Dense Molecular Environments of B[e] Supergiants and Yellow Hypergiants
Abstract
:1. Introduction
1.1. B[e] Supergiants
1.2. Yellow Hypergiants
1.3. Motivation and Aims
1.4. Selection of Targets
2. Observations and Data Reduction
3. Results
3.1. Description of the Spectra
3.2. Modeling of the CO Band and Pfund Line Emission
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
B[e]SG | B[e] supergiant |
NIR | Near infrared |
LMC | Large Magellanic Cloud |
SMC | Small Magellanic Cloud |
YHG | Yellow hypergiant |
1 | The sixth object is LHA 120-S 111. To our knowledge, it has been observed in the K-band only once, in January 1987 [29]. At that time, no CO band emission was detected. |
2 | We excluded two Galactic B[e]SGs from this plot. With a literature luminosity value of [74], the luminosity of HD 62623 is considerably lower than for the other B[e]SGs with CO bands. However, its distance with a parallax value of is not well constrained. The object HD 327083 turned out to be misclassified and has been removed from the B[e]SGs list (Cidale et al., in preparation). |
3 | We omit the SMC objects, because we do not have new data for any of the SMC B[e]SGs, and there are currently no confirmed YHGs in the SMC. |
4 | IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation. |
5 | Pfund line emission is also reported from LHA 120-S 12 [20], but in that star the maximum detected Pfund transition is with Pf(31) arising at 2.34 m clearly outside our spectral coverage. |
6 | https://www.unige.ch/sciences/astro/evolution/en/database/syclist/ (accessed on 1 April 2023). |
7 | We note that a higher effective temperature of K was proposed in the same period [121]. |
References
- Brandner, W.; Grebel, E.K.; Chu, Y.H.; Weis, K. Ring Nebula and Bipolar Outflows Associated with the B1.5 Supergiant Sher 25 in NGC 3603. Astrophys. J. 1997, 475, L45–L48. [Google Scholar] [CrossRef] [Green Version]
- Hendry, M.A.; Smartt, S.J.; Skillman, E.D.; Evans, C.J.; Trundle, C.; Lennon, D.J.; Crowther, P.A.; Hunter, I. The blue supergiant Sher 25 and its intriguing hourglass nebula. Mon. Not. R. Astron. Soc. 2008, 388, 1127–1142. [Google Scholar] [CrossRef] [Green Version]
- Marston, A.P.; McCollum, B. Extended shells around B[e] stars. Implications for B[e] star evolution. Astron. Astrophys. 2008, 477, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Kraus, M.; Liimets, T.; Cappa, C.E.; Cidale, L.S.; Nickeler, D.H.; Duronea, N.U.; Arias, M.L.; Gunawan, D.S.; Oksala, M.E.; Fernandes, M.B.; et al. Resolving the Circumstellar Environment of the Galactic B[e] Supergiant Star MWC 137 from Large to Small Scales. Astron. J. 2017, 154, 186. [Google Scholar] [CrossRef] [Green Version]
- Smith, N.; Arnett, W.D.; Bally, J.; Ginsburg, A.; Filippenko, A.V. The ring nebula around the blue supergiant SBW1: Pre-explosion snapshot of an SN 1987A twin. Mon. Not. R. Astron. Soc. 2013, 429, 1324–1341. [Google Scholar] [CrossRef] [Green Version]
- Oudmaijer, R.D.; de Wit, W.J. Neutral and ionised gas around the post-red supergiant IRC +10 420 at AU size scales. Astron. Astrophys. 2013, 551, A69. [Google Scholar] [CrossRef]
- Lagadec, E.; Zijlstra, A.A.; Oudmaijer, R.D.; Verhoelst, T.; Cox, N.L.J.; Szczerba, R.; Mékarnia, D.; van Winckel, H. A double detached shell around a post-red supergiant: IRAS 17163-3907, the Fried Egg nebula. Astron. Astrophys. 2011, 534, L10. [Google Scholar] [CrossRef] [Green Version]
- Weis, K. Nebulae around Luminous Blue Variables-large bipolar variety. In Active OB Stars: Structure, Evolution, Mass Loss, and Critical Limits; Proceedings of the International Astronomical Union; Neiner, C., Wade, G., Meynet, G., Peters, G., Eds.; Cambridge University Press: Cambridge, UK, 2011; IAU Symposium No. 272; pp. 372–377. [Google Scholar] [CrossRef] [Green Version]
- Liimets, T.; Kraus, M.; Moiseev, A.; Duronea, N.; Cidale, L.S.; Fariña, C. Follow-Up of Extended Shells around B[e] Stars. Galaxies 2022, 10, 41. [Google Scholar] [CrossRef]
- Chu, Y.H. Galactic ring nebulae associated with Wolf-rayet stars. I. Introduction and classification. Astrophys. J. 1981, 249, 195–200. [Google Scholar] [CrossRef]
- Marston, A.P.; Chu, Y.H.; Garcia-Segura, G. A Survey of Nebulae around Galactic Wolf-Rayet Stars in the Southern Sky. I. Astrophys. J. Suppl. 1994, 93, 229. [Google Scholar] [CrossRef]
- Marston, A.P.; Yocum, D.R.; Garcia-Segura, G.; Chu, Y.H. A Survey of Nebulae around Galactic Wolf-Rayet Stars in the Southern Sky. II. Astrophys. J. Suppl. 1994, 95, 151. [Google Scholar] [CrossRef]
- Maryeva, O.V.; Koenigsberger, G.; Karpov, S.V.; Lozinskaya, T.A.; Egorov, O.V.; Rossi, C.; Calabresi, M.; Viotti, R.F. Asymmetrical nebula of the M33 variable GR290 (WR/LBV). Astron. Astrophys. 2020, 635, A201. [Google Scholar] [CrossRef]
- Sévigny, M.; St-Louis, N.; Drissen, L.; Martin, T. New insights into the WR nebula M1-67 with SITELLE. Mon. Not. R. Astron. Soc. 2021, 501, 5350–5361. [Google Scholar] [CrossRef]
- Zickgraf, F.J.; Wolf, B.; Stahl, O.; Leitherer, C.; Appenzeller, I. B(e)-supergiants of the Magellanic Clouds. Astron. Astrophys. 1986, 163, 119–134. [Google Scholar]
- Domiciano de Souza, A.; Driebe, T.; Chesneau, O.; Hofmann, K.H.; Kraus, S.; Miroshnichenko, A.S.; Ohnaka, K.; Petrov, R.G.; Preisbisch, T.; Stee, P.; et al. AMBER/VLTI and MIDI/VLTI spectro-interferometric observations of the B[e] supergiant CPD-57°2874. Size and geometry of the circumstellar envelope in the near- and mid-IR. Astron. Astrophys. 2007, 464, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Maravelias, G.; Kraus, M.; Cidale, L.S.; Borges Fernandes, M.; Arias, M.L.; Curé, M.; Vasilopoulos, G. Resolving the kinematics of the discs around Galactic B[e] supergiants. Mon. Not. R. Astron. Soc. 2018, 480, 320–344. [Google Scholar] [CrossRef] [Green Version]
- Lamers, H.J.G.L.M.; Zickgraf, F.J.; de Winter, D.; Houziaux, L.; Zorec, J. An improved classification of B[e]-type stars. Astron. Astrophys. 1998, 340, 117–128. [Google Scholar]
- Kraus, M. A Census of B[e] Supergiants. Galaxies 2019, 7, 83. [Google Scholar] [CrossRef] [Green Version]
- Liermann, A.; Kraus, M.; Schnurr, O.; Fernandes, M.B. The 13Carbon footprint of B[e] supergiants. Mon. Not. R. Astron. Soc. 2010, 408, L6–L10. [Google Scholar] [CrossRef] [Green Version]
- Oksala, M.E.; Kraus, M.; Cidale, L.S.; Muratore, M.F.; Borges Fernandes, M. Probing the ejecta of evolved massive stars in transition. A VLT/SINFONI K-band survey. Astron. Astrophys. 2013, 558, A17. [Google Scholar] [CrossRef] [Green Version]
- Kraus, M. The pre-versus post-main sequence evolutionary phase of B[e] stars. Constraints from 13CO band emission. Astron. Astrophys. 2009, 494, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Kraus, M.; Oksala, M.E.; Cidale, L.S.; Arias, M.L.; Torres, A.F.; Borges Fernandes, M. Discovery of SiO Band Emission from Galactic B[e] Supergiants. Astrophys. J. 2015, 800, L20. [Google Scholar] [CrossRef] [Green Version]
- Kraus, M.; Cidale, L.S.; Arias, M.L.; Maravelias, G.; Nickeler, D.H.; Torres, A.F.; Borges Fernandes, M.; Aret, A.; Curé, M.; Vallverdú, R.; et al. Inhomogeneous molecular ring around the B[e] supergiant LHA 120-S 73. Astron. Astrophys. 2016, 593, A112. [Google Scholar] [CrossRef] [Green Version]
- Kraus, M.; Oksala, M.E.; Nickeler, D.H.; Muratore, M.F.; Borges Fernandes, M.; Aret, A.; Cidale, L.S.; de Wit, W.J. Molecular emission from GG Carinae’s circumbinary disk. Astron. Astrophys. 2013, 549, A28. [Google Scholar] [CrossRef] [Green Version]
- Muratore, M.F.; Kraus, M.; Oksala, M.E.; Arias, M.L.; Cidale, L.; Borges Fernandes, M.; Liermann, A. Evidence of the Evolved Nature of the B[e] Star MWC 137. Astron. J. 2015, 149, 13. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.F.; Cidale, L.S.; Kraus, M.; Arias, M.L.; Barbá, R.H.; Maravelias, G.; Borges Fernandes, M. Resolving the clumpy circumstellar environment of the B[e] supergiant LHA 120-S 35. Astron. Astrophys. 2018, 612, A113. [Google Scholar] [CrossRef] [Green Version]
- Cidale, L.S.; Borges Fernandes, M.; Andruchow, I.; Arias, M.L.; Kraus, M.; Chesneau, O.; Kanaan, S.; Curé, M.; de Wit, W.J.; Muratore, M.F. Observational constraints for the circumstellar disk of the B[e] star CPD-52 9243. Astron. Astrophys. 2012, 548, A72. [Google Scholar] [CrossRef] [Green Version]
- McGregor, P.J.; Hillier, D.J.; Hyland, A.R. CO Overtone Emission from Magellanic Cloud Supergiants. Astrophys. J. 1988, 334, 639. [Google Scholar] [CrossRef]
- McGregor, P.J.; Hyland, A.R.; Hillier, D.J. Atomic and Molecular Line Emission from Early-Type High-Luminosity Stars. Astrophys. J. 1988, 324, 1071. [Google Scholar] [CrossRef]
- Kraus, M.; Cidale, L.S.; Arias, M.L.; Oksala, M.E.; Borges Fernandes, M. Discovery of the First B[e] Supergiants in M 31. Astrophys. J. 2014, 780, L10. [Google Scholar] [CrossRef] [Green Version]
- Sholukhova, O.; Bizyaev, D.; Fabrika, S.; Sarkisyan, A.; Malanushenko, V.; Valeev, A. New luminous blue variables in the Andromeda galaxy. Mon. Not. R. Astron. Soc. 2015, 447, 2459–2467. [Google Scholar] [CrossRef] [Green Version]
- Oksala, M.E.; Kraus, M.; Arias, M.L.; Borges Fernandes, M.; Cidale, L.; Muratore, M.F.; Curé, M. The sudden appearance of CO emission in LHA 115-S 65. Mon. Not. R. Astron. Soc. 2012, 426, L56–L60. [Google Scholar] [CrossRef] [Green Version]
- Kraus, M.; Borges Fernandes, M.; de Araújo, F.X. Neutral material around the B[e] supergiant star LHA 115-S 65. An outflowing disk or a detached Keplerian rotating disk? Astron. Astrophys. 2010, 517, A30. [Google Scholar] [CrossRef]
- McGregor, P.J.; Hyland, A.R.; McGinn, M.T. Emission-line stars in the Magellanic Clouds: Infrared spectroscopy of Be and Ofpe/WN9 stars. Astron. Astrophys. 1989, 223, 237–240. [Google Scholar]
- Morris, P.W.; Eenens, P.R.J.; Hanson, M.M.; Conti, P.S.; Blum, R.D. Infrared Spectra of Massive Stars in Transition: WNL, Of, Of/WN, Be, B[e], and Luminous Blue Variable Stars. Astrophys. J. 1996, 470, 597. [Google Scholar] [CrossRef]
- Hamann, F.; Simon, M. Velocity-resolved Infrared Spectroscopy of MWC 349. Astrophys. J. 1986, 311, 909. [Google Scholar] [CrossRef]
- Kraus, M.; Arias, M.L.; Cidale, L.S.; Torres, A.F. Evidence of an evolved nature of MWC 349A. Mon. Not. R. Astron. Soc. 2020, 493, 4308–4314. [Google Scholar] [CrossRef] [Green Version]
- Zickgraf, F.J.; Wolf, B.; Stahl, O.; Humphreys, R.M. S 18: A new B(e) supergiant in the Small Magellanic Cloud with evidence for an excretion disk. Astron. Astrophys. 1989, 220, 206–214. [Google Scholar]
- Torres, A.F.; Kraus, M.; Cidale, L.S.; Barbá, R.; Borges Fernandes, M.; Brandi, E. Discovery of Raman-scattered lines in the massive luminous emission-line star LHA 115-S 18. Mon. Not. R. Astron. Soc. 2012, 427, L80–L84. [Google Scholar] [CrossRef] [Green Version]
- Oudmaijer, R.D.; Davies, B.; de Wit, W.J.; Patel, M. Post-Red Supergiants. In Proceedings of the Biggest, Baddest, Coolest Stars: Proceedings of a Workshop Held at the Millennium Centre, Johnson City, TN, USA, 16–18 July 2007; Astronomical Society of the Pacific Conference Series; Luttermoser, D.G., Smith, B.J., Stencel, R.E., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2009; Volume 412, p. 17. [Google Scholar]
- Ekström, S.; Georgy, C.; Eggenberger, P.; Meynet, G.; Mowlavi, N.; Wyttenbach, A.; Granada, A.; Decressin, T.; Hirschi, R.; Frischknecht, U.; et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014). Astron. Astrophys. 2012, 537, A146. [Google Scholar] [CrossRef] [Green Version]
- Smartt, S.J.; Eldridge, J.J.; Crockett, R.M.; Maund, J.R. The death of massive stars-I. Observational constraints on the progenitors of Type II-P supernovae. Mon. Not. R. Astron. Soc. 2009, 395, 1409–1437. [Google Scholar] [CrossRef] [Green Version]
- Smartt, S.J. Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars. Publ. Astron. Soc. Aust. 2015, 32, e016. [Google Scholar] [CrossRef] [Green Version]
- Oudmaijer, R.D.; Groenewegen, M.A.T.; Matthews, H.E.; Blommaert, J.A.D.L.; Sahu, K.C. The spectral energy distribution and mass-loss history of IRC + 10420. Mon. Not. R. Astron. Soc. 1996, 280, 1062–1070. [Google Scholar] [CrossRef] [Green Version]
- Castro-Carrizo, A.; Lucas, R.; Bujarrabal, V.; Colomer, F.; Alcolea, J. SiO emission from a huge, detached shell in IRC + 10420. Astron. Astrophys. 2001, 368, L34–L37. [Google Scholar] [CrossRef] [Green Version]
- Tiffany, C.; Humphreys, R.M.; Jones, T.J.; Davidson, K. The Morphology of IRC + 10420’s Circumstellar Ejecta. Astron. J. 2010, 140, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Deguchi, S.; Nakada, Y.; Sahai, R. SiO and CO emission from carbon stars with silicate features and southern IRAS sources. Astron. Astrophys. 1990, 230, 339–354. [Google Scholar]
- Jura, M.; Werner, M.W. The Detached Dust Shell around the Massive Star HD 179821. Astrophys. J. 1999, 525, L113–L116. [Google Scholar] [CrossRef]
- Koumpia, E.; Oudmaijer, R.D.; Graham, V.; Banyard, G.; Black, J.H.; Wichittanakom, C.; Ababakr, K.M.; de Wit, W.J.; Millour, F.; Lagadec, E.; et al. Optical and near-infrared observations of the Fried Egg Nebula. Multiple shell ejections on a 100 yr timescale from a massive yellow hypergiant. Astron. Astrophys. 2020, 635, A183. [Google Scholar] [CrossRef] [Green Version]
- Kourniotis, M.; Kraus, M.; Maryeva, O.; Borges Fernandes, M.; Maravelias, G. Revisiting the evolved hypergiants in the Magellanic Clouds. Mon. Not. R. Astron. Soc. 2022, 511, 4360–4376. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Jones, T.J.; Polomski, E.; Koppelman, M.; Helton, A.; McQuinn, K.; Gehrz, R.D.; Woodward, C.E.; Wagner, R.M.; Gordon, K.; et al. M33’s Variable A: A Hypergiant Star More Than 35 YEARS in Eruption. Astron. J. 2006, 131, 2105–2113. [Google Scholar] [CrossRef] [Green Version]
- Kourniotis, M.; Bonanos, A.Z.; Yuan, W.; Macri, L.M.; Garcia-Alvarez, D.; Lee, C.H. Monitoring luminous yellow massive stars in M 33: New yellow hypergiant candidates. Astron. Astrophys. 2017, 601, A76. [Google Scholar] [CrossRef] [Green Version]
- Nickeler, D.H.; Karlický, M. On the validity of ideal MHD in the vicinity of stagnation points in the heliosphere and other astrospheres. Astrophys. Space Sci. Trans. 2008, 4, 7–12. [Google Scholar] [CrossRef]
- Glatzel, W. On the origin of strange modes and the mechanism of related instabilities. Mon. Not. R. Astron. Soc. 1994, 271, 66. [Google Scholar] [CrossRef] [Green Version]
- Glatzel, W.; Kiriakidis, M.; Chernigovskij, S.; Fricke, K.J. The non-linear evolution of strange-mode instabilities. Mon. Not. R. Astron. Soc. 1999, 303, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Kraus, M.; Cidale, L.S.; Arias, M.L.; Torres, A.F.; Kolka, I.; Maravelias, G.; Nickeler, D.H.; Glatzel, W.; Liimets, T. Environments of evolved massive stars: Evidence for episodic mass ejections. IAU Symp. 2022, 366, 51–56. [Google Scholar] [CrossRef]
- Lobel, A.; Dupree, A.K.; Stefanik, R.P.; Torres, G.; Israelian, G.; Morrison, N.; de Jager, C.; Nieuwenhuijzen, H.; Ilyin, I.; Musaev, F. High-Resolution Spectroscopy of the Yellow Hypergiant ρ Cassiopeiae from 1993 through the Outburst of 2000–2001. Astrophys. J. 2003, 583, 923–954. [Google Scholar] [CrossRef] [Green Version]
- Klochkova, V.G.; Panchuk, V.E.; Tavolzhanskaya, N.S. Changes of the Optical Spectrum of the Hypergiant ρ Cas due to a Shell Ejection in 2013. Astron. Rep. 2018, 62, 623–635. [Google Scholar] [CrossRef] [Green Version]
- Kraus, M.; Kolka, I.; Aret, A.; Nickeler, D.H.; Maravelias, G.; Eenmäe, T.; Lobel, A.; Klochkova, V.G. A new outburst of the yellow hypergiant star ρ Cas. Mon. Not. R. Astron. Soc. 2019, 483, 3792–3809. [Google Scholar] [CrossRef]
- Maravelias, G.; Kraus, M. Bouncing against the Yellow Void-Exploring the Outbursts of rho Cassiopeiae from Visual Observations. J. Am. Assoc. Variable Star Observers 2022, 50, 49. [Google Scholar]
- Nieuwenhuijzen, H.; De Jager, C.; Kolka, I.; Israelian, G.; Lobel, A.; Zsoldos, E.; Maeder, A.; Meynet, G. The hypergiant HR 8752 evolving through the yellow evolutionary void. Astron. Astrophys. 2012, 546, A105. [Google Scholar] [CrossRef] [Green Version]
- Aret, A.; Kolka, I.; Kraus, M.; Maravelias, G. Similarities in the Structure of the Circumstellar Environments of B[e] Supergiants and Yellow Hypergiants. In Proceedings of the The B[e] Phenomenon: Forty Years of Studies, Prague, Czech Republic, 27 June–1 July 2016; Astronomical Society of the Pacific Conference Series; Miroshnichenko, A., Zharikov, S., Korčáková, D., Wolf, M., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2017; Volume 508, p. 239. [Google Scholar]
- Oudmaijer, R.D. High resolution spectroscopy of the post-red supergiant IRC+10420. I. The data. Astron. Astrophys. Suppl. Ser. 1998, 129, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Klochkova, V.G.; Yushkin, M.V.; Chentsov, E.L.; Panchuk, V.E. Evolutionary Changes in the Optical Spectrum of the Peculiar Supergiant IRC + 10420. Astron. Rep. 2002, 46, 139–151. [Google Scholar] [CrossRef]
- Schuster, M.T.; Humphreys, R.M.; Marengo, M. The Circumstellar Environments of NML Cygni and the Cool Hypergiants. Astron. J. 2006, 131, 603–611. [Google Scholar] [CrossRef]
- Gorlova, N.; Lobel, A.; Burgasser, A.J.; Rieke, G.H.; Ilyin, I.; Stauffer, J.R. On the CO Near-Infrared Band and the Line-splitting Phenomenon in the Yellow Hypergiant ρ Cassiopeiae. Astrophys. J. 2006, 651, 1130–1150. [Google Scholar] [CrossRef] [Green Version]
- Hrivnak, B.J.; Kwok, S.; Geballe, T.R. Near-Infrared Spectroscopy of Proto–Planetary Nebulae. Astrophys. J. 1994, 420, 783. [Google Scholar] [CrossRef]
- Oudmaijer, R.D.; Waters, L.B.F.M.; van der Veen, W.E.C.J.; Geballe, T.R. Near-infrared spectroscopy of post-AGB stars. Astron. Astrophys. 1995, 299, 69. [Google Scholar]
- Lambert, D.L.; Hinkle, K.H.; Hall, D.N.B. Circumstellar shells of luminous supergiants. I. Carbon monoxide in rho CAS and HR 8752. Astrophys. J. 1981, 248, 638–650. [Google Scholar] [CrossRef]
- Davies, B.; Figer, D.F.; Law, C.J.; Kudritzki, R.P.; Najarro, F.; Herrero, A.; MacKenty, J.W. The Cool Supergiant Population of the Massive Young Star Cluster RSGC1. Astrophys. J. 2008, 676, 1016–1028. [Google Scholar] [CrossRef] [Green Version]
- Kraus, M.; Arias, M.L.; Cidale, L.S.; Torres, A.F.; Kourniotis, M. Molecular environment of the yellow hypergiant star HD 269953. Bol. Asoc. Argent. Astron. Plata Argent. 2022, 63, 65–67. [Google Scholar]
- Muratore, M.F.; Kraus, M.; de Wit, W.J. Near-infrared spectroscopic survey of galactic B[e] stars. Bol. Asoc. Argent. Astron. Plata Argent. 2012, 55, 123–127. [Google Scholar]
- Millour, F.; Meilland, A.; Chesneau, O.; Stee, P.; Kanaan, S.; Petrov, R.; Mourard, D.; Kraus, S. Imaging the spinning gas and dust in the disc around the supergiant A[e] star HD 62623. Astron. Astrophys. 2011, 526, A107. [Google Scholar] [CrossRef] [Green Version]
- de Jager, C. The yellow hypergiants. Astron. Astrophys. Rev. 1998, 8, 145–180. [Google Scholar] [CrossRef]
- Eggenberger, P.; Ekström, S.; Georgy, C.; Martinet, S.; Pezzotti, C.; Nandal, D.; Meynet, G.; Buldgen, G.; Salmon, S.; Haemmerlé, L.; et al. Grids of stellar models with rotation. VI. Models from 0.8 to 120 M⊙ at a metallicity Z = 0.006. Astron. Astrophys. 2021, 652, A137. [Google Scholar] [CrossRef]
- Pietrzyński, G.; Graczyk, D.; Gallenne, A.; Gieren, W.; Thompson, I.B.; Pilecki, B.; Karczmarek, P.; Górski, M.; Suchomska, K.; Taormina, M.; et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 2019, 567, 200–203. [Google Scholar] [CrossRef] [Green Version]
- Kudritzki, R.P.; Puls, J.; Lennon, D.J.; Venn, K.A.; Reetz, J.; Najarro, F.; McCarthy, J.K.; Herrero, A. The wind momentum-luminosity relationship of galactic A- and B-supergiants. Astron. Astrophys. 1999, 350, 970–984. [Google Scholar] [CrossRef]
- Maíz Apellániz, J.; Barbá, R.H.; Fariña, C.; Sota, A.; Pantaleoni González, M.; Holgado, G.; Negueruela, I.; Simón-Díaz, S. Lucky spectroscopy, an equivalent technique to lucky imaging. II. Spatially resolved intermediate-resolution blue-violet spectroscopy of 19 close massive binaries using the William Herschel Telescope. Astron. Astrophys. 2021, 646, A11. [Google Scholar] [CrossRef]
- de Jager, C.; Nieuwenhuijzen, H. An obstacle to the late evolution of massive stars. Mon. Not. R. Astron. Soc. 1997, 290, L50–L54. [Google Scholar] [CrossRef]
- Kipper, T. Optical Spectroscopy of a Post-Agb Star HD 179821 (V1427 Aql). Balt. Astron. 2008, 17, 87–102. [Google Scholar]
- Gaia Collaboration. VizieR Online Data Catalog: Gaia EDR3 (Gaia Collaboration, 2020). VizieR Online Data Catalog 2020, I/350. [Google Scholar] [CrossRef]
- Cutri, R.M.; Skrutskie, M.F.; van Dyk, S.; Beichman, C.A.; Carpenter, J.M.; Chester, T.; Cambresy, L.; Evans, T.; Fowler, J.; Gizis, J.; et al. VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri + 2003). VizieR Online Data Catalog 2003, II/246. [Google Scholar]
- Hinkle, K.H.; Blum, R.D.; Joyce, R.R.; Sharp, N.; Ridgway, S.T.; Bouchet, P.; van der Bliek, N.S.; Najita, J.; Winge, C. The Phoenix Spectrograph at Gemini South. In Discoveries and Research Prospects from 6- to 10-Meter-Class Telescopes II; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Guhathakurta, P., Ed.; Society of Photo-Optical Instrumentation Engineers (SPIE): Bellingham, WA, USA, 2003; Volume 4834, pp. 353–363. [Google Scholar] [CrossRef]
- Elias, J.H.; Rodgers, B.; Joyce, R.R.; Lazo, M.; Doppmann, G.; Winge, C.; Rodríguez-Ardila, A. Performance of the Gemini near-infrared spectrograph. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; McLean, I.S., Iye, M., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE): Bellingham, WA, USA, 2006; Volume 6269, p. 626914. [Google Scholar] [CrossRef]
- Elias, J.H.; Joyce, R.R.; Liang, M.; Muller, G.P.; Hileman, E.A.; George, J.R. Design of the Gemini near-infrared spectrograph. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; McLean, I.S., Iye, M., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE): Bellingham, WA, USA, 2006; Volume 6269, p. 62694C. [Google Scholar] [CrossRef]
- Kraus, M.; Krügel, E.; Thum, C.; Geballe, T.R. CO band emission from MWC 349. I. First overtone bands from a disk or from a wind? Astron. Astrophys. 2000, 362, 158–168. [Google Scholar]
- Figer, D.F.; MacKenty, J.W.; Robberto, M.; Smith, K.; Najarro, F.; Kudritzki, R.P.; Herrero, A. Discovery of an Extraordinarily Massive Cluster of Red Supergiants. Astrophys. J. 2006, 643, 1166–1179. [Google Scholar] [CrossRef]
- Vandenbussche, B.; Beintema, D.; de Graauw, T.; Decin, L.; Feuchtgruber, H.; Heras, A.; Kester, D.; Lahuis, F.; Lenorzer, A.; Lorente, R.; et al. The ISO-SWS post-helium atlas of near-infrared stellar spectra. Astron. Astrophys. 2002, 390, 1033–1048. [Google Scholar] [CrossRef] [Green Version]
- Henize, K.G. Catalogues of Hα-emission Stars and Nebulae in the Magellanic Clouds. Astrophys. J. Suppl. 1956, 2, 315. [Google Scholar] [CrossRef]
- Stahl, O.; Leitherer, C.; Wolf, B.; Zickgraf, F.J. Three new hot stars with dust shells in the Magellanic clouds. Astron. Astrophys. 1984, 131, L5–L6. [Google Scholar]
- Magalhaes, A.M. Polarization and the Envelopes of B[e] Supergiants in the Magellanic Clouds. Astrophys. J. 1992, 398, 286. [Google Scholar] [CrossRef]
- Kastner, J.H.; Buchanan, C.; Sahai, R.; Forrest, W.J.; Sargent, B.A. The Dusty Circumstellar Disks of B[e] Supergiants in the Magellanic Clouds. Astron. J. 2010, 139, 1993–2002. [Google Scholar] [CrossRef]
- Aret, A.; Kraus, M.; Muratore, M.F.; Borges Fernandes, M. A new observational tracer for high-density disc-like structures around B[e] supergiants. Mon. Not. R. Astron. Soc. 2012, 423, 284–293. [Google Scholar] [CrossRef] [Green Version]
- Merrill, P.W.; Burwell, C.G. Catalogue and Bibliography of Stars of Classes B and A whose Spectra have Bright Hydrogen Lines. Astrophys. J. 1933, 78, 87. [Google Scholar] [CrossRef]
- Shore, S.N.; Sanduleak, N. The extreme LMC supergiant HD 38489: An optical and ultraviolet study. Astrophys. J. 1983, 273, 177–186. [Google Scholar] [CrossRef]
- Massey, P.; Neugent, K.F.; Morrell, N.; Hillier, D.J. A Modern Search for Wolf-Rayet Stars in the Magellanic Clouds: First Results. Astrophys. J. 2014, 788, 83. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.S.; Ou, P.S.; Chu, Y.H.; Gruendl, R.A.; Li, C.J. A Multiwavelength Survey of Wolf-Rayet Nebulae in the Large Magellanic Cloud. Astrophys. J. Suppl. 2021, 252, 21. [Google Scholar] [CrossRef]
- Oudmaijer, R.D.; Geballe, T.R.; Waters, L.B.F.M.; Sahu, K.C. Discovery of near-infrared hydrogen line emission in the peculiar F8 hypergiant IRC + 10420. Astron. Astrophys. 1994, 281, L33–L36. [Google Scholar]
- Plez, B. Turbospectrum: Code for Spectral Synthesis; record ascl:1205.004; ASCL.net, Michigan Technological University: Houghton, MI, USA, 2012. [Google Scholar]
- Talavera, A.; Gomez de Castro, A.I. The UV high resolution spectrum of A-type supergiants. Astron. Astrophys. 1987, 181, 300–314. [Google Scholar]
- Klochkova, V.G.; Chentsov, E.L. The Problem of Spectral Mimicry of Supergiants. Astron. Rep. 2018, 62, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Chentsov, E.L. Unstable Wind of 6 Cassiopeiae. Astrophys. Space Sci. 1995, 232, 217–232. [Google Scholar] [CrossRef]
- Luck, R.E. An analysis of the superluminous star HR 8752. Astrophys. J. 1975, 202, 743–754. [Google Scholar] [CrossRef]
- Smolinski, J.; Feldman, P.A.; Higgs, L.A. A search for radio emission from late-type supergiant stars. Astron. Astrophys. 1977, 60, 277–280. [Google Scholar]
- Higgs, L.A.; Feldman, P.A.; Smolinski, J. The radio source associated with the G-type supergiant HR 8752. Astrophys. J. 1978, 220, L109–L112. [Google Scholar] [CrossRef]
- Stickland, D.J.; Harmer, D.L. The discovery of a hot companion to HR 8752. Astron. Astrophys. 1978, 70, L53–L56. [Google Scholar]
- Sargent, W.L.W. Forbidden emission lines in the spectrum of a G-type supergiant. Observatory 1965, 85, 33–35. [Google Scholar]
- Aret, A.; Kraus, M.; Kolka, I.; Maravelias, G. The Yellow Hypergiant-B[e] Supergiant Connection. In Proceedings of the Stars: From Collapse to Collapse, Nizhny Arkhyz, Russia, 3–7 October 2016; Astronomical Society of the Pacific Conference Series; Balega, Y.Y., Kudryavtsev, D.O., Romanyuk, I.I., Yakunin, I.A., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2017; Volume 510, p. 162. [Google Scholar]
- Kasikov, A.; Kolka, I.; Aret, A. Following V509 Cas into the void with FIES. In Proceedings of the NOT—A Telescope for the Future, La Palma, Canary Islands, Spain, 7–10 June 2022; CERN: Geneva, Switzerland, 2022; p. 14. [Google Scholar] [CrossRef]
- van der Veen, W.E.C.J.; Habing, H.J.; Geballe, T.R. Objects in transition from the AGB to the planetary nebula stage: New visual and infrared observations. Astron. Astrophys. 1989, 226, 108–136. [Google Scholar]
- Zuckerman, B.; Dyck, H.M. Dust Grains and Gas in the Circumstellar Envelopes around Luminous Red-Giant Stars. Astrophys. J. 1986, 311, 345. [Google Scholar] [CrossRef]
- Likkel, L. OH and H2O Observations of Cold IRAS Stars. Astrophys. J. 1989, 344, 350. [Google Scholar] [CrossRef]
- Zacs, L.; Klochkova, V.G.; Panchuk, V.E.; Spelmanis, R. The chemical composition of the protoplanetary nebula candidate HD 179821. Mon. Not. R. Astron. Soc. 1996, 282, 1171–1180. [Google Scholar] [CrossRef] [Green Version]
- Reddy, B.E.; Hrivnak, B.J. Spectroscopic Study of HD 179821 (IRAS 19114 + 0002): Proto-Planetary Nebula or Supergiant? Astron. J. 1999, 117, 1834–1844. [Google Scholar] [CrossRef]
- Hrivnak, B.J.; Kwok, S.; Volk, K.M. A Study of Several F and G Supergiant-like Stars with Infrared Excesses as Candidates for Proto–Planetary Nebulae. Astrophys. J. 1989, 346, 265. [Google Scholar] [CrossRef]
- Odenwald, S.F. An IRAS Survey of Infrared Excesses in G-Type Stars. Astrophys. J. 1986, 307, 711. [Google Scholar] [CrossRef]
- Arkhipova, V.P.; Ikonnikova, N.P.; Noskova, R.I.; Sokol, G.V.; Shugarov, S.Y. Light Variations in the Candidate for Protoplanetary Objects HD 179821 = V1427 Aql in 1899–1999. Astron. Lett. 2001, 27, 156–162. [Google Scholar] [CrossRef]
- Arkhipova, V.P.; Esipov, V.F.; Ikonnikova, N.P.; Komissarova, G.V.; Tatarnikov, A.M.; Yudin, B.F. Photometric variability and evolutionary status of the supergiant with an infrared excess HD 179821 = V1427 aquilae. Astron. Lett. 2009, 35, 764–779. [Google Scholar] [CrossRef]
- Ikonnikova, N.P.; Taranova, O.G.; Arkhipova, V.P.; Komissarova, G.V.; Shenavrin, V.I.; Esipov, V.F.; Burlak, M.A.; Metlov, V.G. Multicolor Photometry and Spectroscopy of the Yellow Supergiant with Dust Envelope HD 179821 = V1427 Aquilae. Astron. Lett. 2018, 44, 457–473. [Google Scholar] [CrossRef] [Green Version]
- Şahin, T.; Lambert, D.L.; Klochkova, V.G.; Panchuk, V.E. HD 179821 (V1427 Aql, IRAS 19114 + 0002)—A massive post-red supergiant star? Mon. Not. R. Astron. Soc. 2016, 461, 4071–4087. [Google Scholar] [CrossRef] [Green Version]
- Castro-Carrizo, A.; Quintana-Lacaci, G.; Bujarrabal, V.; Neri, R.; Alcolea, J. Arcsecond-resolution 12CO mapping of the yellow hypergiants IRC + 10420 and AFGL 2343. Astron. Astrophys. 2007, 465, 457–467. [Google Scholar] [CrossRef]
- Koumpia, E.; Oudmaijer, R.D.; de Wit, W.J.; Mérand, A.; Black, J.H.; Ababakr, K.M. Tracing a decade of activity towards a yellow hypergiant. The spectral and spatial morphology of IRC + 10420 at au scales. Mon. Not. R. Astron. Soc. 2022, 515, 2766–2777. [Google Scholar] [CrossRef]
- Clark, J.S.; Negueruela, I.; González-Fernández, C. IRAS 18357-0604—An analogue of the galactic yellow hypergiant IRC + 10420? Astron. Astrophys. 2014, 561, A15. [Google Scholar] [CrossRef] [Green Version]
- Arias, M.L.; Vallverdú, R.; Torres, A.F.; Kraus, M. High-Resolution, Near-Infrared Observations of B[e] Supergiants; Boletin de la Asociacion Argentina de Astronomia: La Plata, Argentina, 2021; Volume 62, pp. 104–106. [Google Scholar]
Object | G | Ref. | d | Ref. | |||
---|---|---|---|---|---|---|---|
[mag] | [mag] | [K] | [kpc] | ||||
LHA 120-S 12 | [15] | [77] | |||||
LHA 120-S 134 | [15] | [77] | |||||
[FMR2006] 15 | [71] | [71] | |||||
6 Cas | — | [78] | [79] | ||||
V509 Cas | [63,80] | [62] a | |||||
HD 179821 | [75,81] | [81,82] |
Object | Class | Obs Date | Instrument | R | SNR | |
---|---|---|---|---|---|---|
[yyyy-mm-dd] | [m] | |||||
LHA 120-S 12 | B[e]SG | 2004-12-20 | Phoenix | 2.291–2.300 | 50,000 | 35 |
2017-11-30 | Phoenix | 2.319–2.330 | 50,000 | 20 | ||
LHA 120-S 134 | B[e]SG | 2017-11-30 | Phoenix | 2.290–2.299 | 50,000 | 40 |
2017-11-30 | Phoenix | 2.319–2.330 | 50,000 | 100 | ||
[FMR2006] 15 | YHG | 2019-05-12 | GNIRS | 2.257–2.440 | 5900 | 300 |
6 Cas | YHG | 2019-12-21 | GNIRS | 2.232–2.453 | 5100 | 100 |
V509 Cas | YHG | 2019-12-21 | GNIRS | 2.233–2.453 | 5100 | 140 |
HD 179821 | YHG | 2021-04-07 | GNIRS | 2.046–2.424 | 5900 | 250 |
Object | CO/CO | ||||
---|---|---|---|---|---|
[K] | [ cm] | [km s] | [km s] | ||
LHA 120-S 12 | |||||
LHA 120-S 134 | |||||
[FMR2006] 15 | |||||
[FMR2006] 15 | 0 |
Object | ||||||
---|---|---|---|---|---|---|
[] | [] | [km s] | [] | [cm] | [] | |
LHA 120-S 12 | 30 | 26 | 25 | |||
LHA 120-S 134 | 44 | 45 | 40 | |||
[FMR2006] 15 | 333 | 25 | 13 | — | — |
Object | Obs Date | R | CO Bands | Ref. |
---|---|---|---|---|
LHA 120-S 12 | 1985-12-28 | 450 | em | [29] |
2004-12-17 | 50,000 | em | TW | |
2009-10-14 | 4500 | em | [20,21] | |
2017-11-30 | 50,000 | em | TW | |
LHA 120-S 134 | 1985-12-29 | 450 | em | [29] |
2009-11-10 | 4500 | em | [21] | |
2017-11-30 | 50,000 | em | TW | |
[FMR2006] 15 | 2005-09-15 | 1000 | weak abs | [88] |
2006-05-05 | 17,000 | em | [71] | |
2006-08-12 | 17,000 | none | [71] | |
2019-05-12 | 5900 | em | TW | |
6 Cas | 1996-08-31 | 1800 | none | [89] |
2019-12-21 | 5100 | none | TW | |
V509 Cas | 1979-1980 | 32,000 | em + abs (variable) | [70] |
1988 | N.A. | none | [67] | |
2003-11-20 | 300 | none | [67] | |
2004-10-30 | 300 | none | [67] | |
2019-12-21 | 5100 | none | TW | |
HD 179821 | 1989-07-14 | 1600 | em | [69] |
1990-09-26 | 760 | em | [68] | |
1991-11-04 | 330 | em | [68] | |
1992 August | N.A. | none | [69] | |
1997-04-19 | 1800 | none | [89] | |
2000-10-18 | N.A. | none | [67] | |
2021-04-07 | 5900 | abs | TW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraus, M.; Kourniotis, M.; Arias, M.L.; Torres, A.F.; Nickeler, D.H. Dense Molecular Environments of B[e] Supergiants and Yellow Hypergiants. Galaxies 2023, 11, 76. https://doi.org/10.3390/galaxies11030076
Kraus M, Kourniotis M, Arias ML, Torres AF, Nickeler DH. Dense Molecular Environments of B[e] Supergiants and Yellow Hypergiants. Galaxies. 2023; 11(3):76. https://doi.org/10.3390/galaxies11030076
Chicago/Turabian StyleKraus, Michaela, Michalis Kourniotis, María Laura Arias, Andrea F. Torres, and Dieter H. Nickeler. 2023. "Dense Molecular Environments of B[e] Supergiants and Yellow Hypergiants" Galaxies 11, no. 3: 76. https://doi.org/10.3390/galaxies11030076
APA StyleKraus, M., Kourniotis, M., Arias, M. L., Torres, A. F., & Nickeler, D. H. (2023). Dense Molecular Environments of B[e] Supergiants and Yellow Hypergiants. Galaxies, 11(3), 76. https://doi.org/10.3390/galaxies11030076