17O Destruction Rate in Stars
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LUNA | Laboratory for Underground Nuclear Astrophysics |
ASFIN | AStroFIsica Nucleare |
n-TOF | neutron time-of-flight |
ERNA | European Recoil Separator for Nuclear Astrophysics |
PANDORA | Plasma for Astrophysics Nuclear Decay Observation and Radiation for Archaeometry |
CNO | Carbon–Nitrogen–Oxygen |
AGB | Asympthotic Giant Branch |
Temperature in GK |
References
- Pantaleo, F.R.; Boeltzig, A.; Best, A.; Perrino, R.; Aliotta, M.; Balibrea-Correa, J.; Barile, F.; Bemmerer, D.; Broggini, C.; Bruno, C.G.; et al. Low-energy resonances in the 18O(p,γ)19F reaction. Phys. Rev. C 2021, 104, 025802. [Google Scholar] [CrossRef]
- Ananna, C.; Barile, F.; Boeltzig, A.; Bruno, C.G.; Cavanna, F.; Ciani, G.F.; Compagnucci, A.; Csedreki, L.; Depalo, R.; Ferraro, F.; et al. Underground Measurements of Nuclear Reaction Cross-Sections Relevant to AGB Stars. Universe 2022, 8, 4. [Google Scholar] [CrossRef]
- Piatti, D.; Masha, E.; Aliotta, M.; Balibrea-Correa, J.; Barile, F.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Bruno, C.G.; et al. First direct limit on the 334 keV resonance strength in 22Ne(α,γ)26Mg reaction. Eur. Phys. J. A 2022, 58, 194. [Google Scholar] [CrossRef]
- Skowronski, J.; Gesuè, R.M.; Boeltzig, A.; Ciani, G.F.; Piatti, D.; Rapagnani, D.; Aliotta, M.; Ananna, C.; Barile, F.; Bemmerer, D.; et al. Advances in radiative capture studies at LUNA with a segmented BGO detector. J. Phys. G Nucl. Phys. 2023, 50, 045201. [Google Scholar] [CrossRef]
- Ciani, G.F.; Csedreki, L.; Rapagnani, D.; Aliotta, M.; Balibrea-Correa, J.; Barile, F.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; et al. Direct Measurement of the 13C(α,n)16O Cross Section into the s-Process Gamow Peak. Phys. Rev. Lett. 2021, 127, 152701. [Google Scholar] [CrossRef]
- Skowronski, J.; Boeltzig, A.; Ciani, G.F.; Csedreki, L.; Piatti, D.; Aliotta, M.; Ananna, C.; Barile, F.; Bemmerer, D.; Best, A.; et al. Proton-Capture Rates on Carbon Isotopes and Their Impact on the Astrophysical 12C/13C Ratio. Phys. Rev. Lett. 2023, 131, 162701. [Google Scholar] [CrossRef]
- Spitaleri, C.; Cherubini, S.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Pizzone, R.; Romano, S.; Sergi, M.; Tumino, A. Trojan Horse Method: Recent applications in nuclear astrophysics. Nucl. Phys. A 2010, 834, 639c–642c. [Google Scholar] [CrossRef]
- Pizzone, R.; Spitaleri, C.; Cherubini, S.; La Cognata, M.; Lamia, L.; Romano, S.; Sergi, M.; Tumino, A.; Li, C.; Wen, Q.; et al. Trojan Horse Method: A useful tool for electron screening effect investigation. Nucl. Phys. A 2010, 834, 673c–675c. [Google Scholar] [CrossRef]
- Borcea, C.; Cennini, P.; Dahlfors, M.; Ferrari, A.; Garcia-Muñoz, G.; Haefner, P.; Herrera-Martınez, A.; Kadi, Y.; Lacoste, V.; Radermacher, E.; et al. Results from the commissioning of the n_TOF spallation neutron source at CERN. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 513, 524–537. [Google Scholar] [CrossRef]
- Esposito, R.; Calviani, M.; Aberle, O.; Barbagallo, M.; Cano-Ott, D.; Coiffet, T.; Colonna, N.; Domingo-Pardo, C.; Dragoni, F.; Franqueira Ximenes, R.; et al. Design of the third-generation lead-based neutron spallation target for the neutron time-of-flight facility at CERN. Phys. Rev. Accel. Beams 2021, 24, 093001. [Google Scholar] [CrossRef]
- Buompane, R.; Di Leva, A.; Gialanella, L.; D’Onofrio, A.; De Cesare, M.; Duarte, J.; Fülöp, Z.; Gasques, L.; Gyürky, G.; Morales-Gallegos, L.; et al. Determination of the 7Be(p,γ)8B cross section at astrophysical energies using a radioactive 7Be ion beam. Phys. Lett. B 2022, 824, 136819. [Google Scholar] [CrossRef]
- Rapagnani, D.; De Cesare, M.; Alfano, D.; Buompane, R.; Cantoni, S.; De Stefano Fumo, M.; Del Vecchio, A.; D’Onofrio, A.; Porzio, G.; Rufolo, G.; et al. Ion Beam Analysis for recession determination and composition estimate of Aerospace Thermal Protection System materials. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 467, 53–57. [Google Scholar] [CrossRef]
- De Cesare, M.; Savino, L.; Di Leva, A.; Rapagnani, D.; Del Vecchio, A.; D’Onofrio, A.; Gialanella, L. Gamma and infrared novel methodologies in Aerospace re-entry: γ-rays crystal efficiency by GEANT4 for TPS material recession assessment and simultaneous dual color infrared temperature determination. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 479, 264–271. [Google Scholar] [CrossRef]
- Brandi, F.; L’Abate, L.; Rapagnani, D.; Buompane, R.; di Leva, A.; Gialanella, L.; Gizzi, L.A. Optical and spectroscopic study of a supersonic flowing helium plasma: Energy transport in the afterglow. Sci. Rep. 2022, 10, 5087. [Google Scholar] [CrossRef] [PubMed]
- Goasduff, A.; Santonocito, D.; Menegazzo, R.; Capra, S.; Pullia, A.; Raniero, W.; Rosso, D.; Toniolo, N.; Zago, L.; Naselli, E.; et al. A high resolution γ-ray array for the pandora plasma trap. Front. Phys. 2022, 10, 936081. [Google Scholar] [CrossRef]
- Descouvemont, P.; Baye, D. The R-matrix theory. Rep. Prog. Phys. 2010, 73, 036301. [Google Scholar] [CrossRef]
- Rolfs, C.E.; Rodney, W.S. Cauldron in the Cosmos; Chicago Press: Chicago, IL, USA, 1989; p. 580. [Google Scholar]
- Iliadis, C. Nuclear Physics of Stars; Wiley-VCH: Weinheim, Germany, 2007; p. 680. [Google Scholar] [CrossRef]
- Longland, R.; Iliadis, C.; Champagne, A.; Newton, J.; Ugalde, C.; Coc, A.; Fitzgerald, R. Charged-particle thermonuclear reaction rates: I. Monte Carlo method and statistical distributions. Nucl. Phys. A 2010, 841, 1–30. [Google Scholar] [CrossRef]
- Sallaska, A.L.; Iliadis, C.; Champange, A.E.; Goriely, S.; Starrfield, S.; Timmes, F.X. Starlib: A Next-Generation Reaction-Rate Library for Nuclear Astrophysics. Astrophys. J. Suppl. Ser. 2013, 207, 18. [Google Scholar] [CrossRef]
- Iliadis, C.; Longland, R.; Champagne, A.; Coc, A. Charged-particle thermonuclear reaction rates: III. Nuclear physics input. Nucl. Phys. A 2010, 841, 251–322. [Google Scholar] [CrossRef]
- Tilley, D.; Weller, H.; Cheves, C.; Chasteler, R. Energy levels of light nuclei A = 18–19. Nucl. Phys. A 1995, 595, 1–170. [Google Scholar] [CrossRef]
- Wang, M.; Huang, W.; Kondev, F.; Audi, G.; Naimi, S. The AME 2020 atomic mass evaluation (II). Tables, graphs and references*. Chin. Phys. C 2021, 45, 030003. [Google Scholar] [CrossRef]
- Lane, A.M.; Thomas, R.G. R-Matrix Theory of Nuclear Reactions. Rev. Mod. Phys. 1958, 30, 257–353. [Google Scholar] [CrossRef]
- Mukhamedzhanov, A.M.; Tribble, R.E. Connection between asymptotic normalization coefficients, subthreshold bound states, and resonances. Phys. Rev. C 1999, 59, 3418–3424. [Google Scholar] [CrossRef]
- Azuma, R.E.; Uberseder, E.; Simpson, E.C.; Brune, C.R.; Costantini, H.; de Boer, R.J.; Görres, J.; Heil, M.; LeBlanc, P.J.; Ugalde, C.; et al. AZURE: An R-matrix code for nuclear astrophysics. Phys. Rev. C 2010, 81, 045805. [Google Scholar] [CrossRef]
- Di Leva, A.; Scott, D.A.; Caciolli, A.; Formicola, A.; Strieder, F.; Aliotta, M.; Anders, M.; Bemmerer, D.; Broggini, C.; Corvisiero, P.; et al. Underground study of the 17O(p,γ)18F reaction relevant for explosive hydrogen burning. Phys. Rev. C 2014, 89, 015803. [Google Scholar] [CrossRef]
- Gyürky, G.; Ornelas, A.; Fülöp, Z.; Halász, Z.; Kiss, G.G.; Szücs, T.; Huszánk, R.; Hornyák, I.; Rajta, I.; Vajda, I. Cross section measurement of the astrophysically important 17O(p,γ)18F reaction in a wide energy range. Phys. Rev. C 2017, 95, 035805. [Google Scholar] [CrossRef]
- Kontos, A.; Görres, J.; Best, A.; Couder, M.; deBoer, R.; Imbriani, G.; Li, Q.; Robertson, D.; Schürmann, D.; Stech, E.; et al. Proton capture on 17O and its astrophysical implications. Phys. Rev. C 2012, 86, 055801. [Google Scholar] [CrossRef]
- Bruno, C.G.; Scott, D.A.; Aliotta, M.; Formicola, A.; Best, A.; Boeltzig, A.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Cavanna, F.; et al. Improved Direct Measurement of the 64.5 keV Resonance Strength in the 17O(p,α)14N Reaction at LUNA. Phys. Rev. Lett. 2016, 117, 142502. [Google Scholar] [CrossRef] [PubMed]
- Blackmon, J.C.; Champagne, A.E.; Hofstee, M.A.; Smith, M.S.; Downing, R.G.; Lamaze, G.P. Measurement of the 17O(p,α)14N Cross Section at Stellar Energies. Phys. Rev. Lett. 1995, 74, 2642–2645. [Google Scholar] [CrossRef]
- Chafa, A.; Tatischeff, V.; Aguer, P.; Barhoumi, S.; Coc, A.; Garrido, F.; Hernanz, M.; José, J.; Kiener, J.; Lefebvre-Schuhl, A.; et al. Experimental determination of the 17O(p,α)14N and 17O(p,γ)18F reaction rates. Phys. Rev. C 2007, 75, 035810. [Google Scholar] [CrossRef]
- Rolfs, C. Spectroscopic factors from radiative capture reactions. Nucl. Phys. A 1973, 217, 29–70. [Google Scholar] [CrossRef]
- Kieser, W.; Azuma, R.; Jackson, K. The 17O(p,α)14N reaction: Physics and astrophysics. Nucl. Phys. A 1979, 331, 155–179. [Google Scholar] [CrossRef]
- Newton, J.R.; Iliadis, C.; Champagne, A.E.; Cesaratto, J.M.; Daigle, S.; Longland, R. Measurement of 17O(p,γ)18F between the narrow resonances at = 193 and 519 keV. Phys. Rev. C 2010, 81, 045801. [Google Scholar] [CrossRef]
- Hager, U.; Buchmann, L.; Davids, B.; Fallis, J.; Fulton, B.R.; Galinski, N.; Greife, U.; Hutcheon, D.A.; Ottewell, D.; Rojas, A.; et al. Measurement of the 17O(p,γ)18F reaction rate at astrophysically relevant energies. Phys. Rev. C 2012, 85, 035803. [Google Scholar] [CrossRef]
- Buckner, M.Q.; Iliadis, C.; Kelly, K.J.; Downen, L.N.; Champagne, A.E.; Cesaratto, J.M.; Howard, C.; Longland, R. High-intensity-beam study of 17O(p,γ)18F and thermonuclear reaction rates for 17O + p. Phys. Rev. C 2015, 91, 015812. [Google Scholar] [CrossRef]
- Iliadis, C.; Longland, R.; Champagne, A.; Coc, A.; Fitzgerald, R. Charged-particle thermonuclear reaction rates: II. Tables and graphs of reaction rates and probability density functions. Nucl. Phys. A 2010, 841, 31–250. [Google Scholar] [CrossRef]
- Wang, M.; Audi, G.; Wapstra, A.H.; Kondev, F.G.; MacCormick, M.; Xu, X.; Pfeiffer, B. The Ame2012 atomic mass evaluation. Chin. Phys. C 2012, 36, 1603. [Google Scholar] [CrossRef]
- Iliadis, C.; Longland, R.; Champagne, A.; Coc, A. Charged-particle thermonuclear reaction rates: IV. Comparison to previous work. Nucl. Phys. A 2010, 841, 323–388. [Google Scholar] [CrossRef]
[keV] | [eV] | [eV] | [eV] | |
---|---|---|---|---|
5671.6(2) | 1− | 3.50(68) | 130(5) | 0.44(2) |
5789.9(3) | 2− | 4.00(24) | 13.3(5.5) | 1.1(3) |
6096.4(1.1) | 4− | 138(26) | 106(17) | 3.07(50) |
6108(3) | 1+ | 0.20(2) | 33.6(3.3) | 0 |
6163.2(9) | 3+ | 140,074(257) | 5.0(6) | 0.595(134) |
6240.4(8) | 3− | 58.2(7.0) | 133(24) | 0 |
6242(3) | 3− | 40.8(3.7) | 137(35) | 0.73(11) |
6262.0(2.5) | 1+ | 27(3) | 575(120) | 0 |
6283.2(9) | 2+ | 11,121(186) | 28.1(5.0) | 0.603(29) |
6310.5(8) | 3+ | 525(117) | 426(82) | 0.17(4) |
6385.5(1.7) | 2+ | 109(11) | 286(87) | 0.270(68) |
6484.9(1.5) | 3+ | 277(91) | 123(25) | 0 |
6567.0(1.5) | 5+ | 1.2(1) | 560(132) | 2.6(5) |
6633(10) | 1− | 2920(315) | 77,090(2000) | 0 |
6643.7(8) | 2− | 368(61) | 231(40) | 0 |
6777.0(1.4) | 4+ | 9000(1000) | 150(24) | 0.31(8) |
6809(5) | 2− | 16,570(1600) | 71,500(2000) | 0 |
6811(7.5) | 2+ | 2750(450) | 210(67) | 0 |
6857(10) | 3− | 5000(1000) | 30(7) | 0 |
7201(2) | 4+ | 29,400(1000) | 500(58) | 0 |
7247(2) | 1+ | 5000(1000) | 55,000(5000) | 0 |
7291(2) | 3+ | 15,820(1426) | 44,180(15,000) | 0 |
ωγ | |
---|---|
[keV] | [eV] |
64.48(54) | 2.95(60) |
182.73(58) | 1.66(12) |
529.4(6) | 0.110(25) |
633.3(9) | 0.16(26) |
877.8(1.6) | 1.93(17) |
1036.6(9) | 0.275(28) |
1196.0(1.6) | 2.70(92) |
1270.3(1.8) | 5.0(1.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapagnani, D.; Straniero, O.; Imbriani, G. 17O Destruction Rate in Stars. Galaxies 2024, 12, 71. https://doi.org/10.3390/galaxies12060071
Rapagnani D, Straniero O, Imbriani G. 17O Destruction Rate in Stars. Galaxies. 2024; 12(6):71. https://doi.org/10.3390/galaxies12060071
Chicago/Turabian StyleRapagnani, David, Oscar Straniero, and Gianluca Imbriani. 2024. "17O Destruction Rate in Stars" Galaxies 12, no. 6: 71. https://doi.org/10.3390/galaxies12060071
APA StyleRapagnani, D., Straniero, O., & Imbriani, G. (2024). 17O Destruction Rate in Stars. Galaxies, 12(6), 71. https://doi.org/10.3390/galaxies12060071