxies. Res. Astron. Astrophys. 2012, 12, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Leahy, J.P.; Williams, A.G. The bridges of classical double radio sources. Mon. Not. R. Astron. Soc. 1984, 210, 929–951. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Ji, J.; Joshi, R.; Yang, J.; An, T.; Wang, R.; Ho, L.C.; Roberts, D.H.; Saripalli, L. The X-shaped Radio Galaxy J0725 + 5835 is Associated with an AGN Pair. Astrophys. J. 2022, 933, 98. [Google Scholar] [CrossRef]
- Saripalli, L.; Mack, K.H. A search for molecular gas in restarting radio galaxies. Mon. Not. R. Astron. Soc. 2007, 376, 1385–1392. [Google Scholar] [CrossRef]
- Machalski, J.; Jamrozy, M. Statistics of Giant Radio Sources. In The Universe at Low Radio Frequencies; Pramesh Rao, A., Swarup, G., Gopal-Krishna, Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2002; Volume 199, p. 203. [Google Scholar]
- Subrahmanyan, R.; Saripalli, L.; Hunstead, R.W. Morphologies in megaparsec-size powerful radio galaxies. Mon. Not. R. Astron. Soc. 1996, 279, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Machalski, J.; Chyzy, K.T.; Jamrozy, M. Giant Radio Sources in View of the Dynamical Evolution of FRII-type Population. I. The Observational Data and Basic Physical Parameters of Sources Derived from the Analytical Model. Acta Astron. 2004, 54, 249–279. [Google Scholar] [CrossRef]
- Saripalli, L.; Subrahmanyan, R.; Udaya Shankar, N. A Case for Renewed Activity in the Giant Radio Galaxy J0116-473. Astrophys. J. 2002, 565, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Safouris, V.; Subrahmanyan, R.; Bicknell, G.V.; Saripalli, L. PKS B1545-321: Bow shocks of a relativistic jet? Mon. Not. R. Astron. Soc. 2008, 385, 2117–2135. [Google Scholar] [CrossRef] [Green Version]
- Mahatma, V.H.; Hardcastle, M.J.; Williams, W.L.; Best, P.N.; Croston, J.H.; Duncan, K.; Mingo, B.; Morganti, R.; Brienza, M.; Cochrane, R.K.; et al. LoTSS DR1: Double-double radio galaxies in the HETDEX field. Astron. Astrophys. 2019, 622, A13. [Google Scholar] [CrossRef]
- Jurlin, N.; Morganti, R.; Brienza, M.; Mandal, S.; Maddox, N.; Duncan, K.J.; Shabala, S.S.; Hardcastle, M.J.; Prandoni, I.; Röttgering, H.J.A.; et al. The life cycle of radio galaxies in the LOFAR Lockman Hole field. Astron. Astrophys. 2020, 638, A34. [Google Scholar] [CrossRef] [Green Version]
- Sikora, M.; Stawarz, Ł.; Lasota, J.P. Radio-loudness of active galaxies and the black hole evolution. New Astron. Rev. 2008, 51, 891–897. [Google Scholar] [CrossRef] [Green Version]
- Kuźmicz, A.; Jamrozy, M.; Kozieł-Wierzbowska, D.; Weżgowiec, M. Optical and radio properties of extragalactic radio sources with recurrent jet activity. Mon. Not. R. Astron. Soc. 2017, 471, 3806–3826. [Google Scholar] [CrossRef] [Green Version]
- Livio, M.; Pringle, J.E.; King, A.R. The Disk-Jet Connection in Microquasars and Active Galactic Nuclei. Astrophys. J. 2003, 593, 184–188. [Google Scholar] [CrossRef]
- Mayer, M.; Pringle, J.E. Variability of black hole accretion discs: The cool, thermal disc component. Mon. Not. R. Astron. Soc. 2006, 368, 379–396. [Google Scholar] [CrossRef] [Green Version]
- Pringle, J.E. Thermal instabilities in accretion discs. Mon. Not. R. Astron. Soc. 1976, 177, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Sikora, M.; Stawarz, Ł.; Lasota, J.P. Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications. Astrophys. J. 2007, 658, 815–828. [Google Scholar] [CrossRef] [Green Version]
- Jamrozy, M.; Konar, C.; Saikia, D.J.; Stawarz, Ł.; Mack, K.H.; Siemiginowska, A. Intermittent jet activity in the radio galaxy 4C29.30? Mon. Not. R. Astron. Soc. 2007, 378, 581–593. [Google Scholar] [CrossRef]
- Machalski, J.; Jamrozy, M.; Konar, C. Spectral ageing analysis and dynamical analysis of the double-double radio galaxy J1548-3216. Astron. Astrophys. 2010, 510, A84. [Google Scholar] [CrossRef]
- Siemiginowska, A.; Czerny, B.; Janiuk, A.; Stawarz, L.; Guainazzi, M.; Celotti, A.; Migliori, G.; Tengstrand, O. Intermittent Activity of Jets in AGN. In Accretion and Ejection in AGN: A Global View; Maraschi, L., Ghisellini, G., Della Ceca, R., Tavecchio, F., Eds.; Astronomical Society of the Pacific Conference Series; Cornell University: Ithaca, NY, USA, 2010; Volume 427, p. 326. [Google Scholar] [CrossRef]
- Konar, C.; Saikia, D.J.; Jamrozy, M.; Machalski, J. Spectral ageing analysis of the double-double radio galaxy J1453 + 3308. Mon. Not. R. Astron. Soc. 2006, 372, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Konar, C.; Hardcastle, M.J. Particle acceleration and dynamics of double-double radio galaxies: Theory versus observations. Mon. Not. R. Astron. Soc. 2013, 436, 1595–1614. [Google Scholar] [CrossRef] [Green Version]
- Saikia, D.J.; Jamrozy, M. Recurrent activity in Active Galactic Nuclei. Bull. Astron. Soc. India 2009, 37, 27. [Google Scholar]
- Nandi, S.; Saikia, D.J. Double-double radio galaxies from the FIRST survey. Bull. Astron. Soc. India 2012, 40, 121–137. [Google Scholar]
- Nandi, S.; Saikia, D.J.; Roy, R.; Dabhade, P.; Wadadekar, Y.; Larsson, J.; Baes, M.; Chandola, H.C.; Singh, M. A low-frequency study of recently identified double-double radio galaxies. Mon. Not. R. Astron. Soc. 2019, 486, 5158–5170. [Google Scholar] [CrossRef]
- Mundell, C.G.; Nagar, N.; Ferruit, P. Radio-Quiet AGN and the Transient Radio Sky. arXiv 2011, arXiv:1102.3039. [Google Scholar] [CrossRef]
- Konar, C.; Hardcastle, M.J.; Jamrozy, M.; Croston, J.H. Episodic radio galaxies J0116-4722 and J1158 + 2621: Can we constrain the quiescent phase of nuclear activity? Mon. Not. R. Astron. Soc. 2013, 430, 2137–2153. [Google Scholar] [CrossRef] [Green Version]
- Hota, A.; Sirothia, S.K.; Ohyama, Y.; Konar, C.; Kim, S.; Rey, S.C.; Saikia, D.J.; Croston, J.H.; Matsushita, S. Discovery of a spiral-host episodic radio galaxy. Mon. Not. R. Astron. Soc. Lett. 2011, 417, L36–L40. [Google Scholar] [CrossRef] [Green Version]
- Foschini, L.; Berton, M.; Caccianiga, A.; Ciroi, S.; Cracco, V.; Peterson, B.M.; Angelakis, E.; Braito, V.; Fuhrmann, L.; Gallo, L.; et al. Properties of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies. Astron. Astrophys. 2015, 575, A13. [Google Scholar] [CrossRef]
- Lane, W.M.; Cotton, W.D.; van Velzen, S.; Clarke, T.E.; Kassim, N.E.; Helmboldt, J.F.; Lazio, T.J.W.; Cohen, A.S. The Very Large Array Low-frequency Sky Survey Redux (VLSSr). Mon. Not. R. Astron. Soc. 2014, 440, 327–338. [Google Scholar] [CrossRef]
- Groeneveld, C.; van Weeren, R.; Osinga, E.E.A. The Decameter sky at sub-arcminute resolution. Nat. Astron. 2023. submitted. [Google Scholar]
- de Gasperin, F.; Edler, H.W.; Williams, W.L.; Callingham, J.R.; Asabere, B.; Bruggen, M.; Brunetti, G.; Dijkema, T.J.; Hardcastle, M.J.; Iacobelli, M.; et al. The LOFAR LBA Sky Survey II. First data release. arXiv 2023, arXiv:2301.12724. [Google Scholar] [CrossRef]
- Shimwell, T.W.; Hardcastle, M.J.; Tasse, C.; Best, P.N.; Röttgering, H.J.A.; Williams, W.L.; Botteon, A.; Drabent, A.; Mechev, A.; Shulevski, A.; et al. The LOFAR Two-metre Sky Survey. V. Second data release. Astron. Astrophys. 2022, 659, A1. [Google Scholar] [CrossRef]
- Intema, H.T.; Jagannathan, P.; Mooley, K.P.; Frail, D.A. The GMRT 150 MHz all-sky radio survey. First alternative data release TGSS ADR1. Astron. Astrophys. 2017, 598, A78. [Google Scholar] [CrossRef] [Green Version]
- Rengelink, R.B.; Tang, Y.; de Bruyn, A.G.; Miley, G.K.; Bremer, M.N.; Roettgering, H.J.A.; Bremer, M.A.R. The Westerbork Northern Sky Survey (WENSS), I. A 570 square degree Mini-Survey around the North Ecliptic Pole. Astron. Astrophys. Suppl. Ser. 1997, 124, 259–280. [Google Scholar] [CrossRef] [Green Version]
- de Ruiter, H.R.; Parma, P.; Stirpe, G.M.; Perez-Fournon, I.; Gonzalez-Serrano, I.; Rengelink, R.B.; Bremer, M.N. Bright galaxies from WENSS. I. The minisurvey. Astron. Astrophys. 1998, 339, 34–40. [Google Scholar]
- Murgia, M.; Parma, P.; de Ruiter, H.R.; Mack, K.H.; Fanti, R. Dying Radio Galaxies in Clusters. In Proceedings of the X-ray and Radio Connections, Santa Fe, NM, USA, 3–6 February 2005; p. 8.15. [Google Scholar]
- Murgia, M.; Parma, P.; Mack, K.H.; de Ruiter, H.R.; Fanti, R.; Govoni, F.; Tarchi, A.; Giacintucci, S.; Markevitch, M. Dying radio galaxies in clusters. Astron. Astrophys. 2011, 526, A148. [Google Scholar] [CrossRef] [Green Version]
- Parma, P.; Murgia, M.; de Ruiter, H.R.; Fanti, R.; Mack, K.H.; Govoni, F. In search of dying radio sources in the local universe. Astron. Astrophys. 2007, 470, 875–888. [Google Scholar] [CrossRef] [Green Version]
- Giacintucci, S.; O’Sullivan, E.; Vrtilek, J.; David, L.P.; Raychaudhury, S.; Venturi, T.; Athreya, R.M.; Clarke, T.E.; Murgia, M.; Mazzotta, P.; et al. A Combined Low-radio Frequency/X-ray Study of Galaxy Groups. I. Giant Metrewave Radio Telescope Observations at 235 MHz and 610 MHz. Astrophys. J. 2011, 732, 95. [Google Scholar] [CrossRef] [Green Version]
- Dwarakanath, K.S.; Kale, R. Relics of Double Radio Sources. Astrophys. J. 2009, 698, L163–L168. [Google Scholar] [CrossRef] [Green Version]
- van Haarlem, M.P.; Wise, M.W.; Gunst, A.W.; Heald, G.; McKean, J.P.; Hessels, J.W.T.; de Bruyn, A.G.; Nijboer, R.; Swinbank, J.; Fallows, R.; et al. LOFAR: The LOw-Frequency ARray. Astron. Astrophys. 2013, 556, A2. [Google Scholar] [CrossRef] [Green Version]
- Lonsdale, C.J.; Cappallo, R.J.; Morales, M.F.; Briggs, F.H.; Benkevitch, L.; Bowman, J.D.; Bunton, J.D.; Burns, S.; Corey, B.E.; Desouza, L.; et al. The Murchison Widefield Array: Design Overview. IEEE Proc. 2009, 97, 1497–1506. [Google Scholar] [CrossRef]
- Hurley-Walker, N.; Johnston-Hollitt, M.; Ekers, R.; Hunstead, R.; Sadler, E.M.; Hindson, L.; Hancock, P.; Bernardi, G.; Bowman, J.D.; Briggs, F.; et al. Serendipitous discovery of a dying Giant Radio Galaxy associated with NGC 1534, using the Murchison Widefield Array. Mon. Not. R. Astron. Soc. 2015, 447, 2468–2478. [Google Scholar] [CrossRef] [Green Version]
- Duchesne, S.W.; Johnston-Hollitt, M. The remnant radio galaxy associated with NGC 1534. Publ. Astron. Soc. Aust. 2019, 36, e016. [Google Scholar] [CrossRef] [Green Version]
- Giacintucci, S.; O’Sullivan, E.; Clarke, T.E.; Murgia, M.; Vrtilek, J.M.; Venturi, T.; David, L.P.; Raychaudhury, S.; Athreya, R.M. Recurrent Radio Outbursts at the Center of the NGC 1407 Galaxy Group. Astrophys. J. 2012, 755, 172. [Google Scholar] [CrossRef] [Green Version]
- Shulevski, A.; Morganti, R.; Barthel, P.D.; Murgia, M.; van Weeren, R.J.; White, G.J.; Brüggen, M.; Kunert-Bajraszewska, M.; Jamrozy, M.; Best, P.N.; et al. The peculiar radio galaxy 4C 35.06: A case for recurrent AGN activity? Astron. Astrophys. 2015, 579, A27. [Google Scholar] [CrossRef] [Green Version]
- Tamhane, P.; Wadadekar, Y.; Basu, A.; Singh, V.; Ishwara-Chandra, C.H.; Beelen, A.; Sirothia, S. J021659-044920: A relic giant radio galaxy at z ~ 1.3. Mon. Not. R. Astron. Soc. 2015, 453, 2438–2446. [Google Scholar] [CrossRef] [Green Version]
- Brienza, M.; Shimwell, T.W.; de Gasperin, F.; Bikmaev, I.; Bonafede, A.; Botteon, A.; Brüggen, M.; Brunetti, G.; Burenin, R.; Capetti, A.; et al. A snapshot of the oldest active galactic nuclei feedback phases. Nat. Astron. 2021, 5, 1261–1267. [Google Scholar] [CrossRef]
- Konar, C.; Hardcastle, M.J.; Jamrozy, M.; Croston, J.H.; Nandi, S. Rejuvenated radio galaxies J0041+3224 and J1835 + 6204: How long can the quiescent phase of nuclear activity last? Mon. Not. R. Astron. Soc. 2012, 424, 1061–1076. [Google Scholar] [CrossRef] [Green Version]
- Orrù, E.; van Velzen, S.; Pizzo, R.F.; Yatawatta, S.; Paladino, R.; Iacobelli, M.; Murgia, M.; Falcke, H.; Morganti, R.; de Bruyn, A.G.; et al. Wide-field LOFAR imaging of the field around the double-double radio galaxy B1834 + 620. A fresh view on a restarted AGN and doubeltjes. Astron. Astrophys. 2015, 584, A112. [Google Scholar] [CrossRef] [Green Version]
- Shulevski, A.; Morganti, R.; Oosterloo, T.; Struve, C. Recurrent radio emission and gas supply: The radio galaxy B2 0258+35. Astron. Astrophys. 2012, 545, A91. [Google Scholar] [CrossRef] [Green Version]
- Brienza, M.; Morganti, R.; Murgia, M.; Vilchez, N.; Adebahr, B.; Carretti, E.; Concu, R.; Govoni, F.; Harwood, J.; Intema, H.; et al. Duty cycle of the radio galaxy B2 0258 + 35. Astron. Astrophys. 2018, 618, A45. [Google Scholar] [CrossRef] [Green Version]
- Webster, B.; Croston, J.H.; Harwood, J.J.; Baldi, R.D.; Hardcastle, M.J.; Mingo, B.; Röttgering, H.J.A. Investigating the spectra and physical nature of galaxy scale jets. Mon. Not. R. Astron. Soc. 2021, 508, 5972–5990. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Gürkan, G.; van Weeren, R.J.; Williams, W.L.; Best, P.N.; de Gasperin, F.; Rafferty, D.A.; Read, S.C.; Sabater, J.; Shimwell, T.W.; et al. LOFAR/H-ATLAS: A deep low-frequency survey of the Herschel-ATLAS North Galactic Pole field. Mon. Not. R. Astron. Soc. 2016, 462, 1910–1936. [Google Scholar] [CrossRef] [Green Version]
- Mahatma, V.H.; Hardcastle, M.J.; Williams, W.L.; Brienza, M.; Brüggen, M.; Croston, J.H.; Gurkan, G.; Harwood, J.J.; Kunert-Bajraszewska, M.; Morganti, R.; et al. Remnant radio-loud AGN in the Herschel-ATLAS field. Mon. Not. R. Astron. Soc. 2018. [Google Scholar] [CrossRef] [Green Version]
- Quici, B.; Hurley-Walker, N.; Seymour, N.; Turner, R.J.; Shabala, S.S.; Huynh, M.; Andernach, H.; Kapińska, A.D.; Collier, J.D.; Johnston-Hollitt, M.; et al. Remnant radio galaxies discovered in a multi-frequency survey. Pubs. Astron. Soc. Australia 2021, 38, e008. [Google Scholar] [CrossRef]
- Driver, S.P.; Hill, D.T.; Kelvin, L.S.; Robotham, A.S.G.; Liske, J.; Norberg, P.; Baldry, I.K.; Bamford, S.P.; Hopkins, A.M.; Loveday, J.; et al. Galaxy and Mass Assembly (GAMA): Survey diagnostics and core data release. Mon. Not. R. Astron. Soc. 2011, 413, 971–995. [Google Scholar] [CrossRef] [Green Version]
- Mahony, E.K.; Morganti, R.; Prandoni, I.; van Bemmel, I.M.; Shimwell, T.W.; Brienza, M.; Best, P.N.; Brüggen, M.; Calistro Rivera, G.; de Gasperin, F.; et al. The Lockman Hole project: LOFAR observations and spectral index properties of low-frequency radio sources. Mon. Not. R. Astron. Soc. 2016, 463, 2997–3020. [Google Scholar] [CrossRef]
- Brienza, M.; Godfrey, L.; Morganti, R.; Prandoni, I.; Harwood, J.; Mahony, E.K.; Hardcastle, M.J.; Murgia, M.; Röttgering, H.J.A.; Shimwell, T.W.; et al. Search and modelling of remnant radio galaxies in the LOFAR Lockman Hole field. Astron. Astrophys. 2017, 606, A98. [Google Scholar] [CrossRef] [Green Version]
- Godfrey, L.E.H.; Morganti, R.; Brienza, M. On the population of remnant Fanaroff-Riley type II radio galaxies and implications for radio source dynamics. Mon. Not. R. Astron. Soc. 2017, 471, 891–907. [Google Scholar] [CrossRef] [Green Version]
- Jurlin, N.; Brienza, M.; Morganti, R.; Wadadekar, Y.; Ishwara-Chandra, C.H.; Maddox, N.; Mahatma, V. Multi-frequency characterisation of remnant radio galaxies in the Lockman Hole field. Astron. Astrophys. 2021, 653, A110. [Google Scholar] [CrossRef]
- Quici, B.; Turner, R.J.; Seymour, N.; Hurley-Walker, N.; Shabala, S.S.; Ishwara-Chandra, C.H. Selecting and modelling remnant AGNs with limited spectral coverage. Mon. Not. R. Astron. Soc. 2022, 514, 3466–3484. [Google Scholar] [CrossRef]
- Morganti, R.; Oosterloo, T.A.; Brienza, M.; Jurlin, N.; Prandoni, I.; Orrù, E.; Shabala, S.S.; Adams, E.A.K.; Adebahr, B.; Best, P.N.; et al. The best of both worlds: Combining LOFAR and Apertif to derive resolved radio spectral index images. Astron. Astrophys. 2021, 648, A9. [Google Scholar] [CrossRef]
- Oosterloo, T.; van Leeuwen, J.; Van Cappellen, W.; Kruithof, G.; Jackson, C. Apertif; the next stage. In Proceedings of the Westerbork Telescope 50th Anniversary, Westerbork, The Netherlands, 15 September 2018; Volume 361, p. 16. [Google Scholar] [CrossRef]
- Adams, E.A.K.; van Leeuwen, J. Radio surveys now both deep and wide. Nat. Astron. 2019, 3, 188. [Google Scholar] [CrossRef]
- Shimwell, T.W.; Tasse, C.; Hardcastle, M.J.; Mechev, A.P.; Williams, W.L.; Best, P.N.; Röttgering, H.J.A.; Callingham, J.R.; Dijkema, T.J.; de Gasperin, F.; et al. The LOFAR Two-metre Sky Survey. II. First data release. Astron. Astrophys. 2019, 622, A1. [Google Scholar] [CrossRef]
- Savini, F.; Bonafede, A.; Brüggen, M.; Wilber, A.; Harwood, J.J.; Murgia, M.; Shimwell, T.; Rafferty, D.; Shulevski, A.; Brienza, M.; et al. Studying the late evolution of a radio-loud AGN in a galaxy group with LOFAR. Mon. Not. R. Astron. Soc. 2018, 474, 5023–5035. [Google Scholar] [CrossRef] [Green Version]
- Brüggen, M.; Rafferty, D.; Bonafede, A.; van Weeren, R.J.; Shimwell, T.; Intema, H.; Röttgering, H.; Brunetti, G.; Di Gennaro, G.; Savini, F.; et al. Discovery of large-scale diffuse radio emission in low-mass galaxy cluster Abell 1931. Mon. Not. R. Astron. Soc. 2018, 477, 3461–3468. [Google Scholar] [CrossRef] [Green Version]
- Williams, W.L.; Hardcastle, M.J.; Best, P.N.; Sabater, J.; Croston, J.H.; Duncan, K.J.; Shimwell, T.W.; Röttgering, H.J.A.; Nisbet, D.; Gürkan, G.; et al. The LOFAR Two-metre Sky Survey. III. First data release: Optical/infrared identifications and value-added catalogue. Astron. Astrophys. 2019, 622, A2. [Google Scholar] [CrossRef] [Green Version]
- Duncan, K.J.; Sabater, J.; Röttgering, H.J.A.; Jarvis, M.J.; Smith, D.J.B.; Best, P.N.; Callingham, J.R.; Cochrane, R.; Croston, J.H.; Hardcastle, M.J.; et al. The LOFAR Two-metre Sky Survey. IV. First Data Release: Photometric redshifts and rest-frame magnitudes. Astron. Astrophys. 2019, 622, A3. [Google Scholar] [CrossRef] [Green Version]
- Hill, G.J.; Gebhardt, K.; Komatsu, E.; Drory, N.; MacQueen, P.J.; Adams, J.; Blanc, G.A.; Koehler, R.; Rafal, M.; Roth, M.M.; et al. The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX): Description and Early Pilot Survey Results. In Proceedings of the Panoramic Views of Galaxy Formation and Evolution, Hayama, Japan, 11–16 December 2008; Kodama, T., Yamada, T., Aoki, K., Eds.; Astronomical Society of the Pacific Conference Series. Astronomical Society of the Pacific: San Francisco, CA, USA, 2008; Volume 399, p. 115. [Google Scholar]
- Hardcastle, M.J.; Williams, W.L.; Best, P.N.; Croston, J.H.; Duncan, K.J.; Röttgering, H.J.A.; Sabater, J.; Shimwell, T.W.; Tasse, C.; Callingham, J.R.; et al. Radio-loud AGN in the first LoTSS data release. The lifetimes and environmental impact of jet-driven sources. Astron. Astrophys. 2019, 622, A12. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.J.B.; Best, P.N.; Duncan, K.J.; Hatch, N.A.; Jarvis, M.J.; Röttgering, H.J.A.; Simpson, C.J.; Stott, J.P.; Cochrane, R.K.; Coppin, K.E.; et al. The WEAVE-LOFAR Survey. In Proceedings of the SF2A-2016: Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics, Centre de Recherche Astrophysique de Lyon, Saint Genis Laval, France, 23–28 May 2016; pp. 271–280. [Google Scholar]
- Jurlin, N.; Morganti, R.; Maddox, N.; Brienza, M. The Photometric and Spectroscopic Properties of Remnant and Restarted Radio Galaxies in the Lockman Hole Field. Galaxies 2021, 9, 122. [Google Scholar] [CrossRef]
- Brocksopp, C.; Kaiser, C.R.; Schoenmakers, A.P.; de Bruyn, A.G. Three episodes of jet activity in the Fanaroff-Riley type II radio galaxy B0925+420. Mon. Not. R. Astron. Soc. 2007, 382, 1019–1028. [Google Scholar] [CrossRef] [Green Version]
- Marecki, A.; Sebastian, B.; Ishwara-Chandra, C.H. The structure at the centre of the giant radio galaxy GRS J0844+4627: A compact symmetric object? Mon. Not. R. Astron. Soc. Lett. 2023, 518, L83–L86. [Google Scholar] [CrossRef]
- de Gasperin, F.; Williams, W.L.; Best, P.; Brüggen, M.; Brunetti, G.; Cuciti, V.; Dijkema, T.J.; Hardcastle, M.J.; Norden, M.J.; Offringa, A.; et al. The LOFAR LBA Sky Survey. I. Survey description and preliminary data release. Astron. Astrophys. 2021, 648, A104. [Google Scholar] [CrossRef]
- Shabala, S.S.; Jurlin, N.; Morganti, R.; Brienza, M.; Hardcastle, M.J.; Godfrey, L.E.H.; Krause, M.G.H.; Turner, R.J. The duty cycle of radio galaxies revealed by LOFAR: Remnant and restarted radio source populations in the Lockman Hole. Mon. Not. R. Astron. Soc. 2020, 496, 1706–1717. [Google Scholar] [CrossRef]
- Bruni, G.; Panessa, F.; Bassani, L.; Dallacasa, D.; Venturi, T.; Saripalli, L.; Brienza, M.; Hernández-García, L.; Chiaraluce, E.; Ursini, F.; et al. Hard X-ray selected giant radio galaxies—II. Morphological evidence of restarted radio activity. Mon. Not. R. Astron. Soc. 2020, 494, 902–914. [Google Scholar] [CrossRef]
- Bruni, G.; Brienza, M.; Panessa, F.; Bassani, L.; Dallacasa, D.; Venturi, T.; Baldi, R.D.; Botteon, A.; Drabent, A.; Malizia, A.; et al. Hard X-ray selected giant radio galaxies - III. The LOFAR view. Mon. Not. R. Astron. Soc. 2021, 503, 4681–4699. [Google Scholar] [CrossRef]
- Barthel, P.D.; Schilizzi, R.T.; Miley, G.K.; Jagers, W.J.; Strom, R.G. The large and small scale radio structure of 3C 236. Astron. Astrophys. 1985, 148, 243–253. [Google Scholar]
- Tremblay, G.R.; O’Dea, C.P.; Baum, S.A.; Koekemoer, A.M.; Sparks, W.B.; de Bruyn, G.; Schoenmakers, A.P. Episodic Star Formation Coupled to Reignition of Radio Activity in 3C 236. Astrophys. J. 2010, 715, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Capetti, A.; de Ruiter, H.R.; Fanti, R.; Morganti, R.; Parma, P.; Ulrich, M.H. The HST snapshot survey of the B2 sample of low luminosity radio-galaxies: A picture gallery. Astrophysics 2000, 362, 871–885. [Google Scholar] [CrossRef]
- Evans, A.S.; Sanders, D.B.; Surace, J.A.; Mazzarella, J.M. Molecular Gas in 3C 293: The First Detection of CO Emission and Absorption in a Fanaroff-Riley Type II Radio Galaxy. Astrophys. J. 1999, 511, 730–738. [Google Scholar] [CrossRef] [Green Version]
- Ogle, P.; Boulanger, F.; Guillard, P.; Evans, D.A.; Antonucci, R.; Appleton, P.N.; Nesvadba, N.; Leipski, C. Jet-powered Molecular Hydrogen Emission from Radio Galaxies. Astrophys. J. 2010, 724, 1193–1217. [Google Scholar] [CrossRef]
- Morabito, L.K.; Jackson, N.J.; Mooney, S.; Sweijen, F.; Badole, S.; Kukreti, P.; Venkattu, D.; Groeneveld, C.; Kappes, A.; Bonnassieux, E.; et al. Sub-arcsecond imaging with the International LOFAR Telescope. I. Foundational calibration strategy and pipeline. Astron. Astrophys. 2022, 658, A1. [Google Scholar] [CrossRef]
- Brienza, M.; Lovisari, L.; Rajpurohit, K.; Bonafede, A.; Gastaldello, F.; Murgia, M.; Vazza, F.; Bonnassieux, E.; Botteon, A.; Brunetti, G.; et al. The galaxy group NGC 507: Newly detected AGN remnant plasma transported by sloshing. arXiv 2022, arXiv:2201.04591. [Google Scholar] [CrossRef]
- Venturi, T.; Rossetti, M.; Bardelli, S.; Giacintucci, S.; Dallacasa, D.; Cornacchia, M.; Kantharia, N.G. Radio emission at the centre of the galaxy cluster Abell 3560: Evidence for core sloshing? Astron. Astrophys. 2013, 558, A146. [Google Scholar] [CrossRef] [Green Version]
- Slee, O.B.; Roy, A.L.; Murgia, M.; Andernach, H.; Ehle, M. Four Extreme Relic Radio Sources in Clusters of Galaxies. Astron. J. 2001, 122, 1172–1193. [Google Scholar] [CrossRef]
- Jones, C.; Nulsen, P.; Heinz, S.; Owen, F.; Eilek, J.; Vikhlinin, A.; Markevitch, M.; Kraft, R.; Churazov, E.; Forman, W. Reflections of AGN Outbursts in the Gaseous Atmosphere of M87. In Proceedings of the 35th COSPAR Scientific Assembly, Paris, France, 18–25 July 2004; Volume 35, p. 4119. [Google Scholar]
- Jetha, N.N.; Hardcastle, M.J.; Ponman, T.J.; Sakelliou, I. Shock heating in the group atmosphere of the radio galaxy B2 0838 + 32A. Mon. Not. R. Astron. Soc. 2008, 391, 1052–1062. [Google Scholar] [CrossRef] [Green Version]
- Kraft, R.P.; Vázquez, S.E.; Forman, W.R.; Jones, C.; Murray, S.S.; Hardcastle, M.J.; Worrall, D.M.; Churazov, E. X-ray Emission from the Hot Interstellar Medium and Southwest Radio Lobe of the Nearby Radio Galaxy Centaurus A. Astrophys. J. 2003, 592, 129–146. [Google Scholar] [CrossRef] [Green Version]
- Kraft, R.P.; Nulsen, P.E.J.; Birkinshaw, M.; Worrall, D.M.; Penna, R.F.; Forman, W.R.; Hardcastle, M.J.; Jones, C.; Murray, S.S. A Chandra Study of the Lobe/Interstellar Medium Interactions around the Inner Radio Lobes of Centaurus A: Constraints on the Temperature Structure and Transport Processes. Astrophys. J. 2007, 665, 1129–1137. [Google Scholar] [CrossRef] [Green Version]
- Gendron-Marsolais, M.; Hlavacek-Larrondo, J.; van Weeren, R.J.; Rudnick, L.; Clarke, T.E.; Sebastian, B.; Mroczkowski, T.; Fabian, A.C.; Blundell, K.M.; Sheldahl, E.; et al. High-resolution VLA low radio frequency observations of the Perseus cluster: Radio lobes, mini-halo, and bent-jet radio galaxies. Mon. Not. R. Astron. Soc. 2020, 499, 5791–5805. [Google Scholar] [CrossRef]
- Felten, J.E.; Rees, M.J. Cosmological Implications of the Diffuse X-ray Background. Nature 1969, 221, 924–926. [Google Scholar] [CrossRef]
- Konar, C.; Hardcastle, M.J.; Croston, J.H.; Jamrozy, M.; Hota, A.; Das, T.K. Mode of accretion in episodic radio galaxies and the dynamics of their outer relic lobes. Mon. Not. R. Astron. Soc. 2019, 486, 3975–3991. [Google Scholar] [CrossRef] [Green Version]
- Blundell, K.M.; Fabian, A.C. The X-ray and radio-emitting plasma lobes of 4C23.56: Further evidence of recurrent jet activity and high acceleration energies. Mon. Not. R. Astron. Soc. 2011, 412, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Sarazin, C.L.; Lieu, R. Extreme-Ultraviolet Emission from Clusters of Galaxies: Inverse Compton Radiation from a Relic Population of Cosmic Ray Electrons? Astrophys. J. 1998, 494, L177–L180. [Google Scholar] [CrossRef]
- Bîrzan, L.; Rafferty, D.A.; McNamara, B.R.; Wise, M.W.; Nulsen, P.E.J. A Systematic Study of Radio-induced X-ray Cavities in Clusters, Groups, and Galaxies. Astrophys. J. 2004, 607, 800–809. [Google Scholar] [CrossRef] [Green Version]
- Clarke, T.E.; Sarazin, C.L.; Blanton, E.L.; Kassim, N.E.; Neumann, D. Low Frequency Radio Observations of Interactions in Cooling Core Clusters. In Proceedings of the American Astronomical Society Meeting Abstracts; 2005; Volume 207, p. 177.05. [Google Scholar]
- Mocz, P.; Fabian, A.C.; Blundell, K.M. Inverse-Compton ghosts and double-lobed radio sources in the X-ray sky. Mon. Not. R. Astron. Soc. 2011, 413, 1107–1120. [Google Scholar] [CrossRef] [Green Version]
- McNamara, B.R.; Wise, M.W.; Nulsen, P.E.J.; David, L.P.; Carilli, C.L.; Sarazin, C.L.; O’Dea, C.P.; Houck, J.; Donahue, M.; Baum, S.; et al. Discovery of Ghost Cavities in the X-ray Atmosphere of Abell 2597. Astrophys. J. 2001, 562, L149–L152. [Google Scholar] [CrossRef]
- Fabian, A.C.; Sanders, J.S.; Ettori, S.; Taylor, G.B.; Allen, S.W.; Crawford, C.S.; Iwasawa, K.; Johnstone, R.M.; Ogle, P.M. Chandra imaging of the complex X-ray core of the Perseus cluster. Mon. Not. R. Astron. Soc. 2000, 318, L65–L68. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.J.; Shabala, S.S. RAiSE X: Searching for radio galaxies in X-ray surveys. Mon. Not. R. Astron. Soc. 2020, 493, 5181–5194. [Google Scholar] [CrossRef]
- Harris, D.E.; Willis, A.G.; Dewdney, P.E.; Batty, J. Constraints on the average magnetic field strength in a relic radio galaxy derived from limits on inverse Compton X-rays. Mon. Not. R. Astron. Soc. 1995, 273, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Jetha, N.N.; Hardcastle, M.J.; Babul, A.; O’Sullivan, E.; Ponman, T.J.; Raychaudhury, S.; Vrtilek, J. The nature of the ghost cavity in the NGC 741 group. Mon. Not. R. Astron. Soc. 2008, 384, 1344–1354. [Google Scholar] [CrossRef] [Green Version]
- Ursini, F.; Bassani, L.; Panessa, F.; Bird, A.J.; Bruni, G.; Fiocchi, M.; Malizia, A.; Saripalli, L.; Ubertini, P. Hard X-ray-selected giant radio galaxies - I. The X-ray properties and radio connection. Mon. Not. R. Astron. Soc. 2018, 481, 4250–4260. [Google Scholar] [CrossRef] [Green Version]
- Ursini, F.; Bassani, L.; Panessa, F.; Bruni, G.; Bazzano, A.; Bird, A.J.; Malizia, A.; Ubertini, P. High-energy view of hard X-ray selected radio galaxies. Mem. Della Soc. Astron. Ital. 2019, 90, 170. [Google Scholar]
- Kino, M.; Ito, H.; Kawakatu, N.; Orienti, M.; Nagai, H.; Wajima, K.; Itoh, R. Fossil shell emission in dying radio loud AGNs. Astron. Nachrichten 2016, 337, 47. [Google Scholar] [CrossRef] [Green Version]
- Best, P.N.; Kauffmann, G.; Heckman, T.M.; Brinchmann, J.; Charlot, S.; Ivezić, Ž.; White, S.D.M. The host galaxies of radio-loud active galactic nuclei: Mass dependences, gas cooling and active galactic nuclei feedback. Mon. Not. R. Astron. Soc. 2005, 362, 25–40. [Google Scholar] [CrossRef] [Green Version]
- Best, P.N.; von der Linden, A.; Kauffmann, G.; Heckman, T.M.; Kaiser, C.R. On the prevalence of radio-loud active galactic nuclei in brightest cluster galaxies: Implications for AGN heating of cooling flows. Mon. Not. R. Astron. Soc. 2007, 379, 894–908. [Google Scholar] [CrossRef] [Green Version]
- Hardcastle, M. Interpreting radiative efficiency in radio-loud AGNs. Nat. Astron. 2018, 2, 273–274. [Google Scholar] [CrossRef] [Green Version]
- Lintott, C.J.; Schawinski, K.; Keel, W.; van Arkel, H.; Bennert, N.; Edmondson, E.; Thomas, D.; Smith, D.J.B.; Herbert, P.D.; Jarvis, M.J.; et al. Galaxy Zoo: ‘Hanny’s Voorwerp’, a quasar light echo? Mon. Not. R. Astron. Soc. 2009, 399, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Schawinski, K.; Evans, D.A.; Virani, S.; Urry, C.M.; Keel, W.C.; Natarajan, P.; Lintott, C.J.; Manning, A.; Coppi, P.; Kaviraj, S.; et al. The Sudden Death of the Nearest Quasar. Astrophys. J. Lett. 2010, 724, L30–L33. [Google Scholar] [CrossRef]
- Smith, D.J.B.; Krause, M.G.; Hardcastle, M.J.; Drake, A.B. Relic jet activity in ‘Hanny’s Voorwerp’ revealed by the LOFAR two metre sky survey. Mon. Not. R. Astron. Soc. 2022, 514, 3879–3885. [Google Scholar] [CrossRef]
- Scheuer, P.A.G. Models of extragalactic radio sources with a continuous energy supply from a central object. Mon. Not. R. Astron. Soc. 1974, 166, 513–528. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.D.; Rees, M.J. A “twin-exhaust” model for double radio sources. Mon. Not. R. Astron. Soc. 1974, 169, 395–415. [Google Scholar] [CrossRef]
- Kaiser, C.R.; Alexander, P. A self-similar model for extragalactic radio sources. Mon. Not. R. Astron. Soc. 1997, 286, 215–222. [Google Scholar] [CrossRef]
- English, W.; Hardcastle, M.J.; Krause, M.G.H. Numerical modelling of the lobes of radio galaxies in cluster environments - IV. Remnant radio galaxies. Mon. Not. R. Astron. Soc. 2019, 490, 5807–5819. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.J.; Shabala, S.S. Energetics and Lifetimes of Local Radio Active Galactic Nuclei. Astrophys. J. 2015, 806, 59. [Google Scholar] [CrossRef] [Green Version]
- Hardcastle, M.J. A simulation-based analytic model of radio galaxies. Mon. Not. R. Astron. Soc. 2018, 475, 2768–2786. [Google Scholar] [CrossRef] [Green Version]
- Norman, M.L.; Winkler, K.H.A.; Smarr, L.; Smith, M.D. Structure and dynamics of supersonic jets. Astron. Astrophys. 1982, 113, 285–302. [Google Scholar]
- Williams, A.G.; Gull, S.F. Multiple hotspots in extragalactic radio sources. Nature 1985, 313, 34–36. [Google Scholar] [CrossRef]
- Cioffi, D.F.; Blondin, J.M. The Evolution of Cocoons Surrounding Light, Extragalactic Jets. Astrophys. J. 1992, 392, 458. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Krause, M.G.H. Numerical modelling of the lobes of radio galaxies in cluster environments. Mon. Not. R. Astron. Soc. 2013, 430, 174–196. [Google Scholar] [CrossRef] [Green Version]
- Bourne, M.A.; Sijacki, D. AGN jet feedback on a moving mesh: Cocoon inflation, gas flows and turbulence. Mon. Not. R. Astron. Soc. 2017, 472, 4707–4735. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, W.A. Multiple explosions and the evolution of radio galaxies. Mon. Not. R. Astron. Soc. 1973, 164, 211. [Google Scholar] [CrossRef] [Green Version]
- Clarke, D.A.; Burns, J.O. Numerical simulations of a restarting jet. Astrophys. J. 1991, 369, 308–313. [Google Scholar] [CrossRef]
- Walg, S.; Achterberg, A.; Markoff, S.; Keppens, R.; Porth, O. Relativistic AGN jets—II. Jet properties and mixing effects for episodic jet activity. Mon. Not. R. Astron. Soc. 2014, 439, 3969–3985. [Google Scholar] [CrossRef] [Green Version]
- Clarke, D.A. A Restarting Jet Revisited: MHD Computations in 3-D. In Proceedings of the Computational Astrophysics, 12th Kingston Meeting on Theoretical Astrophysics, Halifax, NS, Canada, 17–19 October 1997; Clarke, D.A., West, M.J., Eds.; Astronomical Society of the Pacific Conference Series. Astronomical Society of the Pacific: San Francisco, CA, USA, 1997; Volume 12, p. 255. [Google Scholar]
- Ito, H.; Kino, M.; Kawakatu, N.; Orienti, M. The Fate of Dead Radio-loud Active Galactic Nuclei: A New Prediction of Long-lived Shell Emission. Astrophys. J. 2015, 806, 241. [Google Scholar] [CrossRef] [Green Version]
- Morganti, R.; Killeen, N.E.B.; Ekers, R.D.; Oosterloo, T.A. Centaurus A: Multiple outbursts or bursting bubble? Mon. Not. R. Astron. Soc. 1999, 307, 750–760. [Google Scholar] [CrossRef] [Green Version]
- Bridle, A.H.; Perley, R.A. Extragalactic Radio Jets. Annu. Rev. Astron. Astrophys. 1984, 22, 319–358. [Google Scholar] [CrossRef]
- Alexander, P. Evolutionary models for radio sources from compact sources to classical doubles. Mon. Not. R. Astron. Soc. 2000, 319, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, C.S.; Begelman, M.C. Intermittant Radio Galaxies and Source Statistics. Astrophys. J. 1997, 487, L135–L138. [Google Scholar] [CrossRef] [Green Version]
- Shabala, S.S.; Ash, S.; Alexander, P.; Riley, J.M. The duty cycle of local radio galaxies. Mon. Not. R. Astron. Soc. 2008, 388, 625–637. [Google Scholar] [CrossRef] [Green Version]
- Kaviraj, S.; Shabala, S.S.; Deller, A.T.; Middelberg, E. The triggering of local AGN and their role in regulating star formation. Mon. Not. R. Astron. Soc. 2015, 452, 774–783. [Google Scholar] [CrossRef] [Green Version]
- Krause, M.G.H.; Shabala, S.S.; Hardcastle, M.J.; Bicknell, G.V.; Böhringer, H.; Chon, G.; Nawaz, M.A.; Sarzi, M.; Wagner, A.Y. How frequent are close supermassive binary black holes in powerful jet sources? Mon. Not. R. Astron. Soc. 2019, 482, 240–261. [Google Scholar] [CrossRef] [Green Version]
- Mendygral, P.J.; Jones, T.W.; Dolag, K. MHD Simulations of Active Galactic Nucleus Jets in a Dynamic Galaxy Cluster Medium. Astrophys. J. 2012, 750, 166. [Google Scholar] [CrossRef] [Green Version]
- Brüggen, M.; Kaiser, C.R. Buoyant radio plasma in clusters of galaxies. Mon. Not. R. Astron. Soc. 2001, 325, 676–684. [Google Scholar] [CrossRef] [Green Version]
- Hillel, S.; Soker, N. Gentle Heating by Mixing in Cooling Flow Clusters. Astrophys. J. 2017, 845, 91. [Google Scholar] [CrossRef] [Green Version]
- McNamara, B.R.; Russell, H.R.; Nulsen, P.E.J.; Hogan, M.T.; Fabian, A.C.; Pulido, F.; Edge, A.C. A Mechanism for Stimulating AGN Feedback by Lifting Gas in Massive Galaxies. Astrophys. J. 2016, 830, 79. [Google Scholar] [CrossRef] [Green Version]
- Hogan, M.T.; McNamara, B.R.; Pulido, F.A.; Nulsen, P.E.J.; Vantyghem, A.N.; Russell, H.R.; Edge, A.C.; Babyk, I.; Main, R.A.; McDonald, M. The Onset of Thermally Unstable Cooling from the Hot Atmospheres of Giant Galaxies in Clusters: Constraints on Feedback Models. Astrophys. J. 2017, 851, 66. [Google Scholar] [CrossRef] [Green Version]
- Yates, P.M.; Shabala, S.S.; Krause, M.G.H. Observability of intermittent radio sources in galaxy groups and clusters. Mon. Not. R. Astron. Soc. 2018, 480, 5286–5306. [Google Scholar] [CrossRef]
- Prasad, D.; Sharma, P.; Babul, A. Cool Core Cycles: Cold Gas and AGN Jet Feedback in Cluster Cores. Astrophys. J. 2015, 811, 108. [Google Scholar] [CrossRef]
- De Young, D.S. Relic radio ‘bubbles’ and cluster cooling flows. Mon. Not. R. Astron. Soc. 2003, 343, 719–724. [Google Scholar] [CrossRef] [Green Version]
- Jones, T.W.; De Young, D.S. Magnetohydrodynamic Simulations of Relic Radio Bubbles in Clusters. Astrophys. J. 2005, 624, 586–605. [Google Scholar] [CrossRef]
- Huarte-Espinosa, M.; Krause, M.; Alexander, P.; Kaiser, C.R. Dynamical and chemical effects of FR II radio sources on the intra-cluster medium. arXiv 2008, arXiv:0810.0408. [Google Scholar] [CrossRef]
- Kaiser, C.R.; Cotter, G. The death of FR II radio sources and their connection with radio relics. Mon. Not. R. Astron. Soc. 2002, 336, 649–658. [Google Scholar] [CrossRef] [Green Version]
- Enßlin, T.A.; Heinz, S. Radio and X-ray detectability of buoyant radio plasma bubbles in clusters of galaxies. Astron. Astrophys. 2002, 384, L27–L30. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A.Y.; Bicknell, G.V.; Umemura, M. Driving Outflows with Relativistic Jets and the Dependence of Active Galactic Nucleus Feedback Efficiency on Interstellar Medium Inhomogeneity. Astrophys. J. 2012, 757, 136. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bicknell, G.V.; Sutherland, R.; Wagner, A. Relativistic jet feedback in high-redshift galaxies - I. Dynamics. Mon. Not. R. Astron. Soc. 2016, 461, 967–983. [Google Scholar] [CrossRef] [Green Version]
- Laing, R.A.; Bridle, A.H. Dynamical models for jet deceleration in the radio galaxy 3C 31. Mon. Not. R. Astron. Soc. 2002, 336, 1161–1180. [Google Scholar] [CrossRef] [Green Version]
- Gaspari, M.; Ruszkowski, M.; Sharma, P. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets. Astrophys. J. 2012, 746, 94. [Google Scholar] [CrossRef] [Green Version]
- Gaspari, M.; Ruszkowski, M.; Oh, S.P. Chaotic cold accretion on to black holes. Mon. Not. R. Astron. Soc. 2013, 432, 3401–3422. [Google Scholar] [CrossRef] [Green Version]
- Janssen, R.M.J.; Röttgering, H.J.A.; Best, P.N.; Brinchmann, J. The triggering probability of radio-loud AGN. A comparison of high and low excitation radio galaxies in hosts of different colors. Astron. Astrophys. 2012, 541, A62. [Google Scholar] [CrossRef] [Green Version]
- Maccagni, F.M.; Morganti, R.; Oosterloo, T.A.; Mahony, E.K. What triggers a radio AGN? The intriguing case of PKS B1718-649. Astron. Astrophys. 2014, 571, A67. [Google Scholar] [CrossRef] [Green Version]
- Sikora, M.; Begelman, M.C. Magnetic Flux Paradigm for Radio Loudness of Active Galactic Nuclei. Astrophys. J. Lett. 2013, 764, L24. [Google Scholar] [CrossRef] [Green Version]
- Chamani, W.; Savolainen, T.; Hada, K.; Xu, M.H. Testing the magnetic flux paradigm for AGN radio loudness with a radio-intermediate quasar. Astron. Astrophys. 2021, 652, A14. [Google Scholar] [CrossRef]
- Wu, Q. The black hole mass, Eddington ratio and MBH-σ[OIII] relation in young radio galaxies. Mon. Not. R. Astron. Soc. 2009, 398, 1905–1914. [Google Scholar] [CrossRef] [Green Version]
- Gopal-Krishna; Paul, S.; Salunkhe, S.; Sonkamble, S. The radio source in Abell 980: A Detached-Double-Double Radio Galaxy? arXiv 2022, arXiv:2207.05166. [Google Scholar] [CrossRef]
- Saripalli, L.; Subrahmanyan, R. The Genesis of Morphologies in Extended Radio Sources: X-Shapes, Off-Axis Distortions, and Giant Radio Sources. Astrophys. J. 2009, 695, 156–170. [Google Scholar] [CrossRef] [Green Version]
- Joshi, R.; Krishna, G.; Yang, X.; Shi, J.; Yu, S.Y.; Wiita, P.J.; Ho, L.C.; Wu, X.B.; An, T.; Wang, R.; et al. X-shaped Radio Galaxies: Optical Properties, Large-scale Environment, and Relationship to Radio Structure. Astrophys. J. 2019, 887, 266. [Google Scholar] [CrossRef] [Green Version]
- Giri, G.; Vaidya, B.; Rossi, P.; Bodo, G.; Mukherjee, D.; Mignone, A. Modelling X-shaped Radio Galaxies: Dynamical and Emission Signatures from the Back-flow model. arXiv 2022, arXiv:2203.01347. [Google Scholar] [CrossRef]
- Lalakos, A.; Gottlieb, O.; Kaaz, N.; Chatterjee, K.; Liska, M.; Christie, I.M.; Tchekhovskoy, A.; Zhuravleva, I.; Nokhrina, E. Bridging the Bondi and Event Horizon Scales: 3D GRMHD Simulations Reveal X-shaped Radio Galaxy Morphology. Astrophys. J. Lett. 2022, 936, L5. [Google Scholar] [CrossRef]
- Cotton, W.D.; Thorat, K.; Condon, J.J.; Frank, B.S.; Józsa, G.I.G.; White, S.V.; Deane, R.; Oozeer, N.; Atemkeng, M.; Bester, L.; et al. Hydrodynamical backflow in X-shaped radio galaxy PKS 2014-55. Mon. Not. R. Astron. Soc. 2020, 495, 1271–1283. [Google Scholar] [CrossRef]
- Begelman, M.C. Radio galaxies and energetics of the intracluster medium. In Particles and Fields in Radio Galaxies; Laing, R.A., Blundell, K.M., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2001; Volume 250, p. 443. [Google Scholar]
- Sabater, J.; Best, P.N.; Hardcastle, M.J.; Shimwell, T.W.; Tasse, C.; Williams, W.L.; Brüggen, M.; Cochrane, R.K.; Croston, J.H.; de Gasperin, F.; et al. The LoTSS view of radio AGN in the local Universe. The most massive galaxies are always switched on. Astron. Astrophys. 2019, 622, A17. [Google Scholar] [CrossRef] [Green Version]
- Murthy, S.; Morganti, R.; Wagner, A.Y.; Oosterloo, T.; Guillard, P.; Mukherjee, D.; Bicknell, G. Cold gas removal from the centre of a galaxy by a low-luminosity jet. Nat. Astron. 2022, 6, 488–495. [Google Scholar] [CrossRef]
- Condon, J.J.; Matthews, A.M.; Broderick, J.J. Radio Sources in the Nearby Universe. Astrophys. J. 2019, 872, 148. [Google Scholar] [CrossRef] [Green Version]
- Pracy, M.B.; Ching, J.H.Y.; Sadler, E.M.; Croom, S.M.; Baldry, I.K.; Bland-Hawthorn, J.; Brough, S.; Brown, M.J.I.; Couch, W.J.; Davis, T.M.; et al. GAMA/WiggleZ: The 1.4 GHz radio luminosity functions of high- and low-excitation radio galaxies and their redshift evolution to z = 0.75. Mon. Not. R. Astron. Soc. 2016, 460, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Miraghaei, H.; Best, P.N. The nuclear properties and extended morphologies of powerful radio galaxies: The roles of host galaxy and environment. Mon. Not. R. Astron. Soc. 2017, 466, 4346–4363. [Google Scholar] [CrossRef] [Green Version]
- Machalski, J.; Godlowski, W. Radial density and density evolution of radio galaxies in the Las Campanas redshift survey. Astron. Astrophys. 2001, 370, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Sirothia, S.K.; Gopal-Krishna; Wiita, P.J. Discovery of Giant Relic Radio Lobes Straddling the Classical Double Radio Galaxy 3C452. Astrophys. J. Lett. 2013, 765, L11. [Google Scholar] [CrossRef]
- Waterson, M.F.; Labate, M.G.; Schnetler, H.; Wagg, J.; Turner, W.; Dewdney, P. The SKA1 LOW telescope: System architecture and design performance. In Proceedings of the Ground-Based and Airborne Telescopes VI, Edinburgh, UK, 26 June–1 July 2016; Hall, H.J., Gilmozzi, R., Marshall, H.K., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. SPIE: Bellingham, WA, USA, 2016; Volume 9906, p. 990628. [Google Scholar] [CrossRef]
- Kapinska, A.D.; Hardcastle, M.; Jackson, C.; An, T.; Baan, W.; Jarvis, M. Unravelling lifecycles and physics of radio-loud AGN in the SKA Era. In Proceedings of the Advancing Astrophysics with the Square Kilometre Array (AASKA14), Giardini Naxos, Italy, 9–13 June 2015; p. 173. [Google Scholar] [CrossRef] [Green Version]
Name | Reference |
---|---|
Remnant | |
B2 0924 + 30 | [95] |
Arp 187 | [96] |
J1615 + 5452 | [97] |
Blob1 | [98] |
Restarting | |
3C 84 | [73] |
3C 388 | [57,58,99] |
4C 29.30 | [100] |
3C 236 | [101] |
3C 293 | [102,103,104,105,106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahatma, V.H. The Dynamics and Energetics of Remnant and Restarting RLAGN. Galaxies 2023, 11, 74. https://doi.org/10.3390/galaxies11030074
Mahatma VH. The Dynamics and Energetics of Remnant and Restarting RLAGN. Galaxies. 2023; 11(3):74. https://doi.org/10.3390/galaxies11030074
Chicago/Turabian StyleMahatma, Vijay H. 2023. "The Dynamics and Energetics of Remnant and Restarting RLAGN" Galaxies 11, no. 3: 74. https://doi.org/10.3390/galaxies11030074
APA StyleMahatma, V. H. (2023). The Dynamics and Energetics of Remnant and Restarting RLAGN. Galaxies, 11(3), 74. https://doi.org/10.3390/galaxies11030074