Spectroscopy of a Sample of RV Tauri Stars Without IR Excess
Abstract
:1. Introduction
2. Observations
3. Analysis
4. Results and Discussion
4.1. HD 172810, V399 Cyg, and AA Ari
4.2. V457 Cyg
4.3. V894 Per
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | http://www.gazinur.com/Spectra-Processing.html; accessed on 15 September 2024. |
References
- Oomen, G.M.; Van Winckel, H.; Pols, O.; Nelemans, G. Modelling depletion by re-accretion of gas from a dusty disc in post-AGB stars. Astron. Astrophys. 2019, 629, A49. [Google Scholar] [CrossRef]
- Gezer, I.; Van Winckel, H.; Bozkurt, Z.; De Smedt, K.; Kamath, D.; Hillen, M.; Manick, R. The WISE view of RV Tauri stars. Mon. Not. R. Astron. Soc. 2015, 453, 133–146. [Google Scholar] [CrossRef]
- Kluska, J.; Van Winckel, H.; Coppée, Q.; Oomen, G.M.; Dsilva, K.; Kamath, D.; Bujarrabal, V.; Min, M. A population of transition disks around evolved stars: Fingerprints of planets. Catalog of disks surrounding Galactic post-AGB binaries. Astron. Astrophys. 2022, 658, A36. [Google Scholar] [CrossRef]
- Manick, R.; Van Winckel, H.; Kamath, D.; Sekaran, S.; Kolenberg, K. The evolutionary nature of RV Tauri stars in the SMC and LMC. Astron. Astrophys. 2018, 618, A21. [Google Scholar] [CrossRef]
- Gielen, C.; van Winckel, H.; Min, M.; Waters, L.B.F.M.; Lloyd Evans, T. SPITZER survey of dust grain processing in stable discs around binary post-AGB stars. Astron. Astrophys. 2008, 490, 725–735. [Google Scholar] [CrossRef]
- Izzard, R.G.; Jermyn, A.S. Circumbinary discs for stellar population models. Mon. Not. R. Astron. Soc. 2023, 521, 35–50. [Google Scholar] [CrossRef]
- Bujarrabal, V.; Castro-Carrizo, A.; Van Winckel, H.; Alcolea, J.; Sánchez Contreras, C.; Santander-García, M.; Hillen, M. High-resolution observations of IRAS 08544-4431. Detection of a disk orbiting a post-AGB star and of a slow disk wind. Astron. Astrophys. 2018, 614, A58. [Google Scholar] [CrossRef]
- Telting, J.H.; Avila, G.; Buchhave, L.; Frandsen, S.; Gandolfi, D.; Lindberg, B.; Stempels, H.C.; Prins, S.; NOT staff. FIES: The high-resolution Fiber-fed Echelle Spectrograph at the Nordic Optical Telescope. Astron. Nachrichten 2014, 335, 41. [Google Scholar] [CrossRef]
- Jurgenson, C.; Fischer, D.; McCracken, T.; Sawyer, D.; Giguere, M.; Szymkowiak, A.; Santoro, F.; Muller, G. Design and Construction of VUES: The Vilnius University Echelle Spectrograph. J. Astron. Instrum. 2016, 5, 1650003. [Google Scholar] [CrossRef]
- Shappee, B.J.; Prieto, J.L.; Grupe, D.; Kochanek, C.S.; Stanek, K.Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B.M.; Pogge, R.W.; et al. The Man behind the Curtain: X-Rays Drive the UV through NIR Variability in the 2013 Active Galactic Nucleus Outburst in NGC 2617. Astrophys. J. 2014, 788, 48. [Google Scholar] [CrossRef]
- Kochanek, C.S.; Shappee, B.J.; Stanek, K.Z.; Holoien, T.W.S.; Thompson, T.A.; Prieto, J.L.; Dong, S.; Shields, J.V.; Will, D.; Britt, C.; et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publ. Astron. Soc. Pac. 2017, 129, 104502. [Google Scholar] [CrossRef]
- Piskunov, N.E.; Kupka, F.; Ryabchikova, T.A.; Weiss, W.W.; Jeffery, C.S. VALD: The Vienna Atomic Line Data Base. Astron. Astrophys. Suppl. 1995, 112, 525. [Google Scholar]
- Kupka, F.; Piskunov, N.; Ryabchikova, T.A.; Stempels, H.C.; Weiss, W.W. VALD-2: Progress of the Vienna Atomic Line Data Base. Astron. Astrophys. Suppl. 1999, 138, 119–133. [Google Scholar] [CrossRef]
- Gray, R.O.; Corbally, C.J. The Calibration of MK Spectral Classes Using Spectral Synthesis. I. The Effective Temperature Calibration of Dwarf Stars. Astron. J. 1994, 107, 742. [Google Scholar] [CrossRef]
- Kurucz, R.L. ATLAS12, SYNTHE, ATLAS9, WIDTH9, et cetera. Mem. Della Soc. Astron. Ital. Suppl. 2005, 8, 14. [Google Scholar]
- Blanco-Cuaresma, S.; Soubiran, C.; Heiter, U.; Jofré, P. Determining stellar atmospheric parameters and chemical abundances of FGK stars with iSpec. Astron. Astrophys. 2014, 569, A111. [Google Scholar] [CrossRef]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Scott, P. The Chemical Composition of the Sun. Annu. Rev. Astron. Astrophys. 2009, 47, 481–522. [Google Scholar] [CrossRef]
- Bódi, A.; Kiss, L.L. Physical Properties of Galactic RV Tauri Stars from Gaia DR2 Data. Astrophys. J. 2019, 872, 60. [Google Scholar] [CrossRef]
- Giridhar, S.; Lambert, D.L.; Reddy, B.E.; Gonzalez, G.; Yong, D. Abundance Analyses of Field RV Tauri Stars. VI. An Extended Sample. Astrophys. J. 2005, 627, 432–445. [Google Scholar] [CrossRef]
- Rao, N.K.; Reddy, B.E. High-resolution spectroscopy of the high galactic latitude RV Tauri star CE Virginis. Mon. Not. R. Astron. Soc. 2005, 357, 235–241. [Google Scholar] [CrossRef]
- Lodders, K. Solar System Abundances and Condensation Temperatures of the Elements. Astrophys. J. 2003, 591, 1220–1247. [Google Scholar] [CrossRef]
- Khruslov, A.V. Tyc 3706 00485 1. Perem. Zvezdy Prilozhenie 2006, 6, 23. [Google Scholar]
- Kazarovets, E.V.; Samus, N.N.; Durlevich, O.V.; Kireeva, N.N.; Pastukhova, E.N. The 80th Name-List of Variable Stars. Part I—RA 0h to 6h. Inf. Bull. Var. Stars 2011, 5969, 1. [Google Scholar]
- Nere, R.N.; Montez, R., Jr.; Sánchez-Maes, S. An Audit of the Light Curves of RV Tau Variable Stars in the ASAS-SN Database. J. Am. Assoc. Var. Star Obs. 2024, 52, 34. [Google Scholar] [CrossRef]
- Ripepi, V.; Catanzaro, G.; Trentin, E.; Straniero, O.; Mucciarelli, A.; Marconi, M.; Bhardwaj, A.; Fiorentino, G.; Monelli, M.; Storm, J.; et al. First spectroscopic investigation of anomalous Cepheid variables. Astron. Astrophys. 2024, 682, A1. [Google Scholar] [CrossRef]
Object | V | Date | Spectrograph | R | Exp. Time (min) |
---|---|---|---|---|---|
V428 Aur | 6.87 | 19 February 2021 | VUES | 30,000 | 135 |
3 March 2021 | 30,000 | 60 | |||
12 October 2022 | 30,000 | 120 | |||
HD 172810 | 8.42 | 11 September 2022 | FIES | 46,000 | 11 |
V399 Cyg | 11.28 | 11 September 2022 | FIES | 46,000 | 134 |
AA Ari | 8.69 | 12 September 2022 | FIES | 46,000 | 12 |
V360 Peg | 8.23 | 12 September 2022 | FIES | 46,000 | 8 |
HD 143352 | 9.33 | 27 February 2023 | VUES | 30,000 | 120 |
DZ UMa | 11.14 | 27 February 2023 | VUES | 30,000 | 60 |
22 April 2023 | 30,000 | 180 | |||
23 April 2023 | 30,000 | 180 | |||
24 April 2023 | 30,000 | 60 | |||
27 April 2023 | 30,000 | 60 | |||
V1673 Cyg | 11.73 | 17 August 2023 | FIES | 25,000 | 97 |
V457 Cyg | 11.99 | 17 August 2023 | FIES | 25,000 | 123 |
V362 Aql | 11.79 | 17 August 2023 | FIES | 25,000 | 103 |
V894 Per | 11.94 | 17 August 2023 | FIES | 25,000 | 118 |
Object | log g | |||
---|---|---|---|---|
(K) | (km/s) | (km/s) | ||
HD 172810 | 4250 | 2.5 | 2 | −4.1 |
V399 Cyg | 4150 | 0 | 2.7 | −42.6 |
AA Ari | 4750 | 2 a | 2.8 | −43.2 |
V457 Cyg | 5750 | 0.5 | 5 | −53.4 |
V894 Per | 8000 b | 1 b | 6.8 b | −64.3 c |
HD 172810 | V399 Cyg | AA Ari | V457 Cyg | V894 Per | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ion | [X/H] | N | [X/H] | N | [X/H] | N | [X/H] | N | [X/H] | N | |||||
C I | −0.51 | 5 | 0.13 | ||||||||||||
O I | 0.49 | 1 | −0.63 | 2 | 0.04 | ||||||||||
Na I | 0.25 | 2 | 0.02 | 0.89 | 1 | −0.91 | 1 | 1.63 | 3 | 0.40 | |||||
Mg I | −0.03 | 4 | 0.15 | −0.82 | 1 | −0.19 | 1 | −0.48 | 2 | 0.03 | 0.32 | 4 | 0.06 | ||
Mg II | 0.27 | 1 | |||||||||||||
Al I | 0.20 | 4 | 0.24 | ||||||||||||
Si I | 0.15 | 7 | 0.14 | 0.13 | 1 | −0.27 | 14 | 0.14 | |||||||
Si II | 0.42 | 1 | |||||||||||||
S I | −0.23 | 4 | 0.10 | 0.86 | 1 | ||||||||||
K I | −1.03 | 2 | 0.09 | ||||||||||||
Ca I | −0.35 | 10 | 0.20 | −1.42 | 7 | 0.07 | −1.55 | 4 | 0.12 | ||||||
Ca II | 0.77 | 1 | |||||||||||||
Sc I | 0.23 | 6 | 0.12 | 1.46 | 2 | 0.47 | |||||||||
Sc II | 0.08 | 2 | 0.16 | −1.81 | 1 | −0.43 | 1 | 0.30 | 4 | 0.10 | |||||
Ti I | 0.24 | 70 | 0.25 | −1.36 | 7 | 0.10 | 0.79 | 10 | 0.22 | ||||||
Ti II | −0.07 | 1 | −1.18 | 6 | 0.12 | −1.41 | 12 | 0.13 | 0.39 | 14 | 0.15 | ||||
V I | 0.56 | 42 | 0.28 | −1.63 | 7 | 0.13 | 0.92 | 8 | 0.21 | ||||||
V II | 0.32 | 2 | 0.09 | ||||||||||||
Cr I | 0.10 | 19 | 0.13 | −1.74 | 6 | 0.11 | 0.59 | 1 | |||||||
Cr II | −0.10 | 1 | −1.62 | 2 | 0.05 | 0.32 | 15 | 0.13 | |||||||
Mn I | 0.12 | 2 | 0.16 | −1.84 | 4 | 0.35 | 1.09 | 2 | 0.71 | −1.30 | 2 | 0.17 | |||
Fe I | 0.01 | 160 | 0.24 | −1.47 | 54 | 0.14 | 0.07 | 35 | 0.24 | −0.91 | 122 | 0.19 | 0.40 | 21 | 0.19 |
Fe II | −0.04 | 2 | 0.16 | −1.52 | 6 | 0.13 | −1.02 | 24 | 0.17 | 0.26 | 26 | 0.16 | |||
Co I | 0.28 | 11 | 0.14 | −1.42 | 5 | 0.20 | |||||||||
Ni I | 0.08 | 6 | 0.18 | −1.16 | 18 | 0.24 | −0.49 | 1 | −0.81 | 14 | 0.07 | 0.37 | 1 | ||
Ni II | −0.89 | 1 | 0.32 | 1 | |||||||||||
Cu I | −1.23 | 2 | 0.31 | ||||||||||||
Zn I | −1.42 | 1 | −0.74 | 2 | 0.00 | ||||||||||
Sr I | 0.39 | 1 | |||||||||||||
Y I | 0.25 | 2 | 0.01 | 0.77 | 1 | ||||||||||
Y II | 0.28 | 2 | 0.13 | −1.70 | 2 | 0.06 | 0.49 | 1 | 0.37 | 5 | 0.18 | ||||
Zr I | 0.52 | 9 | 0.28 | −1.34 | 1 | 0.71 | 1 | 0.51 | 5 | 0.10 | |||||
Nb I | 0.78 | 2 | 0.39 | ||||||||||||
Mo I | 0.35 | 5 | 0.10 | ||||||||||||
Ba II | 0.41 | 1 | |||||||||||||
La II | 0.70 | 6 | 0.33 | 0.45 | 1 | ||||||||||
Ce II | 0.52 | 1 | −1.72 | 2 | 0.15 | ||||||||||
Pr II | 0.53 | 3 | 0.34 | ||||||||||||
Nd II | 0.39 | 5 | 0.14 | −1.36 | 4 | 0.24 | 0.70 | 2 | 0.28 | ||||||
Sm II | −1.28 | 5 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puķītis, K.; Korenika, K. Spectroscopy of a Sample of RV Tauri Stars Without IR Excess. Galaxies 2024, 12, 73. https://doi.org/10.3390/galaxies12060073
Puķītis K, Korenika K. Spectroscopy of a Sample of RV Tauri Stars Without IR Excess. Galaxies. 2024; 12(6):73. https://doi.org/10.3390/galaxies12060073
Chicago/Turabian StylePuķītis, Kārlis, and Karina Korenika. 2024. "Spectroscopy of a Sample of RV Tauri Stars Without IR Excess" Galaxies 12, no. 6: 73. https://doi.org/10.3390/galaxies12060073
APA StylePuķītis, K., & Korenika, K. (2024). Spectroscopy of a Sample of RV Tauri Stars Without IR Excess. Galaxies, 12(6), 73. https://doi.org/10.3390/galaxies12060073