A Close Binary Supermassive Black Hole Model for the Galaxy 3C 273
Abstract
:1. Introduction
2. Observations and Data Processing
3. Results
4. Discussion
5. Conclusions
- A method for calculating the parameters of the orbits of close binary SMBHs using only multi-frequency monitoring data in the radio range was considered. The long-term multi-frequency monitoring data used covered 60 years.
- The physical parameters of close binary SMBHs included the masses of SMBH companions, the kinematic and dynamic parameters of their orbits, the kinetic energy of the system, and the lifetime before merging.
- The data of harmonic analysis in the radio and optical ranges corresponded to each other, which made it possible to perform the necessary studies of objects based only on radio data when the optical counterparts of the AGN were not visible. This made it possible to significantly expand the range of sources under study.
- An estimate was made of the size of the accretion disk of the SMBH system, which became common for both SMBHs at the stage of evolution close to the merger.
- Estimates of the level of GW coming from 3C 273 show that 3C 273 can currently be the most powerful GW emitter, along with 3C 454.3. Due to the closer distance compared with 3C 454.3, it provides the highest level of GW flux density on the Earth’s surface.
- Like two other blazars, namely, 3C 454.3 and OJ 287, 3C 273 is a short-lived source with a lifetime of one hundred thousand years.
- According to the obtained physical characteristics, 3C 273 is the most promising source for determining the gravitational waves coming from it using International Pulsar Timing Array gravitational wave detectors.
- Using this method, identifying changes in the orbits of 3C 273 companions due to GW radiation is not yet possible, because these changes are far beyond the possibility of their experimental determination.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sillanpaa, A.; Takalo, L.O.; Pursimo, T.; Lehto, H.J.; Nilsson, K.; Teerikorpi, P. Confirmation of the 12-year optical outburst cycle in blazar OJ 287. Astron. Astrophys. 1996, 305, 17–20. [Google Scholar]
- Peters, P.C. Gravitational radiation and the motion of two point masses. Phys. Rev. 1964, 136, B1224–B1232. [Google Scholar] [CrossRef]
- Turner, M. Gravitational radiation from point-masses in unbound orbits: Newtonian results. Astrophys. J. 1977, 216, 610–619. [Google Scholar] [CrossRef]
- Fernandez, J.J.; Kobayashi, S. Black hole mergers induced by tidal encounters with a galactic centre black hole. MNRAS 2019, 487, 1200–1209. [Google Scholar] [CrossRef]
- Soldi, S.; Türler, M.; Paltani, S.; Aller, H.D.; Aller, M.F.; Burki, G.; Chernyakova, M.; Lähteenmäki, A.; McHardy, I.M.; Robson, E.I.; et al. The multiwavelength variability of 3C 273. Astron. Astrophys. 2008, 486, 411–425. [Google Scholar] [CrossRef]
- Smith, H.J.; Hoffleit, D. Light Variations in the Superluminous Radio Galaxy 3C273. Nature 1963, 198, 650–651. [Google Scholar] [CrossRef]
- Jurkevich, I. On the Light Variation of the Quasar 3c 273. Astrophys. J. 1972, 172, 29–33. [Google Scholar] [CrossRef]
- Abraham, Z.; Romero, G.E. Beaming and precession in the inner jet of 3C 273. Astron. Astrophys. 1999, 344, 61–67. [Google Scholar]
- Zhang, H.-J.; Zhao, G.; Zhang, X.; Bai, J.-M. The periodicity of 3C 273’s radio light curve at 15 GHz found by the wavelet method. Sci. China Phys. Mech. Astron. 2010, 53, 252. [Google Scholar] [CrossRef]
- Wilking, B.A.; Gagné, M.; Allen, L. E Star Formation in the ρ Ophiuchus Molecular Cloud. In Handbook of Star Forming Regions; Bo, R., Ed.; The Southern Sky ASP Monograph Publications: San Francisco, CA, USA, 2008; Volume 5, p. 351. [Google Scholar]
- Valtonen, M.J. New Orbit Solutions for the Precessing Binary Black Hole Model of OJ 287. ApJ 2007, 659, 1074. [Google Scholar] [CrossRef]
- Volvach, A.E.; Volvach, L.N.; Larionov, M.G. Most massive double black hole 3C 454.3 and powerful gravitational wave radiation. Astron. Astrophys. 2021, 648, A27. [Google Scholar] [CrossRef]
- Aller, M.F.; Aller, H.D.; Hughes, P.A. The Longterm Centimeter-band Total Flux and Linear Polarization Properties of the Pearson-Readhead Survey Sources. Bull. Am. Astron. Soc. 2001, 33, 1516. [Google Scholar]
- Vol’vach, A.E.; Kutkin, A.M.; Vol’vach, L.N.; Larionov, M.G.; Lakhteenmaki, A.; Tornikoski, M.; Nieppola, E.; Tammi, J.; Savolainen, P.; Leon-Tavares, J.; et al. Results of Long-Term Monitoring of 3C 273 over a Wide Range of Wavelengths. Astron. Rep. 2013, 57, 34–45. [Google Scholar] [CrossRef]
- Richards, J.L.; Max-Moerbeck, W.; Pavlidou, V.; King, O.G.; Pearson, T.J.; Readhead, A.C.; Reeves, R.; Shepherd, M.C.; Stevenson, M.A.; Weintraub, L.C.; et al. Blazars in the Fermi Era: The OVRO 40 m Telescope Monitoring Program. ApJS 2011, 194, 29. [Google Scholar] [CrossRef]
- Türler, M.; Paltani, S.; Courvoisier, T.-L.; Aller, M.F.; Aller, H.D.; Blecha, A.; Bouchet, P.; Lainela, M.; McHardy, I.M.; Robson, E.I.; et al. 30 years of multi-wavelength observations of 3C 273. Astron. Astrophys. Suppl. Ser. 1999, 134, 89–101. [Google Scholar] [CrossRef]
- Türler, M.; Chernyakova, M.; Courvoisier, T.J.-L.; Foellmi, C.; Aller, M.F.; Aller, H.D.; Kraus, A.; Krichbaum, T.P.; Lähteenmäki, A.; Marscher, A.; et al. A historic jet-emission minimum reveals hidden spectral features in 3C 273. Astron. Astrophys. 2006, 451, L1–L4. [Google Scholar] [CrossRef]
- Vityazev, V.V. Time series analysis of unequally spaced data: The statistical properties of the Schuster periodogram. Astron. Astrophys. Trans. 1996, 11, 159–173. [Google Scholar] [CrossRef]
- Rieger, F.M. Supermassive binary black holes among cosmic gamma-ray sources. Astrophys. Space Sci. 2007, 309, 271–275. [Google Scholar] [CrossRef]
- Vol’vach, A.E.; Larionov, M.G.; Kardashev, N.S.; Lähteemmäki, A.; Tornikoski, M.; Hovatta, T.; Nieppola, E.; Torniainen, I.; Aller, M.F.; Aller, H.D. A Multi-Frequency Study of Brightness Variations of the Blazar 0716+714. Astron. Rep. 2009, 53, 777–784. [Google Scholar] [CrossRef]
- Volvach, A.E.; Volvach, L.N.; Larionov, M.G.; Aller, H.D.; Aller, M.F.; Raiteri, K.M. Correlations Between the Development of a Flare in the Blazar 3C 454.3 in the Radio and Optical. Astron. Rep. 2008, 52, 867–874. [Google Scholar] [CrossRef]
- Esposito, V.; Walter, R.; Jean, P.; Tramacere, A.; Türler, M.; Lähteenmäki, A.; Tornikoski, M. The high energy spectrum of 3C 273V. Astron. Astrophys. 2015, 576, A122. [Google Scholar] [CrossRef]
- Chini, R.; Hoffmeister, V.H.; Nasseri, A.; Stahl, O.; Zinnecker, H. A spectroscopic survey on the multiplicity of high-mass stars. MNRAS 2012, 424, 1925–1929. [Google Scholar] [CrossRef]
- Paltani, S.; Turler, M. The mass of the black hole in 3C 273. Astron. Astrophys. 2005, 435, 811–820. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Fabian, A.C.; Sanders, J.S. Precession of the super-massive black hole in NGC 1275 (3C 84)? MNRAS 2006, 366, 758–766. [Google Scholar] [CrossRef]
- Dey, L.; Gopakumar, A.; Valtonen, M.; Zola, S.; Susobhanan, A.; Hudec, R.; Pihajoki, P.; Pursimo, T.; Berdyugin, A.; Piirola, V.; et al. The Unique Blazar OJ 287 and Its Massive Binary Black Hole Central Engine. Universe 2019, 5, 108. [Google Scholar] [CrossRef]
4.8 GHz | Source | 3C 144 | 3C 274 | M 17 | 3C 405 |
Flux density, Jy | 612.9 | 71.4 | 584.8 | 378.2 | |
36.8 GHz | Source | DR 21 | 3C 274 | NGC 7027 | 3C 286 |
Flux density, Jy | 18.3 | 14.3 | 5.1 | 1.56 |
T4.8GHz (years) | 12.6 ± 1.6 (Tpr,obs) | 8.0 ± 0.9 (Tobs) | 5.2 ± 0.6 (Tobs) | 3.4 ± 0.5 (Torb,obs) |
T8GHz (years) | 12.0 ± 1.2 (Tpr,obs) | 8.4 ± 0.8 (Tobs) | 5.0 ± 0.5 (Tobs) | 3.5 ± 0.4 (Torb,obs) |
T14.5GHz (years) | 14.1 ± 1.2 (Tpr,obs) | 8.3 ± 0.8 (Torb) | 4.7 ± 0.5 (Tobs) | 3.6 ± 0.4 (Torb,obs) |
T36.8GHz (years) | 14.5 ± 1.4 (Tpr,obs) | 8.9 ± 0.8 (Tobs) | 5.0 ± 0.5 (Tobs) | 3.8 ± 0.5 (Torb,obs) |
TOptical (years) | 10.6 ± 1.4 (Tpr,obs) | 5.0 ± 0.5 (Tobs) | 2.9 ± 0.5 (Torb,average) | |
Taverage (years) | 13.3 ± 1.2 (Tpr,average) | 8.4 ± 0.7 (Taverage) | 5.0 ± 0.4 (Taverage) | 3.5 ± 0.3 (Torb,average) |
T4.8GHz (years) | 272 ± 30 (Tpr,ist) | 172 ± 19 (Tist) | 112 ± 13 (Tist) | 73 ± 9 (Torb,ist) |
T8GHz (years) | 259 ± 25 (Tpr,ist) | 181 ± 16 (Tist) | 108 ± 10 (Tist) | 76 ± 7 (Torb,ist) |
T14.5GHz (years) | 304 ± 27 (Tpr,ist) | 179 ± 15 (Tist) | 101 ± 10 (Tist) | 76 ± 7 (Torb,ist) |
T36.8GHz (years) | 313 ± 27 (Tpr,ist) | 192 ± 17 (Tist) | 108 ± 11 (Tist) | 82 ± 8 (Torb,ist) |
TOptical (years) | 229 ± 27 (Tpr,ist) | 108 ± 11 (Tist) | 63 ± 8 (Torb,ist) | |
Taverage (years) | 287 ± 20 (Tpr,average) | 181 ± 17 (Taverage) | 107 ± 11 (Taverage) | 77 ± 5(Torb,average) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volvach, A.; Volvach, L.; Larionov, M. A Close Binary Supermassive Black Hole Model for the Galaxy 3C 273. Galaxies 2023, 11, 96. https://doi.org/10.3390/galaxies11050096
Volvach A, Volvach L, Larionov M. A Close Binary Supermassive Black Hole Model for the Galaxy 3C 273. Galaxies. 2023; 11(5):96. https://doi.org/10.3390/galaxies11050096
Chicago/Turabian StyleVolvach, Alexandr, Larisa Volvach, and Mikhail Larionov. 2023. "A Close Binary Supermassive Black Hole Model for the Galaxy 3C 273" Galaxies 11, no. 5: 96. https://doi.org/10.3390/galaxies11050096
APA StyleVolvach, A., Volvach, L., & Larionov, M. (2023). A Close Binary Supermassive Black Hole Model for the Galaxy 3C 273. Galaxies, 11(5), 96. https://doi.org/10.3390/galaxies11050096