What Drives the Ionized Gas Outflows in Radio-Quiet AGN?
Abstract
:1. Introduction
1.1. The Need for AGN Feedback
1.2. What Is the Difference between Radio-Loud and Radio-Quiet AGN?
1.3. Outline of the Review
2. Observational Evidence for Jets in RQ AGN
2.1. Observations of Linear Radio Structures
2.2. Evidence That the Linear Radio Structures Are Jets
- Jet-fed radio sources are expected to propagate in a self-similar way (e.g., [88,89,90,91,92,93]). When the linear radio sources are studied in detail they sometimes resemble scaled-down versions of the jets (and sometimes lobes) in RL AGN [82,86,87] (See Figure 1). The similarity to the RL AGN suggests that the linear radio sources in RQ AGN are also jets.
- Proper motions are observed in a few objects [57,83,94]. The apparent speed in units of c is Mrk 348 () and Mrk 231 () [57], NGC 7674 () [83]. NGC 3079 (initially , but then decelerating) [94]. These proper motions confirm outflow, i.e., these are jets. The proper motions are sub-relativistic confirming that the jets are non-relativistic. Caveat—the proper motions may refer to some feature, e.g., a shock or the jet working surface, which does not represent the actual jet flow. There are also subluminal upper limits on proper motion—NGC 5506 () [83], NGC 1068 () [95], and NGC 4151 ( and for different components) [96].
- 3.
- There are signs of jet interaction with the NLR (discussed further in Section 3). There is evidence that the kinematics and ionization of gas in the NLR is strongly influenced by the linear radio sources [87,94,97,98,99,100,101]. This requires the radio source to be expanding into the ambient medium. In particular, the radio source in NGC 1068 (shown in Figure 1) and the central disk/torus are associated with outflows of ionized and molecular gas (e.g., [102,103,104,105,106,107]) and an X-ray emitting wind [108,109,110,111].
2.3. Kpc-Scale Radio Structures (KSRs)
3. Evidence for Jet-Driven Outflows
3.1. Jet Interaction in the Emission Line Gas
3.2. Kinematic Disturbance to the Emission Line Gas
3.3. H I Absorption
3.4. IFU Observations of Jet-Driven Outflows
3.4.1. The Case of HE 1353-1917
3.4.2. Other Studies
4. AGN Winds
4.1. Thermal Free–Free Emission
4.2. Synchrotron Emission from the Winds
4.3. Relation to the Outflows
4.4. Observational Evidence of Wind-Driven Outflows in Mrk 1044
4.5. Other Studies
5. A Systematic Statistical IFU Study
6. Recent JWST Observations: The Case of XID 2028
7. Summary and Conclusions
- Radio-interferometric observations have detected both jets and winds in RQ AGN. The evidence for jets consists of (1) structures which are self-similar with those of sources in RL AGN, (2) proper motions in some sources, and (3) disturbances in the ambient gas due to the propagating radio sources. Jets are collimated and exhibit linear structures with cores and sometimes lobes. The radio mission due to AGN winds are expected to be extended and diffuse in VLA images; in addition, because the emission is diffuse, no compact structure should be detected in VLBA images of winds (Section 2).
- Low-power radio jets have been believed to strongly perturb ambient gas and drive outflows, as seen in different spectroscopic studies. In the nearby RQ AGN HE 1353-1917, a collimated radio jet-like structure not only spatially coincides with the multi-phase gas outflows, but also it is powerful enough to drive the outflows. However, the acceleration mechanism of the outflow is likely a two-step process in which both the radio jet and the AGN-radiation field participate (Section 3).
- The winds from AGN could propagate on the kpc scales and generate shocks which give rise to non-thermal emission. In this case, the radio continuum emission is expected to be diffuse. An example of a multi-phase outflow could be found in a AGN Mrk 1044. Multiple outflowing gas components with velocities ranging from 100–40,000 , show a great diversity in their ionization states and column densities. The outflows are contained within the central 5 pc region. Theoretical models suggest that AGN-driven winds give rise to highly ionized outflowing gas. Outflowing ionized gas clouds which are at a lower ionization state, originate from various instabilities developed on the boundaries of the shocked outflow (Section 4).
- Ionized gas outflows in local () RQ AGN are mostly spatially unresolved, and the brightest part of the ionized gas outflows have projected offsets <100 pc from the AGN. Furthermore, the unresolved and resolved (extended outflows) have very similar , suggesting that the luminous AGN may not launch large-scale outflows. Their radio properties and AGN duty cycles can affect the spatial extension of the outflows (Section 5).
- The high angular resolution and the sensitivity of JWST enable one to resolve the ionized gas outflows at cosmic noon spatially. Recent JWST/NIRSpec observation of RQ AGN XID 2028 has revealed a biconical outflow with velocities reaching about 1000 , where the AGN connects to the approaching and receding sides through edge-brightened filaments. The spatial coincidence of radio jets with the outflow could be explained by an expanding bubble and the jets creating cavities and triggering star formation on the bubble edge. On the kpc scales, the jet penetrates the bubble and escapes the host galaxy.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CDM | Lambda Cold Dark Matter |
AGN | Active Galactic Nuclei |
BLR | Broad Line Region |
CARS | Close AGN Reference Survey |
CNE | Circumnuclear Ellipse |
FWHM | Full Width to Half Maximum |
GMOS | Gemini (South) Multi-Object Spectrograph |
HST | Hubble Space Telescope |
IFU | Integral Field Unit |
IGM | Intergalactic Medium |
ISM | Interstellar Medium |
JWST | James Webb Space Telescope |
Jy | Jansky |
MERLIN | Multi-Element Radio-Linked Interferometer Network |
MUSE | Multi-Unit Spectroscopic Explorer |
NFM | Narrow Field Mode |
NIRSpec | Near-Infrared Spectrograph |
NLR | Narrow Line Region |
PSF | Point Spread Function |
RGS | Reflection Grating Spectrometer |
RL | Radio Loud |
RQ | Radio Quiet |
SDSS | Sloan Digitized Sky Survey |
SMBH | Super-Massive Black Hole |
UFO | Ultra-Fast Outflow |
UV | Ultra-violet |
VIMOS | Visible Multi Object Spectrograph |
VLA | Very Large Array |
VLBA | Very Long Baseline Array |
VLT | Very Large Telescope |
WFM | Wide Field Mode |
References
- Cattaneo, A.; Faber, S.M.; Binney, J.; Dekel, A.; Kormendy, J.; Mushotzky, R.; Babul, A.; Best, P.N.; Brüggen, M.; Fabian, A.C.; et al. The role of black holes in galaxy formation and evolution. Nature 2009, 460, 213–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, D.M.; Hickox, R.C. What drives the growth of black holes? New Astron. Rev. 2012, 56, 93–121. [Google Scholar] [CrossRef] [Green Version]
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. Annu. Rev. Astron. Astrophys. 2012, 50, 455–489. [Google Scholar] [CrossRef] [Green Version]
- McNamara, B.R.; Nulsen, P.E.J. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 2012, 14, 055023. [Google Scholar] [CrossRef] [Green Version]
- Heckman, T.M.; Best, P.N. The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe. Annu. Rev. Astron. Astrophys. 2014, 52, 589–660. [Google Scholar] [CrossRef] [Green Version]
- Heckman, T.M.; Best, P.N. A Global Inventory of Feedback. Galaxies 2023, 11, 21. [Google Scholar] [CrossRef]
- Couto, G.S.; Storchi-Bergmann, T. The Interplay between Radio AGN Activity and Their Host Galaxies. Galaxies 2023, 11, 47. [Google Scholar] [CrossRef]
- Silk, J.; Rees, M.J. Quasars and galaxy formation. Astron. Astrophys. 1998, 331, L1–L4. [Google Scholar]
- Ferrarese, L.; Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. 2000, 539, L9–L12. [Google Scholar] [CrossRef] [Green Version]
- Merritt, D.; Ferrarese, L. The M-σ Relation for Supermassive Black Holes. Astrophys. J. 2001, 547, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Magorrian, J.; Tremaine, S.; Richstone, D.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Gebhardt, K.; Green, R.; Grillmair, C.; et al. The Demography of Massive Dark Objects in Galaxy Centers. Astron. J. 1998, 115, 2285–2305. [Google Scholar] [CrossRef] [Green Version]
- Gültekin, K.; Richstone, D.O.; Gebhardt, K.; Lauer, T.R.; Tremaine, S.; Aller, M.C.; Bender, R.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; et al. The M-σ and M-L Relations in Galactic Bulges, and Determinations of Their Intrinsic Scatter. Astrophys. J. 2009, 698, 198–221. [Google Scholar] [CrossRef] [Green Version]
- Benson, A.J.; Bower, R.G.; Frenk, C.S.; Lacey, C.G.; Baugh, C.M.; Cole, S. What Shapes the Luminosity Function of Galaxies? Astrophys. J. 2003, 599, 38–49. [Google Scholar] [CrossRef]
- Croton, D.J.; Springel, V.; White, S.D.M.; De Lucia, G.; Frenk, C.S.; Gao, L.; Jenkins, A.; Kauffmann, G.; Navarro, J.F.; Yoshida, N. The many lives of active galactic nuclei: Cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 2006, 365, 11–28. [Google Scholar] [CrossRef] [Green Version]
- Bower, R.G.; Benson, A.J.; Crain, R.A. What shapes the galaxy mass function? Exploring the roles of supernova-driven winds and active galactic nuclei. Mon. Not. R. Astron. Soc. 2012, 422, 2816–2840. [Google Scholar] [CrossRef] [Green Version]
- Baum, S.A.; O’Dea, C.P. Multifrequency VLA observations of PKS 0745-191: The archetypal “cooling flow” radio source? Mon. Not. R. Astron. Soc. 1991, 250, 737. [Google Scholar] [CrossRef] [Green Version]
- McNamara, B.R.; Nulsen, P.E.J. Heating Hot Atmospheres with Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2007, 45, 117–175. [Google Scholar] [CrossRef] [Green Version]
- Gaspari, M.; Sądowski, A. Unifying the Micro and Macro Properties of AGN Feeding and Feedback. Astrophys. J. 2017, 837, 149. [Google Scholar] [CrossRef]
- Cicone, C.; Brusa, M.; Ramos Almeida, C.; Cresci, G.; Husemann, B.; Mainieri, V. The largely unconstrained multiphase nature of outflows in AGN host galaxies. Nat. Astron. 2018, 2, 176–178. [Google Scholar] [CrossRef] [Green Version]
- Singha, M.; O’Dea, C.P.; Gordon, Y.A.; Lawlor-Forsyth, C.; Baum, S.A. Ionized Gas Outflows in Low-excitation Radio Galaxies Are Radiation Driven. Astrophys. J. 2021, 918, 65. [Google Scholar] [CrossRef]
- Forman, W.; Jones, C.; Churazov, E.; Markevitch, M.; Nulsen, P.; Vikhlinin, A.; Begelman, M.; Böhringer, H.; Eilek, J.; Heinz, S.; et al. Filaments, Bubbles, and Weak Shocks in the Gaseous Atmosphere of M87. Astrophys. J. 2007, 665, 1057–1066. [Google Scholar] [CrossRef] [Green Version]
- Tombesi, F.; Cappi, M.; Reeves, J.N.; Palumbo, G.G.C.; Yaqoob, T.; Braito, V.; Dadina, M. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines. Astron. Astrophys. 2010, 521, A57. [Google Scholar] [CrossRef] [Green Version]
- Tombesi, F.; Cappi, M.; Reeves, J.N.; Palumbo, G.G.C.; Braito, V.; Dadina, M. Evidence for Ultra-fast Outflows in Radio-quiet Active Galactic Nuclei. II. Detailed Photoionization Modeling of Fe K-shell Absorption Lines. Astrophys. J. 2011, 742, 44. [Google Scholar] [CrossRef] [Green Version]
- Tombesi, F.; Cappi, M.; Reeves, J.N.; Nemmen, R.S.; Braito, V.; Gaspari, M.; Reynolds, C.S. Unification of X-ray winds in Seyfert galaxies: From ultra-fast outflows to warm absorbers. Mon. Not. R. Astron. Soc. 2013, 430, 1102–1117. [Google Scholar] [CrossRef]
- Arav, N.; Korista, K.T.; Barlow, T.A.; Begelman. Radiative acceleration of gas in quasars. Nature 1995, 376, 576–578. [Google Scholar] [CrossRef]
- Arav, N.; Borguet, B.; Chamberlain, C.; Edmonds, D.; Danforth, C. Quasar outflows and AGN feedback in the extreme UV: HST/COS observations of HE 0238-1904. Mon. Not. R. Astron. Soc. 2013, 436, 3286–3305. [Google Scholar] [CrossRef] [Green Version]
- Arav, N.; Xu, X.; Miller, T.; Kriss, G.A.; Plesha, R. HST/COS Observations of Quasar Outflows in the 500–1050 Å Rest Frame. I. The Most Energetic Outflows in the Universe and Other Discoveries. Astrophys. J. Suppl. Ser. 2020, 247, 37. [Google Scholar] [CrossRef] [Green Version]
- Harrison, C.M.; Alexander, D.M.; Mullaney, J.R.; Swinbank, A.M. Kiloparsec-scale outflows are prevalent among luminous AGN: Outflows and feedback in the context of the overall AGN population. Mon. Not. R. Astron. Soc. 2014, 441, 3306–3347. [Google Scholar] [CrossRef] [Green Version]
- McElroy, R.; Croom, S.M.; Pracy, M.; Sharp, R.; Ho, I.T.; Medling, A.M. IFU observations of luminous type II AGN—I. Evidence for ubiquitous winds. Mon. Not. R. Astron. Soc. 2015, 446, 2186–2204. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Woo, J.H. Unraveling the Complex Structure of AGN-driven Outflows. III. The Outflow Size-Luminosity Relation. Astrophys. J. 2018, 864, 124. [Google Scholar] [CrossRef]
- Aalto, S.; Garcia-Burillo, S.; Muller, S.; Winters, J.M.; van der Werf, P.; Henkel, C.; Costagliola, F.; Neri, R. Detection of HCN, HCO+, and HNC in the Mrk 231 molecular outflow. Dense molecular gas in the AGN wind. Astron. Astrophys. 2012, 537, A44. [Google Scholar] [CrossRef] [Green Version]
- Combes, F.; García-Burillo, S.; Casasola, V.; Hunt, L.; Krips, M.; Baker, A.J.; Boone, F.; Eckart, A.; Marquez, I.; Neri, R.; et al. ALMA observations of feeding and feedback in nearby Seyfert galaxies: An AGN-driven outflow in NGC 1433. Astron. Astrophys. 2013, 558, A124. [Google Scholar] [CrossRef]
- Cicone, C.; Maiolino, R.; Sturm, E.; Graciá-Carpio, J.; Feruglio, C.; Neri, R.; Aalto, S.; Davies, R.; Fiore, F.; Fischer, J.; et al. Massive molecular outflows and evidence for AGN feedback from CO observations. Astron. Astrophys. 2014, 562, A21. [Google Scholar] [CrossRef] [Green Version]
- Dall’Agnol de Oliveira, B.; Storchi-Bergmann, T.; Morganti, R.; Riffel, R.A.; Ramakrishnan, V. Cold molecular gas outflow encasing the ionized one in the Seyfert galaxy NGC 3281. Mon. Not. R. Astron. Soc. 2023, 522, 3753–3765. [Google Scholar] [CrossRef]
- Gelderman, R.; Whittle, M. An Optical Study of Compact Steep-Spectrum Radio Sources. I. The Spectroscopic Data. Astrophys. J. Suppl. Ser. 1994, 91, 491. [Google Scholar] [CrossRef]
- Labiano, A.; García-Burillo, S.; Combes, F.; Usero, A.; Soria-Ruiz, R.; Tremblay, G.; Neri, R.; Fuente, A.; Morganti, R.; Oosterloo, T. Fueling the central engine of radio galaxies. II. The footprints of AGN feedback on the ISM of 3C 236. Astron. Astrophys. 2013, 549, A58. [Google Scholar] [CrossRef]
- Mahony, E.K.; Oonk, J.B.R.; Morganti, R.; Tadhunter, C.; Bessiere, P.; Short, P.; Emonts, B.H.C.; Oosterloo, T.A. Jet-driven outflows of ionized gas in the nearby radio galaxy 3C 293. Mon. Not. R. Astron. Soc. 2016, 455, 2453–2460. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.H.; Bae, H.J.; Son, D.; Karouzos, M. The Prevalence of Gas Outflows in Type 2 AGNs. Astrophys. J. 2016, 817, 108. [Google Scholar] [CrossRef]
- Jarvis, M.E.; Harrison, C.M.; Thomson, A.P.; Circosta, C.; Mainieri, V.; Alexander, D.M.; Edge, A.C.; Lansbury, G.B.; Molyneux, S.J.; Mullaney, J.R. Prevalence of radio jets associated with galactic outflows and feedback from quasars. Mon. Not. R. Astron. Soc. 2019, 485, 2710–2730. [Google Scholar] [CrossRef] [Green Version]
- Venturi, G.; Cresci, G.; Marconi, A.; Mingozzi, M.; Nardini, E.; Carniani, S.; Mannucci, F.; Marasco, A.; Maiolino, R.; Perna, M.; et al. MAGNUM survey: Compact jets causing large turmoil in galaxies. Enhanced line widths perpendicular to radio jets as tracers of jet-ISM interaction. Astron. Astrophys. 2021, 648, A17. [Google Scholar] [CrossRef]
- Zakamska, N.L.; Greene, J.E. Quasar feedback and the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 2014, 442, 784–804. [Google Scholar] [CrossRef]
- Zakamska, N.L.; Lampayan, K.; Petric, A.; Dicken, D.; Greene, J.E.; Heckman, T.M.; Hickox, R.C.; Ho, L.C.; Krolik, J.H.; Nesvadba, N.P.H.; et al. Star formation in quasar hosts and the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 2016, 455, 4191–4211. [Google Scholar] [CrossRef] [Green Version]
- Wylezalek, D.; Zakamska, N.L.; Liu, G.; Obied, G. Towards a comprehensive picture of powerful quasars, their host galaxies and quasar winds at z ∼ 0.5. Mon. Not. R. Astron. Soc. 2016, 457, 745–763. [Google Scholar] [CrossRef] [Green Version]
- Wylezalek, D.; Zakamska, N.L.; Greene, J.E.; Riffel, R.A.; Drory, N.; Andrews, B.H.; Merloni, A.; Thomas, D. SDSS-IV MaNGA: Identification of active galactic nuclei in optical integral field unit surveys. Mon. Not. R. Astron. Soc. 2018, 474, 1499–1514. [Google Scholar] [CrossRef] [Green Version]
- Blundell, K.M.; Kuncic, Z. On the Origin of Radio Core Emission in Radio-quiet Quasars. Astrophys. J. 2007, 668, L103–L106. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.C.; Zakamska, N.L.; Alexandroff, R.M.; Hamann, F.; Greene, J.E.; Perrotta, S.; Richards, G.T. Winds as the origin of radio emission in z = 2.5 radio-quiet extremely red quasars. Mon. Not. R. Astron. Soc. 2018, 477, 830–844. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, S.B.; Crenshaw, D.M.; Hutchings, J.B.; George, I.M.; Danks, A.C.; Gull, T.R.; Kaiser, M.E.; Nelson, C.H.; Weistrop, D.; Vieira, G.L. Space Telescope Imaging Spectrograph Echelle Observations of the Seyfert Galaxy NGC 4151: Physical Conditions in the Ultraviolet Absorbers. Astrophys. J. 2001, 551, 671–686. [Google Scholar] [CrossRef]
- Kraemer, S.B.; Tombesi, F.; Bottorff, M.C. Physical Conditions in Ultra-fast Outflows in AGN. Astrophys. J. 2018, 852, 35. [Google Scholar] [CrossRef] [Green Version]
- Husemann, B.; Scharwächter, J.; Davis, T.A.; Pérez-Torres, M.; Smirnova-Pinchukova, I.; Tremblay, G.R.; Krumpe, M.; Combes, F.; Baum, S.A.; Busch, G.; et al. The Close AGN Reference Survey (CARS). A massive multi-phase outflow impacting the edge-on galaxy HE 1353-1917. Astron. Astrophys. 2019, 627, A53. [Google Scholar] [CrossRef] [Green Version]
- Girdhar, A.; Harrison, C.M.; Mainieri, V.; Bittner, A.; Costa, T.; Kharb, P.; Mukherjee, D.; Arrigoni Battaia, F.; Alexander, D.M.; Calistro Rivera, G.; et al. Quasar feedback survey: Multiphase outflows, turbulence, and evidence for feedback caused by low power radio jets inclined into the galaxy disc. Mon. Not. R. Astron. Soc. 2022, 512, 1608–1628. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Sramek, R.; Schmidt, M.; Shaffer, D.B.; Green, R. VLA Observations of Objects in the Palomar Bright Quasar Survey. Astron. J. 1989, 98, 1195. [Google Scholar] [CrossRef]
- Miller, L.; Peacock, J.A.; Mead, A.R.G. The bimodal radio luminosity function of quasars. Mon. Not. R. Astron. Soc. 1990, 244, 207–213. [Google Scholar]
- Kellermann, K.I.; Condon, J.J.; Kimball, A.E.; Perley, R.A.; Ivezić, Ž. Radio-loud and Radio-quiet QSOs. Astrophys. J. 2016, 831, 168. [Google Scholar] [CrossRef] [Green Version]
- O’Dea, C.P.; Saikia, D.J. Compact steep-spectrum and peaked-spectrum radio sources. Astron. Astrophys. Rev. 2021, 29, 3. [Google Scholar] [CrossRef]
- Blandford, R.; Meier, D.; Readhead, A. Relativistic Jets from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2019, 57, 467–509. [Google Scholar] [CrossRef] [Green Version]
- Saikia, D.J. Jets in radio galaxies and quasars: An observational perspective. J. Astrophys. Astron. 2022, 43, 97. [Google Scholar] [CrossRef]
- Ulvestad, J.S.; Wrobel, J.M.; Roy, A.L.; Wilson, A.S.; Falcke, H.; Krichbaum, T.P. Subrelativistic Radio Jets and Parsec-Scale Absorption in Two Seyfert Galaxies. Astrophys. J. 1999, 517, L81–L84. [Google Scholar] [CrossRef] [Green Version]
- Lal, D.V.; Shastri, P.; Gabuzda, D.C. Seyfert Galaxies: Nuclear Radio Structure and Unification. Astrophys. J. 2011, 731, 68. [Google Scholar] [CrossRef] [Green Version]
- Panessa, F.; Baldi, R.D.; Laor, A.; Padovani, P.; Behar, E.; McHardy, I. The origin of radio emission from radio-quiet active galactic nuclei. Nat. Astron. 2019, 3, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Padovani, P. On the two main classes of active galactic nuclei. Nat. Astron. 2017, 1, 0194. [Google Scholar] [CrossRef] [Green Version]
- Laing, R.A.; Bridle, A.H. Systematic properties of decelerating relativistic jets in low-luminosity radio galaxies. Mon. Not. R. Astron. Soc. 2014, 437, 3405–3441. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, D.; Bicknell, G.V.; Wagner, A.Y.; Sutherland, R.S.; Silk, J. Relativistic jet feedback—III. Feedback on gas discs. Mon. Not. R. Astron. Soc. 2018, 479, 5544–5566. [Google Scholar] [CrossRef]
- Massaglia, S.; Bodo, G.; Rossi, P.; Capetti, S.; Mignone, A. Making Faranoff-Riley I radio sources. II. The effects of jet magnetization. Astron. Astrophys. 2019, 621, A132. [Google Scholar] [CrossRef] [Green Version]
- Kharb, P.; Silpa, S. Looking for Signatures of AGN Feedback in Radio-Quiet AGN. Galaxies 2023, 11, 27. [Google Scholar] [CrossRef]
- Ulvestad, J.S.; Wilson, A.S. Radio structures of Seyfert galaxies. V. A flux-limited sample of Markarian galaxies. Astrophys. J. 1984, 278, 544–557. [Google Scholar] [CrossRef]
- Ulvestad, J.S.; Wilson, A.S. Radio structures of Seyfert galaxies. VI. VLA observations of a nearby sample. Astrophys. J. 1984, 285, 439–452. [Google Scholar] [CrossRef]
- Orienti, M.; Prieto, M.A. Radio structures of the nuclei of nearby Seyfert galaxies and the nature of the missing diffuse emission. Mon. Not. R. Astron. Soc. 2010, 401, 2599–2610. [Google Scholar] [CrossRef] [Green Version]
- Ulvestad, J.S.; Wilson, A.S. Radio Structures of Seyfert Galaxies. VII. Extension of a Distance-limited Sample. Astrophys. J. 1989, 343, 659. [Google Scholar] [CrossRef]
- Miller, P.; Rawlings, S.; Saunders, R. The radio and optical properties of the Z < 0.5 BQS quasars. Mon. Not. R. Astron. Soc. 1993, 263, 425–460. [Google Scholar] [CrossRef] [Green Version]
- Kukula, M.J.; Pedlar, A.; Baum, S.A.; O’Dea, C.P. High-resolution radio observations of the CfA Seyfert Sample -I. The observations. Mon. Not. R. Astron. Soc. 1995, 276, 1262–1280. [Google Scholar] [CrossRef] [Green Version]
- Morganti, R.; Tsvetanov, Z.I.; Gallimore, J.; Allen, M.G. Radio continuum morphology of southern Seyfert galaxies. Astron. Astrophys. Suppl. Ser. 1999, 137, 457–471. [Google Scholar] [CrossRef] [Green Version]
- Ulvestad, J.S.; Ho, L.C. Statistical Properties of Radio Emission from the Palomar Seyfert Galaxies. Astrophys. J. 2001, 558, 561–577. [Google Scholar] [CrossRef]
- Ho, L.C.; Ulvestad, J.S. Radio Continuum Survey of an Optically Selected Sample of Nearby Seyfert Galaxies. Astrophys. J. Suppl. Ser. 2001, 133, 77–118. [Google Scholar] [CrossRef] [Green Version]
- Thean, A.; Pedlar, A.; Kukula, M.J.; Baum, S.A.; O’Dea, C.P. High-resolution radio observations of Seyfert galaxies in the extended 12-μm sample—II. The properties of compact radio components. Mon. Not. R. Astron. Soc. 2001, 325, 737–760. [Google Scholar] [CrossRef] [Green Version]
- Thean, A.H.C.; Gillibrand, T.I.; Pedlar, A.; Kukula, M.J. MERLIN radio observations of CfA Seyferts. Mon. Not. R. Astron. Soc. 2001, 327, 369–384. [Google Scholar] [CrossRef]
- Neff, S.G.; de Bruyn, A.G. The compact radio core of MKN 348: Evidence for directed outflow in a type 2 Seyfert galaxy. Astron. Astrophys. 1983, 128, 318–324. [Google Scholar]
- Roy, A.L.; Norris, R.P.; Kesteven, M.J.; Troup, E.R.; Reynolds, J.E. Compact Radio Cores in Seyfert Galaxies. Astrophys. J. 1994, 432, 496. [Google Scholar] [CrossRef]
- Mundell, C.G.; Wilson, A.S.; Ulvestad, J.S.; Roy, A.L. Parsec-Scale Images of Flat-Spectrum Radio Sources in Seyfert Galaxies. Astrophys. J. 2000, 529, 816–831. [Google Scholar] [CrossRef] [Green Version]
- Nagar, N.M.; Falcke, H.; Wilson, A.S.; Ulvestad, J.S. Radio sources in low-luminosity active galactic nuclei. III. “AGNs“ in a distance-limited sample of “LLAGNs”. Astron. Astrophys. 2002, 392, 53–82. [Google Scholar] [CrossRef]
- Ulvestad, J.S.; Wong, D.S.; Taylor, G.B.; Gallimore, J.F.; Mundell, C.G. VLBA Identification of the Milliarcsecond Active Nucleus in the Seyfert Galaxy NGC 4151. Astron. J. 2005, 130, 936–944. [Google Scholar] [CrossRef] [Green Version]
- Kukula, M.J.; Ghosh, T.; Pedlar, A.; Schilizzi, R.T. Parsec-Scale Radio Structures in the Nuclei of Four Seyfert Galaxies. Astrophys. J. 1999, 518, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Mundell, C.G.; Wrobel, J.M.; Pedlar, A.; Gallimore, J.F. The Nuclear Regions of the Seyfert Galaxy NGC 4151: Parsec-Scale H I Absorption and a Remarkable Radio Jet. Astrophys. J. 2003, 583, 192–204. [Google Scholar] [CrossRef] [Green Version]
- Middelberg, E.; Roy, A.L.; Nagar, N.M.; Krichbaum, T.P.; Norris, R.P.; Wilson, A.S.; Falcke, H.; Colbert, E.J.M.; Witzel, A.; Fricke, K.J. Motion and properties of nuclear radio components in Seyfert galaxies seen with VLBI. Astron. Astrophys. 2004, 417, 925–944. [Google Scholar] [CrossRef] [Green Version]
- Giroletti, M.; Panessa, F. The Faintest Seyfert Radio Cores Revealed by VLBI. Astrophys. J. 2009, 706, L260–L264. [Google Scholar] [CrossRef] [Green Version]
- Xanthopoulos, E.; Thean, A.H.C.; Pedlar, A.; Richards, A.M.S. Linear radio structures in selected Seyfert galaxies. Mon. Not. R. Astron. Soc. 2010, 404, 1966–1983. [Google Scholar] [CrossRef] [Green Version]
- Gallimore, J.F.; Baum, S.A.; O’Dea, C.P.; Pedlar, A. The Subarcsecond Radio Structure in NGC 1068. I. Observations and Results. Astrophys. J. 1996, 458, 136. [Google Scholar] [CrossRef]
- Williams, D.R.A.; McHardy, I.M.; Baldi, R.D.; Beswick, R.J.; Argo, M.K.; Dullo, B.T.; Knapen, J.H.; Brinks, E.; Fenech, D.M.; Mundell, C.G.; et al. Radio jets in NGC 4151: Where eMERLIN meets HST. Mon. Not. R. Astron. Soc. 2017, 472, 3842–3853. [Google Scholar] [CrossRef] [Green Version]
- Falle, S.A.E.G. Self-similar jets. Mon. Not. R. Astron. Soc. 1991, 250, 581–596. [Google Scholar] [CrossRef]
- Begelman, M.C. Baby Cygnus A’s. In Cygnus A—Studay of a Radio Galaxy; Carilli, C.L., Harris, D.E., Eds.; Cambridge University Press: Cambridge, UK, 1996; p. 209. [Google Scholar]
- Kaiser, C.R.; Alexander, P. A self-similar model for extragalactic radio sources. Mon. Not. R. Astron. Soc. 1997, 286, 215–222. [Google Scholar] [CrossRef]
- Alexander, P. Evolutionary models for radio sources from compact sources to classical doubles. Mon. Not. R. Astron. Soc. 2000, 319, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Snellen, I.A.G.; Schilizzi, R.T.; van Langevelde, H.J. Multifrequency VLBI observations of faint gigahertz peaked spectrum sources. Mon. Not. R. Astron. Soc. 2000, 319, 429–444. [Google Scholar] [CrossRef]
- Carvalho, J.C.; O’Dea, C.P. Evolution of Global Properties of Powerful Radio Sources. I. Hydrodynamical Simulations in a Constant Density Atmosphere and Comparison with Self-similar Models. Astrophys. J. Suppl. Ser. 2002, 141, 337–370. [Google Scholar] [CrossRef] [Green Version]
- Middelberg, E.; Agudo, I.; Roy, A.L.; Krichbaum, T.P. Jet-cloud collisions in the jet of the Seyfert galaxy NGC3079. Mon. Not. R. Astron. Soc. 2007, 377, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.L.; Wilson, A.S.; Ulvestad, J.S.; Colbert, J.M. Slow jets in Seyfert Galaxies: NGC1068. In Proceedings of the 5th European VLBI Network Symposium, Onsala, Sweden, 29 June–1 July 2000; Conway, J.E., Polatidis, A.G., Booth, R.S., Pihlström, Y.M., Eds.; Chalmers Technical University: Gothenburg, Sweden, 2000; p. 7. [Google Scholar] [CrossRef]
- Ulvestad, J.S.; Roy, A.L.; Colbert, E.J.M.; Wilson, A.S. A Subparsec Radio Jet or Disk in NGC 4151. Astrophys. J. 1998, 496, 196–202. [Google Scholar] [CrossRef]
- Axon, D.J.; Marconi, A.; Capetti, A.; Macchetto, F.D.; Schreier, E.; Robinson, A. Jet-Driven Motions in the Narrow-Line Region of NGC 1068. Astrophys. J. 1998, 496, L75–L78. [Google Scholar] [CrossRef] [Green Version]
- Bicknell, G.V.; Dopita, M.A.; Tsvetanov, Z.I.; Sutherland, R.S. Are Seyfert Narrow-Line Regions Powered by Radio Jets? Astrophys. J. 1998, 495, 680–690. [Google Scholar] [CrossRef] [Green Version]
- Capetti, A.; Macchetto, F.; Axon, D.J.; Sparks, W.B.; Boksenberg, A. The Morphology of the Narrow-Line Region of Markarian 3. Astrophys. J. 1995, 448, 600. [Google Scholar] [CrossRef]
- Capetti, A.; Axon, D.J.; Macchetto, F.; Sparks, W.B.; Boksenberg, A. Radio Outflows and the Origin of the Narrow-Line Region in Seyfert Galaxies. Astrophys. J. 1996, 469, 554. [Google Scholar] [CrossRef]
- Capetti, A.; Axon, D.J.; Macchetto, F.D.; Marconi, A.; Winge, C. The Origin of the Narrow-Line Region of Markarian 3: An Overpressured Jet Cocoon. Astrophys. J. 1999, 516, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Crenshaw, D.M.; Kraemer, S.B. Resolved Spectroscopy of the Narrow-Line Region in NGC 1068: Kinematics of the Ionized Gas. Astrophys. J. 2000, 532, L101–L104. [Google Scholar] [CrossRef] [Green Version]
- García-Burillo, S.; Combes, F.; Usero, A.; Aalto, S.; Krips, M.; Viti, S.; Alonso-Herrero, A.; Hunt, L.K.; Schinnerer, E.; Baker, A.J.; et al. Molecular line emission in NGC 1068 imaged with ALMA. I. An AGN-driven outflow in the dense molecular gas. Astron. Astrophys. 2014, 567, A125. [Google Scholar] [CrossRef] [Green Version]
- Geballe, T.R.; Mason, R.E.; Oka, T. Outflowing Diffuse Gas in the Active Galactic Nucleus of NGC 1068. Astrophys. J. 2015, 812, 56. [Google Scholar] [CrossRef] [Green Version]
- Gallimore, J.F.; Elitzur, M.; Maiolino, R.; Marconi, A.; O’Dea, C.P.; Lutz, D.; Baum, S.A.; Nikutta, R.; Impellizzeri, C.M.V.; Davies, R.; et al. High-velocity Bipolar Molecular Emission from an AGN Torus. Astrophys. J. 2016, 829, L7. [Google Scholar] [CrossRef]
- May, D.; Steiner, J.E. A two-stage outflow in NGC 1068. Mon. Not. R. Astron. Soc. 2017, 469, 994–1025. [Google Scholar] [CrossRef] [Green Version]
- Impellizzeri, C.M.V.; Gallimore, J.F.; Baum, S.A.; Elitzur, M.; Davies, R.; Lutz, D.; Maiolino, R.; Marconi, A.; Nikutta, R.; O’Dea, C.P.; et al. Counter-rotation and High-velocity Outflow in the Parsec-scale Molecular Torus of NGC 1068. Astrophys. J. 2019, 884, L28. [Google Scholar] [CrossRef] [Green Version]
- Kinkhabwala, A.; Sako, M.; Behar, E.; Kahn, S.M.; Paerels, F.; Brinkman, A.C.; Kaastra, J.S.; Gu, M.F.; Liedahl, D.A. XMM-Newton Reflection Grating Spectrometer Observations of Discrete Soft X-ray Emission Features from NGC 1068. Astrophys. J. 2002, 575, 732–746. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.A.; Ogle, P.M.; Marshall, H.L.; Nowak, M.A.; Bianchi, S.; Guainazzi, M.; Longinotti, A.L.; Dewey, D.; Schulz, N.S.; Noble, M.S.; et al. Searching for AGN Outflows: Spatially Resolved Chandra HETG Spectroscopy of the NLR Ionization Cone in NGC 1068. arXiv 2010, arXiv:0910.3023. [Google Scholar]
- Kallman, T.; Evans, D.A.; Marshall, H.; Canizares, C.; Longinotti, A.; Nowak, M.; Schulz, N. A Census of X-ray Gas in NGC 1068: Results from 450 ks of Chandra High Energy Transmission Grating Observations. Astrophys. J. 2014, 780, 121. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, S.B.; Sharma, N.; Turner, T.J.; George, I.M.; Crenshaw, D.M. Physical Conditions in the X-ray Emission-line Gas in NGC 1068. Astrophys. J. 2015, 798, 53. [Google Scholar] [CrossRef] [Green Version]
- Hummel, E.; van Gorkom, J.H.; Kotanyi, C.G. Anomalous radio continuum features in edge-on spiral galaxies. Astrophys. J. 1983, 267, L5–L9. [Google Scholar] [CrossRef]
- Stone, J.L., Jr.; Wilson, A.S.; Ward, M.J. Collimated Nuclear Ejection of Radio-Emitting Plasma in the Seyfert Galaxy NGC 4388. Astrophys. J. 1988, 330, 105. [Google Scholar] [CrossRef]
- Baum, S.A.; O’Dea, C.P.; Dallacassa, D.; de Bruyn, A.G.; Pedlar, A. Kiloparsec-Scale Radio Emission in Seyfert Galaxies: Evidence for Starburst-driven Superwinds? Astrophys. J. 1993, 419, 553. [Google Scholar] [CrossRef]
- Colbert, E.J.M.; Baum, S.A.; Gallimore, J.F.; O’Dea, C.P.; Christensen, J.A. Large-Scale Outflows in Edge-on Seyfert Galaxies. II. Kiloparsec-Scale Radio Continuum Emission. Astrophys. J. 1996, 467, 551. [Google Scholar] [CrossRef] [Green Version]
- Gallimore, J.F.; Axon, D.J.; O’Dea, C.P.; Baum, S.A.; Pedlar, A. A Survey of Kiloparsec-Scale Radio Outflows in Radio-Quiet Active Galactic Nuclei. Astron. J. 2006, 132, 546–569. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Ishwara-Chandra, C.H.; Wadadekar, Y.; Beelen, A.; Kharb, P. Kiloparsec-scale radio emission in Seyfert and LINER galaxies. Mon. Not. R. Astron. Soc. 2015, 446, 599–612. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.L.; Koss, M.; Mushotzky, R.; Wong, O.I.; Shimizu, T.T.; Ricci, C.; Ricci, F. Significant Suppression of Star Formation in Radio-quiet AGN Host Galaxies with Kiloparsec-scale Radio Structures. Astrophys. J. 2020, 904, 83. [Google Scholar] [CrossRef]
- Colbert, E.J.M.; Baum, S.A.; Gallimore, J.F.; O’Dea, C.P.; Lehnert, M.D.; Tsvetanov, Z.I.; Mulchaey, J.S.; Caganoff, S. Large-Scale Outflows in Edge-on Seyfert Galaxies. I. Optical Emission-Line Imaging and Optical Spectroscopy. Astrophys. J. Suppl. Ser. 1996, 105, 75. [Google Scholar] [CrossRef] [Green Version]
- Colbert, E.J.M.; Baum, S.A.; O’Dea, C.P.; Veilleux, S. Large-Scale Outflows in Edge-on Seyfert Galaxies. III. Kiloparsec-Scale Soft X-ray Emission. Astrophys. J. 1998, 496, 786–796. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, B.; Kharb, P.; O’Dea, C.P.; Gallimore, J.F.; Baum, S.A. A radio polarimetric study to disentangle AGN activity and star formation in Seyfert galaxies. Mon. Not. R. Astron. Soc. 2020, 499, 334–354. [Google Scholar] [CrossRef]
- Gaspari, M.; Brighenti, F.; Temi, P. Mechanical AGN feedback: Controlling the thermodynamical evolution of elliptical galaxies. Mon. Not. R. Astron. Soc. 2012, 424, 190–209. [Google Scholar] [CrossRef] [Green Version]
- Bourne, M.A.; Sijacki, D. AGN jet feedback on a moving mesh: Cocoon inflation, gas flows and turbulence. Mon. Not. R. Astron. Soc. 2017, 472, 4707–4735. [Google Scholar] [CrossRef] [Green Version]
- Villar-Martín, M.; Tadhunter, C.; Morganti, R.; Axon, D.; Koekemoer, A. PKS 2250-41 and the role of jet-cloud interactions in powerful radio galaxies. Mon. Not. R. Astron. Soc. 1999, 307, 24–40. [Google Scholar] [CrossRef] [Green Version]
- Mullaney, J.R.; Alexander, D.M.; Fine, S.; Goulding, A.D.; Harrison, C.M.; Hickox, R.C. Narrow-line region gas kinematics of 24 264 optically selected AGN: The radio connection. Mon. Not. R. Astron. Soc. 2013, 433, 622–638. [Google Scholar] [CrossRef] [Green Version]
- Heckman, T.M.; Miley, G.K.; van Breugel, W.J.M.; Butcher, H.R. Emission-line profiles and kinematics of the narrow-line region in Seyfert and radio galaxies. Astrophys. J. 1981, 247, 403–418. [Google Scholar] [CrossRef]
- Whittle, M. Virial and Jet-induced Velocities in Seyfert Galaxies. II. Galaxy Rotation as Virial Parameter. Astrophys. J. 1992, 387, 109. [Google Scholar] [CrossRef]
- Blundell, K.M.; Beasley, A.J. The central engines of radio-quiet quasars. Mon. Not. R. Astron. Soc. 1998, 299, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Tadhunter, C.; Marconi, A.; Axon, D.; Wills, K.; Robinson, T.G.; Jackson, N. Spectroscopy of the near-nuclear regions of Cygnus A: Estimating the mass of the supermassive black hole. Mon. Not. R. Astron. Soc. 2003, 342, 861–875. [Google Scholar] [CrossRef] [Green Version]
- Holt, J.; Tadhunter, C.; Morganti, R.; Bellamy, M.; González Delgado, R.M.; Tzioumis, A.; Inskip, K.J. The co-evolution of the obscured quasar PKS 1549-79 and its host galaxy: Evidence for a high accretion rate and warm outflow. Mon. Not. R. Astron. Soc. 2006, 370, 1633–1650. [Google Scholar] [CrossRef]
- Holt, J.; Tadhunter, C.N.; Morganti, R. Fast outflows in compact radio sources: Evidence for AGN-induced feedback in the early stages of radio source evolution. Mon. Not. R. Astron. Soc. 2008, 387, 639–659. [Google Scholar] [CrossRef] [Green Version]
- Morganti, R.; Oosterloo, T.A.; Emonts, B.H.C.; van der Hulst, J.M.; Tadhunter, C.N. Fast Outflow of Neutral Hydrogen in the Radio Galaxy 3C 293. Astrophys. J. 2003, 593, L69–L72. [Google Scholar] [CrossRef] [Green Version]
- Morganti, R.; Tadhunter, C.N.; Oosterloo, T.A. Fast neutral outflows in powerful radio galaxies: A major source of feedback in massive galaxies. Astron. Astrophys. 2005, 444, L9–L13. [Google Scholar] [CrossRef] [Green Version]
- Oosterloo, T.A.; Morganti, R.; Tzioumis, A.; Reynolds, J.; King, E.; McCulloch, P.; Tsvetanov, Z. A Strong Jet-Cloud Interaction in the Seyfert Galaxy IC 5063: VLBI Observations. Astron. J. 2000, 119, 2085–2091. [Google Scholar] [CrossRef] [Green Version]
- Alatalo, K.; Blitz, L.; Young, L.M.; Davis, T.A.; Bureau, M.; Lopez, L.A.; Cappellari, M.; Scott, N.; Shapiro, K.L.; Crocker, A.F.; et al. Discovery of an Active Galactic Nucleus Driven Molecular Outflow in the Local Early-type Galaxy NGC 1266. Astrophys. J. 2011, 735, 88. [Google Scholar] [CrossRef] [Green Version]
- Morganti, R.; Oosterloo, T.; Raymond Oonk, J.B.; Frieswijk, W.; Tadhunter, C. The fast molecular outflow in the Seyfert galaxy IC 5063 as seen by ALMA. Astron. Astrophys. 2015, 580, A1. [Google Scholar] [CrossRef]
- Morganti, R.; Veilleux, S.; Oosterloo, T.; Teng, S.H.; Rupke, D. Another piece of the puzzle: The fast H I outflow in Mrk 231. Astron. Astrophys. 2016, 593, A30. [Google Scholar] [CrossRef]
- Cavagnolo, K.W.; McNamara, B.R.; Nulsen, P.E.J.; Carilli, C.L.; Jones, C.; Bîrzan, L. A Relationship Between AGN Jet Power and Radio Power. Astrophys. J. 2010, 720, 1066–1072. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Elvis, M. Quasar feedback: More bang for your buck. Mon. Not. R. Astron. Soc. 2010, 401, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Elmouttie, M.; Koribalski, B.; Gordon, S.; Taylor, K.; Houghton, S.; Lavezzi, T.; Haynes, R.; Jones, K. The kinematics of the ionized gas in the Circinus galaxy. Mon. Not. R. Astron. Soc. 1998, 297, 49–68. [Google Scholar] [CrossRef]
- Cecil, G.; Bland-Hawthorn, J.; Veilleux, S.; Filippenko, A.V. Jet- and Wind-driven Ionized Outflows in the Superbubble and Star-forming Disk of NGC 3079. Astrophys. J. 2001, 555, 338–355. [Google Scholar] [CrossRef]
- Hota, A.; Saikia, D.J. Radio bubbles in the composite AGN-starburst galaxy NGC6764. Mon. Not. R. Astron. Soc. 2006, 371, 945–956. [Google Scholar] [CrossRef] [Green Version]
- Mingo, B.; Hardcastle, M.J.; Croston, J.H.; Evans, D.A.; Hota, A.; Kharb, P.; Kraft, R.P. Markarian 6: Shocking the Environment of an Intermediate Seyfert. Astrophys. J. 2011, 731, 21. [Google Scholar] [CrossRef]
- Alatalo, K.; Lacy, M.; Lanz, L.; Bitsakis, T.; Appleton, P.N.; Nyland, K.; Cales, S.L.; Chang, P.; Davis, T.A.; de Zeeuw, P.T.; et al. Suppression of Star Formation in NGC 1266. Astrophys. J. 2015, 798, 31. [Google Scholar] [CrossRef] [Green Version]
- Finlez, C.; Nagar, N.M.; Storchi-Bergmann, T.; Schnorr-Müller, A.; Riffel, R.A.; Lena, D.; Mundell, C.G.; Elvis, M.S. The complex jet- and bar-perturbed kinematics in NGC 3393 as revealed with ALMA and GEMINI-GMOS/IFU. Mon. Not. R. Astron. Soc. 2018, 479, 3892–3908. [Google Scholar] [CrossRef] [Green Version]
- King, A. The AGN-Starburst Connection, Galactic Superwinds, and MBH-σ. Astrophys. J. 2005, 635, L121–L123. [Google Scholar] [CrossRef] [Green Version]
- Zubovas, K.; King, A. Clearing Out a Galaxy. Astrophys. J. 2012, 745, L34. [Google Scholar] [CrossRef] [Green Version]
- Perna, R.; Lazzati, D.; Cantiello, M. Electromagnetic Signatures of Relativistic Explosions in the Disks of Active Galactic Nuclei. Astrophys. J. 2021, 906, L7. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Momjian, E.; Zhang, Y.; An, T.; Yang, X.; Wagg, J.; Bañados, E.; Omont, A. VLBA Reveals the Absence of a Compact Radio Core in the Radio-intermediate Quasar J2242+0334 at z = 5.9. Astrophys. J. Lett. 2022, 939, L5. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Momjian, E.; Bañados, E.; Zeimann, G.; Willott, C.J.; Matsuoka, Y.; Omont, A.; Shao, Y.; Li, Q.; et al. Constraining the Quasar Radio-loud Fraction at z ∼ 6 with Deep Radio Observations. Astrophys. J. 2021, 908, 124. [Google Scholar] [CrossRef]
- Woo, J.H.; Son, D.; Bae, H.J. Delayed or No Feedback? Gas Outflows in Type 2 AGNs. III. Astrophys. J. 2017. [Google Scholar] [CrossRef]
- Rakshit, S.; Woo, J.H. A Census of Ionized Gas Outflows in Type 1 AGNs: Gas Outflows in AGNs. V. Astrophys. J. 2018, 865, 5. [Google Scholar] [CrossRef] [Green Version]
- Proga, D.; Stone, J.M.; Kallman, T.R. Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. Astrophys. J. 2000, 543, 686–696. [Google Scholar] [CrossRef] [Green Version]
- Proga, D.; Kallman, T.R. Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. II. Effects of Disk Radiation. Astrophys. J. 2004, 616, 688–695. [Google Scholar] [CrossRef] [Green Version]
- Begelman, M.C.; McKee, C.F.; Shields, G.A. Compton heated winds and coronae above accretion disks. I. Dynamics. Astrophys. J. 1983, 271, 70–88. [Google Scholar] [CrossRef]
- Yuan, F.; Narayan, R. Hot Accretion Flows Around Black Holes. Annu. Rev. Astron. Astrophys. 2014, 52, 529–588. [Google Scholar] [CrossRef]
- Faucher-Giguère, C.A.; Quataert, E. The physics of galactic winds driven by active galactic nuclei. Mon. Not. R. Astron. Soc. 2012, 425, 605–622. [Google Scholar] [CrossRef] [Green Version]
- Husemann, B.; Singha, M.; Scharwächter, J.; McElroy, R.; Neumann, J.; Smirnova-Pinchukova, I.; Urrutia, T.; Baum, S.A.; Bennert, V.N.; Combes, F.; et al. The Close AGN Reference Survey (CARS). IFU survey data and the BH mass dependence of long-term AGN variability. Astron. Astrophys. 2022, 659, A124. [Google Scholar] [CrossRef]
- Singha, M.; Husemann, B.; Urrutia, T.; O’Dea, C.P.; Scharwächter, J.; Gaspari, M.; Combes, F.; Nevin, R.; Terrazas, B.A.; Pérez-Torres, M.; et al. The Close AGN Reference Survey (CARS). Locating the [O III] wing component in luminous local Type 1 AGN. Astron. Astrophys. 2022, 659, A123. [Google Scholar] [CrossRef]
- Winkel, N.; Husemann, B.; Singha, M.; Bennert, V.N.; Combes, F.; Davis, T.A.; Gaspari, M.; Jahnke, K.; McElroy, R.; O’Dea, C.P.; et al. The Close AGN Reference Survey (CARS). A parsec-scale multi-phase outflow in the super-Eddington NLS1 Mrk 1044. Astron. Astrophys. 2023, 670, A3. [Google Scholar] [CrossRef]
- Krongold, Y.; Longinotti, A.L.; Santos-Lleó, M.; Mathur, S.; Peterson, B.M.; Nicastro, F.; Gupta, A.; Rodríguez-Pascual, P.; Elías-Chávez, M. Detection of a Multiphase Ultrafast Wind in the Narrow-line Seyfert 1 Galaxy Mrk 1044. Astrophys. J. 2021, 917, 39. [Google Scholar] [CrossRef]
- Netzer, H. The Physics and Evolution of Active Galactic Nuclei; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Longinotti, A.L.; Vega, O.; Krongold, Y.; Aretxaga, I.; Yun, M.; Chavushyan, V.; Feruglio, C.; Gómez-Ruiz, A.; Montaña, A.; León-Tavares, J.; et al. Early Science with the Large Millimeter Telescope: An Energy-driven Wind Revealed by Massive Molecular and Fast X-ray Outflows in the Seyfert Galaxy IRAS 17020+4544. Astrophys. J. Lett. 2018, 867, L11. [Google Scholar] [CrossRef]
- Liu, G.; Zakamska, N.L.; Greene, J.E.; Nesvadba, N.P.H.; Liu, X. Observations of feedback from radio-quiet quasars—I. Extents and morphologies of ionized gas nebulae. Mon. Not. R. Astron. Soc. 2013, 430, 2327–2345. [Google Scholar] [CrossRef]
- Schroetter, I.; Bouché, N.; Wendt, M.; Contini, T.; Finley, H.; Pelló, R.; Bacon, R.; Cantalupo, S.; Marino, R.A.; Richard, J.; et al. Muse Gas Flow and Wind (MEGAFLOW). I. First MUSE Results on Background Quasars. Astrophys. J. 2016, 833, 39. [Google Scholar] [CrossRef]
- Husemann, B.; Tremblay, G.; Davis, T.; Busch, G.; McElroy, R.; Neumann, J.; Urrutia, T.; Krumpe, M.; Scharwächter, J.; Powell, M.; et al. The Close AGN Reference Survey (CARS). Messenger 2017, 169, 42–47. [Google Scholar] [CrossRef]
- McElroy, R.; Singha, M.; Husemann, B.; Davis, T.A.; Combes, F.; Scharwächter, J.; Smirnova-Pinchukova, I.; Pérez Torres, M.; Gaspari, M.; Winkel, N.; et al. The Close AGN Reference Survey (CARS): Data Release 1 and Beyond. Messenger 2022, 187, 3–7. [Google Scholar] [CrossRef]
- Jakobsen, P.; Ferruit, P.; Alves de Oliveira, C.; Arribas, S.; Bagnasco, G.; Barho, R.; Beck, T.L.; Birkmann, S.; Böker, T.; Bunker, A.J.; et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 2022, 661, A80. [Google Scholar] [CrossRef]
- Cresci, G.; Tozzi, G.; Perna, M.; Brusa, M.; Marconcini, C.; Marconi, A.; Carniani, S.; Brienza, M.; Giroletti, M.; Belfiore, F.; et al. Bubbles and outflows: The novel JWST/NIRSpec view of the z = 1.59 obscured quasar XID2028. Astron. Astrophys. 2023, 672, A128. [Google Scholar] [CrossRef]
- Veilleux, S.; Shopbell, P.L.; Miller, S.T. The Biconical Outflow in the Seyfert Galaxy NGC 2992. Astron. J. 2001, 121, 198–209. [Google Scholar] [CrossRef]
- Fischer, T.C.; Crenshaw, D.M.; Kraemer, S.B.; Schmitt, H.R.; Trippe, M.L. Modeling the Outflow in the Narrow-line Region of Markarian 573: Biconical Illumination of a Gaseous Disk. Astron. J. 2010, 140, 577–583. [Google Scholar] [CrossRef]
- Krieger, N.; Bolatto, A.D.; Walter, F.; Leroy, A.K.; Zschaechner, L.K.; Meier, D.S.; Ott, J.; Weiss, A.; Mills, E.A.C.; Levy, R.C.; et al. The Molecular Outflow in NGC 253 at a Resolution of Two Parsecs. Astrophys. J. 2019, 881, 43. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.; Woo, J.H.; Chung, A.; Baek, J.; Cho, K.; Kang, D.; Bae, H.J. Positive and Negative Feedback of AGN Outflows in NGC 5728. Astrophys. J. 2019, 881, 147. [Google Scholar] [CrossRef] [Green Version]
- Perna, M.; Brusa, M.; Salvato, M.; Cresci, G.; Lanzuisi, G.; Berta, S.; Delvecchio, I.; Fiore, F.; Lutz, D.; Le Floc’h, E.; et al. SINFONI spectra of heavily obscured AGNs in COSMOS: Evidence of outflows in a MIR/O target at z ∼ 2.5. Astron. Astrophys. 2015, 583, A72. [Google Scholar] [CrossRef] [Green Version]
- Vardoulaki, E.; Jiménez Andrade, E.F.; Karim, A.; Novak, M.; Leslie, S.K.; Tisanić, K.; Smolčić, V.; Schinnerer, E.; Sargent, M.T.; Bondi, M.; et al. A closer look at the deep radio sky: Multi-component radio sources at 3 GHz VLA-COSMOS. Astron. Astrophys. 2019, 627, A142. [Google Scholar] [CrossRef] [Green Version]
- Gaibler, V.; Khochfar, S.; Krause, M.; Silk, J. Jet-induced star formation in gas-rich galaxies. Mon. Not. R. Astron. Soc. 2012, 425, 438–449. [Google Scholar] [CrossRef] [Green Version]
- Veilleux, S.; Liu, W.; Vayner, A.; Wylezalek, D.; Rupke, D.S.N.; Zakamska, N.L.; Ishikawa, Y.; Bertemes, C.; Barrera-Ballesteros, J.K.; Chen, H.W.; et al. First results from the JWST Early Release Science Program Q3D: The Warm Ionized Gas Outflow in z ∼ 1.6 Quasar XID 2028 and its Impact on the Host Galaxy. arXiv 2023, arXiv:2303.08952. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singha, M.; O’Dea, C.P.; Baum, S.A. What Drives the Ionized Gas Outflows in Radio-Quiet AGN? Galaxies 2023, 11, 85. https://doi.org/10.3390/galaxies11040085
Singha M, O’Dea CP, Baum SA. What Drives the Ionized Gas Outflows in Radio-Quiet AGN? Galaxies. 2023; 11(4):85. https://doi.org/10.3390/galaxies11040085
Chicago/Turabian StyleSingha, Mainak, Christopher P. O’Dea, and Stefi A. Baum. 2023. "What Drives the Ionized Gas Outflows in Radio-Quiet AGN?" Galaxies 11, no. 4: 85. https://doi.org/10.3390/galaxies11040085
APA StyleSingha, M., O’Dea, C. P., & Baum, S. A. (2023). What Drives the Ionized Gas Outflows in Radio-Quiet AGN? Galaxies, 11(4), 85. https://doi.org/10.3390/galaxies11040085