A Comprehensive Study of Soft X-ray Absorption Features in GX 13+1 Using XMM-Newton Observations
Abstract
:1. Introduction
2. The Source GX 13+1 and Its Spectral Characteristics
3. Materials and Methods
- (1)
- comparing derived NH (hydrogen column density) with galactic NH obtained via H1 observation [32],
- (2)
- comparing values of the equivalent width of the nearby observations [33],
- (3)
- comparing the derived temperature with the previously established temperature of ISM [33],
- (4)
- (5)
- (6)
- measuring the distance at which the absorption has taken place [34].
3.1. Observation
3.2. Data Reduction
3.3. Pile-Up
3.4. Timing Analysis
3.5. Model Fitting
4. Results and Discussion
4.1. Light Curve, Hardness Ratio, and Dip
Obs. ID | Element/Ion | Transition | Eqwidth ×10−14 (cm) | WL ×10−8 (cm) | Oscillator Strength (Verner et al. 1996 [45]) | Ni ×1016 (cm−2) | NH ×1022 (cm−2) | KBT (keV) | KBT (106K) |
---|---|---|---|---|---|---|---|---|---|
122340101(C) | Si XIII | 1s2-1s2p | 8.45 | 6.6480 | 7.57× 10−1 | 0.003 | 4.18 | 0.606742 | 7.04 |
505480501(F) | Si XIII | 1s2-1s3p | 26.9 | 5.6807 | 1.52 × 10−1 | 0.06 | 3.46 | 10.6483 | 123.52 |
505480101(A) | Mg XII | 1s-6p | 25.1 | 6.4975 | 2.60 × 10−3 | 2.6 | 4.05 | 0.557765 | 6.47 |
802820201(L) | Al XIII | 1s-4p | 8.18 | 5.7396 | 9.67 × 10−3 | 0.29 | 4.18 | 0.528863 | 6.13 |
4.2. Spectral Analysis
5. Conclusions
- The occurrence of a dip in LMXB is not a regular phenomenon. For this source, a dip was reported for the first time by Trigo et al. (2012) in the year 2012 [20]. We detected one further dip in the light curve of the off-axis observation 0122340701(B), which further proves that the source inclination is moderately high.
- No burst or eclipse was observed in any of the light curves.
- In most of the cases, our best-fit values of NH agree with those reported previously [20,23,30,33]. On average, the NH values obtained in this study are slightly higher than those of the 21 cm HI estimates, probably because the X-ray above 25 Å take into account the contribution from HI and HII [14]. The higher value of NH also suggests the presence of additional absorption [26].
- Since the equivalent widths in some of the cases are very similar, the derived values of NH are close to the value of HI for this source [32,33], and the ionic density calculated is also close to the values previously reported, which implies that the absorptions may be caused by ISM [33], as proposed by Veda et al. (2005) [12] in their work.
- We significantly detected the 1s2-1s2p (2.02 keV) and 1s2-1s3p (2.24 keV) transitions of Si XIII, the 1s-6p (1.91 keV) transitions of Mg XII, and the 1s-4p (2.15 keV) transitions of Al XIII, of which the 1s-6p (1.91 keV) transitions of Mg XII and the 1s-4p (2.15 keV) transitions of Al XIII were not reported either in any analysis of the XMM-Newton data nor in the Chandra observations.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NSLMXB | Neutron Star Low Mass X-ray Binary |
RGS | Reflection Grating Spectrometer |
EPIC-PN | European Photon Imaging Camera-PN |
HEG and MEG | High Energy Grating and Medium Energy Grating Arms |
HETGS | High Energy Transmission Grating Spectrometer |
ISM | Interstellar Medium |
LOS | Line of Sight |
Tbabs | Tuibingen–Boulder ISM absorption model |
References
- Boirin, L.; Méndez, M.; Trigo, M.D.; Parmar, A.N.; Kaastra, J.S. A highly-ionized absorber in the X-ray binary 4U 1323-62: A new explanation for the dipping phenomenon. Astron. Astrophys. 2005, 436, 195–208. [Google Scholar] [CrossRef]
- D’Aí, A.; Iaria, R.; Di Salvo, T.; Lavagetto, G.; Robba, N.R. A Complex Environment around Circinus X-1. Astrophys. J. 2007, 671, 2006. [Google Scholar] [CrossRef]
- Lee, J.C.; Reynolds, C.S.; Remillard, R.; Schulz, N.S.; Blackman, E.G.; Fabian, A.C. High-resolution Chandra HETGS and Rossi X-Ray Timing Explorer observations of GRS 1915+ 105: A hot disk atmosphere and cold gas enriched in iron and silicon. Astrophys. J. 2002, 567, 1102. [Google Scholar] [CrossRef]
- Miller, J.M.; Homan, J.; Miniutti, G. A Prominent Accretion Disk in the Low-Hard State of the Black Hole Candidate SWIFT J1753. 5–0127. Astrophys. J. 2006, 652, L113. [Google Scholar] [CrossRef]
- Parmar, A.N.; Oosterbroek, T.; Boirin, L.; Lumb, D. Discovery of narrow X-ray absorption features from the dipping low-mass X-ray binary X 1624-490 with XMM-Newton. Astron. Astrophys. 2002, 386, 910–915. [Google Scholar] [CrossRef]
- Ueda, Y.; Murakami, H.; Yamaoka, K.; Dotani, T.; Ebisawa, K. Chandra high-resolution spectroscopy of the absorption-line features in the low-mass X-ray binary GX 13+1. Astrophys. J. 2004, 609, 325. [Google Scholar] [CrossRef]
- Church, M.J.; Reed, D.; Dotani, T.; Bałucińska-Church, M.; Smale, A.P. Discovery of absorption features of the accretion disc corona and systematic acceleration of the X-ray burst rate in XB 1323-619. Mon. Not. R. Astron. Soc. 2005, 359, 1336–1344. [Google Scholar] [CrossRef]
- Sidoli, L.; Belloni, T.; Mereghetti, S. A catalogue of soft X-ray sources in the galactic center region. Astron. Astrophys. 2001, 368, 835–844. [Google Scholar] [CrossRef]
- Rodes-Roca, J.J.; Torrejon, J.M.; Martínez-Nuñez, S.; Giménez-García, A.; Bernabéu, G. Discussing the physical meaning of the absorption feature at 2.1 keV in 4U 1538–52. Astron. Nachrichten 2014, 335, 804–811. [Google Scholar] [CrossRef]
- Futamoto, K.; Mitsuda, K.; Takei, Y.; Fujimoto, R.; Yamasaki, N.Y. Detection of Highly Ionized O and Ne Absorption Lines in the X-Ray Spectrum of 4U 1820–303 in the Globular Cluster NGC 6624. Astrophys. J. 2004, 605, 793. [Google Scholar] [CrossRef]
- Juett, A.M.; Schulz, N.S.; Chakrabarty, D.; Gorczyca, T.W. High-resolution X-ray spectroscopy of the interstellar medium. II. Neon and iron absorption edges. Astrophys. J. 2006, 648, 1066. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, Q.D. X-Ray absorption line spectroscopy of the galactic hot interstellar medium. Astrophys. J. 2005, 624, 751. [Google Scholar] [CrossRef]
- Gatuzz, E.; Gorczyca, T.W.; Hasoglu, M.F.; Schulz, N.S.; Corrales, L.; Mendoza, C. Silicon ISM X-ray absorption: The gaseous component. Mon. Not. R. Astron. Soc. Lett. 2020, 498, L20–L24. [Google Scholar] [CrossRef]
- Pinto, C.; Kaastra, J.S.; Costantini, E.; Verbunt, F. High-resolution X-ray spectroscopy of the interstellar medium-XMM-Newton observation of the LMXB GS 1826–238. Astron. Astrophys. 2010, 521, A79. [Google Scholar] [CrossRef]
- Liu, Q.Z.; Van Paradijs, J.; Van Den Heuvel EP, J. A catalogue of low-mass X-ray binaries in the Galaxy, LMC, and SMC. Astron. Astrophys. 2007, 469, 807–810. [Google Scholar] [CrossRef]
- Fleischman, J.R. Detection of a new X-ray burst source. Astron. Astrophys. 1985, 153, 106–108. [Google Scholar]
- Matsuba, E.; Dotani, T.; Mitsuda, K.; Asai, K.; Lewin, W.H.; van Paradijs, J.; van der Klis, M. Discovery of X-ray bursts from GX 13+1 (4U 1811-17). Publ. Astron. Soc. Jpn. 1995, 47, 575–580. [Google Scholar]
- Bandyopadhyay, R.M.; Charles, P.A.; Shahbaz, T.; Wagner, R.M. Infrared photometric variability of GX 13+1 and GX 17+ 2. Astrophys. J. 2002, 570, 793. [Google Scholar] [CrossRef]
- Bandyopadhyay, R.M.; Shahbaz, T.; Charles, P.A.; Naylor, T. Infrared spectroscopy of low-mass X-ray binaries—II. Mon. Not. R. Astron. Soc. 1999, 306, 417–426. [Google Scholar] [CrossRef]
- Trigo, M.D.; Sidoli, L.; Boirin, L.; Parmar, A.N. XMM-Newton observations of GX 13+1: Correlation between photoionised absorption and broad line emission. Astron. Astrophys. 2012, 543, A50. [Google Scholar] [CrossRef]
- Hasinger, G.; Van der Klis, M. Two patterns of correlated X-ray timing and spectral behaviour in low-mass X-ray binaries. Astron. Astrophys. 1989, 225, 79–96. [Google Scholar]
- Homan, J.; van der Klis, M.; Wijnands, R.; Vaughan, B.; Kuulkers, E. Discovery of a 57–69 HZ Quasi-periodic Oscillation in GX 13+1. Astrophys. J. 1998, 499, L41. [Google Scholar] [CrossRef]
- Schulz, N.S.; Hasinger, G.; Trümper, J. Spectral classification of low-mass X-ray binary (LMXB) energy spectra with color-color diagrams. Astron. Astrophys. 1989, 225, 48–68. [Google Scholar]
- Christian, D.J.; Swank, J.H. The survey of low-mass X-ray binaries with the Einstein observatory solid-state spectrometer and monitor proportional counter. Astrophys. J. Suppl. Ser. 1997, 109, 177. [Google Scholar] [CrossRef]
- Iaria, R.; Di Salvo, T.; Burderi, L.; Riggio, A.; D’Aì, A.; Robba, N.R. Discovery of periodic dips in the light curve of GX 13+1: The X-ray orbital ephemeris of the source. Astron. Astrophys. 2014, 561, A99. [Google Scholar] [CrossRef]
- Sidoli, L.; Parmar, A.N.; Oosterbroek, T.; Lumb, D. Discovery of complex narrow X–ray absorption features from the low-mass X–ray binary GX 13+1 with XMM-Newton. Astron. Astrophys. 2002, 385, 940–946. [Google Scholar] [CrossRef]
- Sidoli, L.; Parmar, A.N.; Oosterbroek, T.; Boirin, L. Recent XMM-Newton results on iron absorption lines in low mass X-ray binaries. In Proceedings of the Frontier Objects in Astrophysics and Particle Physics, Vulcano Workshop 2008, Vulcano, Italy, 20–25 May 2002; p. 341. [Google Scholar]
- Maiolino, T.; Laurent, P.; Titarchuk, L.; Orlandini, M.A.U.R.O.; Frontera, F. Red-skewed Kα iron lines in GX 13+1. Astron. Astrophys. 2019, 625, A8. [Google Scholar] [CrossRef]
- Ueda, Y.; Mitsuda, K.; Murakami, H.; Matsushita, K. Study of the galactic interstellar medium from high-resolution X-ray spectroscopy: X-ray absorption fine structure and abundances of O, Mg, Si, S, and Fe. Astrophys. J. 2005, 620, 274. [Google Scholar] [CrossRef]
- D’Aì, A.; Iaria, R.; Di Salvo, T.; Riggio, A.; Burderi, L.; Robba, N.R. Chandra X-ray spectroscopy of a clear dip in GX 13+1. Astron. Astrophys. 2014, 564, A62. [Google Scholar] [CrossRef]
- Allen, J.L.; Schulz, N.S.; Homan, J.; Neilsen, J.; Nowak, M.A.; Chakrabarty, D. The Disk Wind in the Neutron Star Low-mass X-Ray Binary GX 13+1. Astrophys. J. 2018, 861, 26. [Google Scholar] [CrossRef]
- de Vries, C.P.; Den Herder, J.W.; Kaastra, J.S.; Paerels, F.B.; Den Boggende, A.J.; Rasmussen, A.P. The interstellar oxygen-K absorption edge as observed by XMM-Newton-Separation of instrumental and interstellar components. Astron. Astrophys. 2003, 404, 959–967. [Google Scholar] [CrossRef]
- Cackett, E.M.; Miller, J.M.; Bhattacharyya, S.; Grindlay, J.E.; Homan, J.; Van Der Klis, M.; Miller, M.C.; Strohmayer, T.E.; Wijnands, R. Relativistic iron emission lines in neutron star low-mass X-ray binaries as probes of neutron star radii. Astrophys. J. 2008, 674, 415. [Google Scholar] [CrossRef]
- Sidoli, L.; Oosterbroek, T.; Parmar, A.N.; Lumb, D.; Erd, C. An XMM-Newton study of the X-ray binary MXB 1659-298 and the discovery of narrow X-ray absorption lines. Astron. Astrophys. 2001, 379, 540–550. [Google Scholar] [CrossRef]
- Den Herder, J.W.; Brinkman, A.C.; Kahn, S.M.; Branduardi-Raymont, G.; Thomsen, K.; Aarts, H.; Audard, M.; Bixler, J.V.; den Boggende, A.J.; Cottam, J.; et al. The reflection grating spectrometer on board XMM-Newton. Astron. Astrophys. 2001, 365, L7–L17. [Google Scholar] [CrossRef]
- Mason, K.O.; Breeveld, A.; Much, R.; Carter, M.; Cordova, F.A.; Cropper, M.S.; Fordham, J.; Huckle, H.; Ho, C.; Kawakami, H.; et al. The XMM-Newton optical/UV monitor telescope. Astron. Astrophys. 2001, 365, L36–L44. [Google Scholar] [CrossRef]
- Trigo, M.D.; Parmar, A.N.; Boirin, L.; Méndez, M.; Kaastra, J.S. Spectral changes during dipping in low-mass X-ray binaries due to highly-ionized absorbers. Astron. Astrophys. 2006, 445, 179–195. [Google Scholar] [CrossRef]
- Turner, M.J.; Abbey, A.; Arnaud, M.; Balasini, M.; Barbera, M.; Belsole, E.; Bennie, P.J.; Bernard, J.P.; Bignami, G.F.; Boer, M.; et al. The European photon imaging camera on XMM-Newton: The MOS cameras. Astron. Astrophys. 2001, 365, L27–L35. [Google Scholar] [CrossRef]
- Jansen, F.; Lumb, D.; Altieri, B.; Clavel, J.; Ehle, M.; Erd, C.; Erd, C.; Gabriel, C.; Guainazzi, M.; Gondoin, P.; et al. XMM-Newton observatory-I. The spacecraft and operations. Astron. Astrophys. 2001, 365, L1–L6. [Google Scholar] [CrossRef]
- Cash, W. Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 1979, 228, 939–947. [Google Scholar] [CrossRef]
- Arnaud, K.A. XSPEC: The first ten years. In Astronomical Data Analysis Software and Systems V; ASP Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 1996; Volume 101, p. 17. [Google Scholar]
- Strüder, L.; Briel, U.; Dennerl, K.; Hartmann, R.; Kendziorra, E.; Meidinger, N.; Pfeffermann, E.; Reppin, C.; Aschenbach, B.; Bornemann, W.; et al. The European photon imaging camera on XMM-Newton: The pn-CCD camera. Astron. Astrophys. 2001, 365, L18–L26. [Google Scholar] [CrossRef]
- FFender, R.P.; Hendry, M.A. The radio luminosity of persistent X-ray binaries. Mon. Not. R. Astron. Soc. 2000, 317, 1–8. [Google Scholar] [CrossRef]
- Spitzer, L. Physical Processes in the Interstellar Medium, 1st ed.; Wiley: Hoboken, NJ, USA, 1978. [Google Scholar]
- Verner, D.A.; Ferland, G.J.; Korista, K.T.; Yakovlev, D.G. Atomic data for astrophysics. II. New analytic fits for photoionization cross sections of atoms and ions. arXiv 1996, arXiv:9601009. [Google Scholar] [CrossRef]
- Pandey, J.C.; Karmakar, S. An X-ray flare from 47 Cas. Astron. J. 2015, 149, 47. [Google Scholar] [CrossRef]
- Muñoz-Darias, T.; Fender, R.P.; Motta, S.E.; Belloni, T.M. Black hole-like hysteresis and accretion states in neutron star low-mass X-ray binaries. Mon. Not. R. Astron. Soc. 2014, 443, 3270–3283. [Google Scholar] [CrossRef]
- Wilms, J.; Allen, A.; McCray, R. On the absorption of X-rays in the interstellar medium. Astrophys. J. 2000, 542, 914. [Google Scholar] [CrossRef]
- Pinto, C.; Kaastra, J.S.; Costantini, E.; De Vries, C. Interstellar medium composition through X-ray spectroscopy of low-mass X-ray binaries. Astron. Astrophys. 2013, 551, A25. [Google Scholar] [CrossRef]
- Cabot, S.H.; Wang, Q.D.; Yao, Y. XMM–Newton/Reflection Grating Spectrometer detection of the missing interstellar O vii Kα absorption line in the spectrum of Cyg X-2. Mon. Not. R. Astron. Soc. 2013, 431, 511–519. [Google Scholar] [CrossRef]
- Hohle, M.M.; Haberl, F.; Vink, J.; de Vries, C.P.; Neuhäuser, R. Narrow absorption features in the co-added XMM–Newton RGS spectra of isolated neutron stars. Mon. Not. R. Astron. Soc. 2012, 419, 1525–1536. [Google Scholar] [CrossRef]
XMM-Newton Observations | ||||||
---|---|---|---|---|---|---|
Sl No | Data Used (XMM-Newton) Observation ID | Absorption Line | Energy (keV) | Camera | Location of Absorption Lines/Edge | Reference |
1 | 0122340101 | H-like Ca XX Kα lines H and He-like Fe XXV Kα and Fe XXV Kβ lines, Fe XXVI Kα and Fe XXVI Kβ lines | 4.15, 6.73, 7.00, 7.85, and 8.26 | European Photon Imaging Camera-PN (EPIC-PN) | Absorbing plasma near the central source | Sidoli et al. (2002) [26] |
0122340901 | ||||||
0122341001 | ||||||
2 | 0122340101 | H and He-like Fe XXV Kα and Fe XXV Kβ lines, Fe XXVI Kα and Fe XXVI Kβ lines | 6.7, 7.00, and 8.83 | EPIC-PN | Absorbing material close to the primary source. | Sidoli et al. (2003) [27] |
0122340901 | ||||||
0122341001 | ||||||
3 | 0122340101 | Kα and Kβ lines of Fe XXV and Fe XXVI Weak absorption lines of Si XIII, Si XIV, S XV and S XVI Ca XX | 6.53 to 8.34 and 1.8, 2.0, 2.5, 2.62, and 4.2 | EPIC-PN and RGS | Accretion disk | Trigo et al. (2012) [20] |
0122340901 | ||||||
0122341001 | ||||||
0505480101 | ||||||
0505480701 | ||||||
0505480201 | ||||||
0505480501 | ||||||
0505480301 | ||||||
0505480401 | ||||||
4 | 0505480101 | Kα and Kβ He-like Fe XXV line Kα and Kβ H-like Fe XXVI line | 6.7, 7.0, and 7.8 | EPIC-PN | Accretion disk | Maiolino et al. (2019) [28] |
0505480201 | Kα He-like line Fe XXV |
Chandra Observations | ||||||
---|---|---|---|---|---|---|
Sl. No | Data Used (Chandra) Observation ID | Lines Detected | Energy (Kev) | Camera Used | Location/Cause of Absorption Lines | Reference |
1 | 2708 | Si K edge XAFS | 1.846 and 1.865 | High and Medium Grating arms (HEG and MEG) | ISM | Veda et al. (2005) [29] |
S K edge XAFS | 2.474 and 2.490 | |||||
Mg K edge | 1.307 | |||||
Fe | - | |||||
2 | 11814 | Mg XII 1S-2P | 1.474 | HEG and MEG | XAFS and ISM | D‘Ai et al. (2014) [30] |
Al XIII 1S-2P | 1.727 | |||||
Mg XII 1S-3P | 1.745 | |||||
Si XIV 1S-2P | 2.007 | |||||
S XVI 1S-2P | 2.623 | |||||
Ca XX 1S-2P | 4.118 | |||||
Fe XXV 1S2-1S2P | 6.706 | |||||
Fe XXVI 1S-2P | 6.978 | |||||
Fe XXVI 1S-3P | 8.273 | |||||
3 | 2708 | Kα lines from | ---- | HEG and MEG | Disk Wind | Allen et al. (2018) [31] |
11814 11815 | Fe XXVI, | |||||
11816 | Fe XXV, | |||||
11817 | Ca XX, S XVI, | |||||
11818 | Si XIV, Mg XII and | |||||
13197 | Ar XVIII | |||||
4 | --- | Si I, Si II, Si III, | --- | High energy transmission grating spectrometer (HETGS) | ISM | Gatuzz et al. (2020) [13] |
Si XII and Si XIII |
Obs.No. | Obs. ID * | On-axis/ Off-axis | Exposure Date | Exposure Duration RGS1 (Sec) | Effective Exposure RGS1 (Sec) | Net Count Rate (Counts/Sec) |
---|---|---|---|---|---|---|
1 | 122340101(C) | ON-AXIS | 30 March 2000 | 10,005 | 9694 | 1.810 ± 0.015 |
2 | 122340501(J) | OFF-AXIS | 30 March 2000 | 20,603 | 20,130 | 2.172 ± 0.014 |
3 | 122340601(O) | OFF-AXIS | 1 April 2000 | 43,707 | 42,710 | 0.932 ± 0.004 |
4 | 122340901(G) | ON-AXIS | 8 April 2000 | 12,209 | 11,850 | 2.221 ± 0.015 |
5 | 122341001(E) | ON-AXIS | 1 April 2000 | 8607 | 8368 | 1.924 ± 0.017 |
6 | 122340701(B) | OFF-AXIS | 3 April 2000 | 40,612 | 39,710 | 1.312 ± 0.007 |
7 | 122340201(D) | OFF-AXIS | 9 April 2000 | 23,619 | 22,970 | 2.824 ± 0.011 |
8 | 122340401(Q) | OFF-AXIS | 11 April 2000 | 23,620 | 23,060 | 2.497 ± 0.010 |
9 | 505480101(A) | ON-AXIS | 9 March 2008 | 18,581 | 18,470 | 2.250 ± 0.012 |
10 | 505480201(H) | ON-AXIS | 11 March 2008 | 13,689 | 13,600 | 2.276 ± 0.014 |
11 | 505480701(P) | ON-AXIS | 11 March 2008 | 13,918 | 13,800 | 2.267 ± 0.014 |
12 | 505480301(N) | ON-AXIS | 22 March 2008 | 16,615 | 16,520 | 2.013 ± 0.012 |
13 | 505480501(F) | ON-AXIS | 25 March 2008 | 13,143 | 13,060 | 1.666 ± 0.012 |
14 | 505480401(M) | ON-AXIS | 5 September 2008 | 16,813 | 16,720 | 1.836 ± 0.115 |
15 | 802820201(L) | ON-AXIS | 8 April 2017 | 62,838 | 62,650 | 1.935 ± 0.061 |
Model | Abbreviation | Free Parameter | Unit |
---|---|---|---|
Tuebingen–Boulder ISM Absorption Model | Tbabs | NH | ×1022 cm−2 |
Blackbody Spectrum, area normalised | bbodyrad | kT | keV |
norm(K) | Normalization K = , where Rkm is the source radius in km and D10 is the distance to the source in units of 10 kpc. | ||
Powerlaw | powerlaw (pow) | PhoIndex (α) | photon index of power law (dimensionless) |
norm (K) | photons/keV/cm2/s at 1 keV | ||
Gaussian | gauss | LineE | E, line energy in keV |
Sigma | σ, line width in keV | ||
norm | K, total photons/cm2/s in the line |
Component | Parameter | Unit | Obs. Id 122340101 (C) | Obs. Id 122340901 (G) | Obs. Id 122341001 (E) | Obs. Id 505480101 (A) | Obs. Id 505480201 (H) | Obs. Id 505480501 (F) | Obs. Id 802820201 (L) |
---|---|---|---|---|---|---|---|---|---|
Tbabs | NH | ×1022 atoms cm−2 | 2.48 ± 0.62 | ||||||
bbodyrad | kTbb | keV | |||||||
norm | X | ||||||||
powerlaw | Γ | 7.53 # | |||||||
norm | ph/keV/cm2/s at 1 keV | ||||||||
Gaussian1 | LineE | keV | 1.88 ± 0.01 | 1.91 ± 0.01 | 2.04 ± 0.01 | ||||
Element | Si XIII | Si XIII | Mg XII | Mg XII | Al XIII | Si XIII | Outside the spectra range | ||
Sigma (σ) | keV | ** | 0.011 ± 0.01 | ** | |||||
EW | eV | −72.7 ± 0.03 | |||||||
Gaussian2 | LineE | keV | X | X | X | X | |||
Element | X | X | X | X | X | Al XIII | |||
Sigma (σ) | keV | X | X | X | X | ||||
EW | keV | X | X | X | X | X | −10.17 ± 0.004 | ||
Luminosity | erg per sec | 3.3 × 1037 | 3.2 × 1037 | 3.2 × 1037 | 2.99 × 1037 | 2.57 × 1037 | 2.73 × 1037 | 2.88 × 1037 | |
c-stat/d.o.f | 437/429 | 642/534 | 562/536 | 538/475 | 589/510 | 541/518 | 714/489 |
Obs. ID. | LineE (keV) | EqWidth | Observed WL(Å) | Theoretical WL(Å) | Element/ Ion | Transition | Reference |
---|---|---|---|---|---|---|---|
122340101(C) | 6.153 | 6.6480 | Si XIII | 1s2-1s2p | Trigo et al. (2012) [20] | ||
505480501(F) | −33.48 ± 11.3 | 5.650 | 5.6807 | Si XIII | 1s2-1s3p | Trigo et al. (2012) [20] | |
505480101(A) | 1.91 ± 0.01 | −3.12 ± 2.2 | 6.507 | 6.4974 | Mg XII | 1s-6p | Reported in this study |
802820201(L) | −10.17 ± 0.004 | 5.781 | 5.7396 | Al XIII | 1s-4p | Reported in this study |
Component | Parameter | Unit | Obs. ID. 505480701(P) | Obs. ID. 505480401(M) |
---|---|---|---|---|
Tbabs | NH | ×1022 atoms cm−2 | ||
bbodyrad | kTbb | keV | ||
norm | ||||
powerlaw | Γ | |||
norm | ph/keV/cm2/s at 1 keV | |||
Gaussian1 | LineE | keV | X | |
Element | X | X | ||
Sigma (σ) | keV | X | ||
EW | eV | |||
Gaussian2 | LineE | keV | X | 2.07 ± 0.02 |
Element | X | X | ||
Sigma (σ) | keV | X | ||
EW | keV | X | X | |
Luminosity | erg per sec | 2.46 × 1037 | 2.62 × 1037 | |
C-stat/d.o.f | 485/481 | 574/514 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahato, R.; Baruah, M. A Comprehensive Study of Soft X-ray Absorption Features in GX 13+1 Using XMM-Newton Observations. Galaxies 2023, 11, 106. https://doi.org/10.3390/galaxies11050106
Mahato R, Baruah M. A Comprehensive Study of Soft X-ray Absorption Features in GX 13+1 Using XMM-Newton Observations. Galaxies. 2023; 11(5):106. https://doi.org/10.3390/galaxies11050106
Chicago/Turabian StyleMahato, Rabindra, and Monmoyuri Baruah. 2023. "A Comprehensive Study of Soft X-ray Absorption Features in GX 13+1 Using XMM-Newton Observations" Galaxies 11, no. 5: 106. https://doi.org/10.3390/galaxies11050106
APA StyleMahato, R., & Baruah, M. (2023). A Comprehensive Study of Soft X-ray Absorption Features in GX 13+1 Using XMM-Newton Observations. Galaxies, 11(5), 106. https://doi.org/10.3390/galaxies11050106