Exploring the Components of Cosmogenic UHECR, Neutrino, and Diffuse Gamma Ray from High-Energy Astrophysical Objects
Abstract
:1. Introduction
2. Acceleration and High-Energy Radiation Processes
2.1. Acceleration Process
2.2. Hadronic Process
2.3. Leptonic Process
2.4. The Source-Dependent Escaping Model
2.5. Maximal Acceleration Energy Related to Radiation and Geometry
2.6. Propagation of UHECRs and EGMF
3. Potential Astrophysical Sources
3.1. Origins of UHECRs and Neutrinos
3.2. Origin of Diffuse Gamma Rays
3.3. Multimessenger Correlation
3.4. Cosmogenic Investigation of Diffuse Background
4. Rough Estimation
5. Open Questions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pierre Auger Collaboration. Combined Fit of Spectrum and Composition Data as Measured by the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 2017, 2017, 038. [Google Scholar] [CrossRef]
- Pierre Auger Collaboration. Measurement of the Cosmic-Ray Energy Spectrum above 2.5 × 1018 eV using the Pierre Auger Observatory. Phys. Rev. D 2020, 102, 062005. [Google Scholar] [CrossRef]
- Abreu, P.; Aglietta, M.; Albury, J.M.; Allekotte, I.; Almela, A.; Alvarez-Muñiz, J.; Alves Batista, R.; Anastasi, G.A.; Anchordoqui, L.; Andrada, B.; et al. The Energy Spectrum of Cosmic Rays Beyond the Turn-Down around 1017 eV as Measured with the Surface Detector of the Pierre Auger Observatory. Eur. Phys. J. C Part Fields 2021, 81, 966. [Google Scholar] [CrossRef]
- Pierre Auger Collaboration. Constraining the Sources of Ultra-High-Energy Cosmic Rays Across and Above the Ankle with the Spectrum and Composition Data Measured at the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 2023, 2023, 024. [Google Scholar] [CrossRef]
- Pierre Auger Collaboration. Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory. II. Composition Implications. Phys. Rev. D 2014, 90, 122006. [Google Scholar] [CrossRef]
- Abbasi, R. et al. [The Telescope Array Collaboration] Joint Analysis of the Energy Spectrum of Ultra-High-Energy Cosmic Rays as Measured at the Pierre Auger Observatory and the Telescope Array. Proc. Sci. 2021, ICRC2021, 337. [Google Scholar] [CrossRef]
- Zatsepin, G.T.; Kuzmin, V.A. Upper Limit of the Spectrum of Cosmic Rays. JETP Lett. 1966, 4, 78–80. [Google Scholar]
- Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muñiz, J.; Ambrosio, M.; et al. Observation of the Suppression of the Flux of Cosmic Rays above 4 × 1019 eV. Phys. Rev. Lett. 2008, 101, 061101. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, R.U.; Abu-Zayyad, T.; Allen, M.; Amman, J.F.; Archbold, G.; Belov, K.; Belz, J.W.; Ben Zvi, S.Y.; Bergman, D.R.; Blake, S.A.; et al. First Observation of the Greisen-Zatsepin-Kuzmin Suppression. Phys. Rev. Lett. 2008, 100, 101101. [Google Scholar] [CrossRef]
- Pierre Auger Collaboration. Observation of A Large-Scale Anisotropy in the Arrival Directions of Cosmic Rays above 8 × 1018 eV. Science 2017, 357, 1266–1270. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I.F.M.; Albury, J.M.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muñiz, J.; Anastasi, G.A.; et al. Cosmic-Ray Anisotropies in Right Ascension Measured by the Pierre Auger Observatory. Astrophys. J. 2020, 891, 142. [Google Scholar] [CrossRef]
- Bykov, A.M.; Gehrels, N.; Krawczynski, H.; Lemoine, M.; Pelletier, G.J.; Pohl, M. Particle Acceleration in Relativistic Outflows. Space Sci. Rev. 2012, 173, 309–339. [Google Scholar] [CrossRef]
- Chen, P.; Tajima, T.; Takahashi, Y. Plasma Wakefield Acceleration for Ultrahigh-Energy Cosmic Rays. Phys. Rev. Lett. 2002, 89, 161101. [Google Scholar] [CrossRef]
- Guo, F.; Li, H.; Daughton, W.; Liu, Y.H. Formation of Hard Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Phys. Rev. Lett. 2014, 113, 155005. [Google Scholar] [CrossRef]
- Drury, L.O. An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas. Rep. Prog. Phys. 1983, 46, 973. [Google Scholar] [CrossRef]
- Blandford, R.; Eichler, D. Particle Acceleration at Astrophysical shocks: A Theory of Cosmic Ray Origin. Phys. Rep. 1987, 154, 1–75. [Google Scholar] [CrossRef]
- Horiuchi, S.; Murase, K.; Ioka, K.; Mészáros, P. The Survival of Nuclei in Jets Associated with Core-Collapse Supernovae and Gamma-Ray Bursts. Astrophys. J. 2012, 753, 69. [Google Scholar] [CrossRef]
- Arons, J. Magnetars in the Metagalaxy: An Origin for Ultra-High-Energy Cosmic Rays in the Nearby Universe. Astrophys. J. 2003, 589, 871. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef]
- Goldstein, A.; Veres, P.; Burns, E.; Briggs, M.S.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C.A.; Preece, R.D.; Poolakkil, S.; Roberts, O.J.; et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A. Astrophys. J. Lett. 2017, 848, L14. [Google Scholar] [CrossRef]
- Savchenko, V.; Ferrigno, C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T.J.L.; Diehl, R.; Domingo, A.; et al. INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817. Astrophys. J. Lett. 2017, 848, L15. [Google Scholar] [CrossRef]
- Rastinejad, J.; Gompertz, B.; Levan, A.; Fong, W.F.; Nicholl, M.; Lamb, G.; Malesani, D.; Nugent, A.; Oates, S.; Tanvir, N.; et al. A Kilonova Following a Long-Duration Gamma-Ray Burst at 350 Mpc. Nature 2022, 612, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Nitz, A.H.; Kumar, S.; Wang, Y.F.; Kastha, S.; Wu, S.; Schäfer, M.; Dhurkunde, R.; Capano, C.D. 4-OGC: Catalog of Gravitational Waves from Compact Binary Mergers. Astrophys. J. 2023, 946, 59. [Google Scholar] [CrossRef]
- Achterberg, A.; Ackermann, M.; Adams, J.; Ahrens, J.; Andeen, K.; Atlee, D.; Baccus, J.; Bahcall, J.; Bai, X.; Baret, B.; et al. First Year Performance of the IceCube Neutrino Telescope. Astropart. Phys. 2006, 26, 155–173. [Google Scholar] [CrossRef]
- Aartsen, M.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. The IceCube Neutrino Observatory: Instrumentation and Online Systems. J. Instrum. 2017, 12, P03012. [Google Scholar] [CrossRef]
- Aartsen, M.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; et al. Evidence for High-Energy Extraterrestrial Neutrinos at the Icecube Detector. Science 2013, 342, 1242856. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Samarai, I.A.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Multimessenger Observations of A Flaring Blazar Coincident with High-Energy Neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; et al. A Combined MAximum-Likelihood Analysis of the High-Energy Astrophysical Neutrino Flux Measured with IceCube. Astrophys. J. 2015, 809, 98. [Google Scholar] [CrossRef]
- Halzen, F. High-Energy Neutrino Astrophysics. Nat. Phys. 2016, 13, 232–238. [Google Scholar] [CrossRef]
- Ahlers, M.; Halzen, F. Opening A New Window onto the Universe with IceCube. Prog. Part. Nucl. Phys. 2018, 102, 73–88. [Google Scholar] [CrossRef]
- Murase, K.; Guetta, D.; Ahlers, M. Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos. Phys. Rev. Lett. 2016, 116, 071101. [Google Scholar] [CrossRef] [PubMed]
- Sanguineti, M. ANTARES and KM3NeT: The Latest Results of the Neutrino Telescopes in the Mediterranean. Universe 2019, 5, 65. [Google Scholar] [CrossRef]
- Sreekumar, P.; Bertsch, D.L.; Dingus, B.L.; Esposito, J.A.; Fichtel, C.E.; Hartman, R.C.; Hunter, S.D.; Kanbach, G.; Kniffen, D.A.; Lin, Y.C.; et al. EGRET Observations of the Extragalactic Gamma-Ray Emission. Astrophys. J. 1998, 494, 523. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. The Spectrum of Istropic Diffuse Gamma-Ray Emission between 100 MeV and 820 GeV. Astrophys. J. 2015, 799, 86. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. Resolving the Extragalactic γ-Ray Background above 50 GeV with the Fermi Large Area Telescope. Phys. Rev. Lett. 2016, 116, 151105. [Google Scholar] [CrossRef]
- Abdalla, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E.; Arakawa, M.; Arcaro, C.; Armand, C.; Ashkar, H.; Backes, M.; et al. A very-high-energy component deep in the γ-ray burst afterglow. Nature 2019, 575, 464–467. [Google Scholar] [CrossRef]
- Acciari, V.A. et al. [MAGIC Collaboration] Teraelectronvolt Emission from the γ-Ray Burst GRB 190114C. Nature 2019, 575, 455–458. [Google Scholar] [CrossRef]
- Abdalla, H. et al. [H.E.S.S. Collaboration] Revealing X-Ray and Gamma Ray Temporal and Spectral Similarities in the GRB 190829A Afterglow. Science 2021, 372, 1081–1085. [Google Scholar] [CrossRef]
- Cao, Z.; Aharonian, F.; An, Q.; Axikegu; Bai, L.; Bai, Y.X.; Bao, Y.; Bastieri, D.; Bi, X.J.; Bi, Y.; et al. A Tera-Electron Volt Afterglow from A Narrow Jet in An Extremely Bright Gamma-Ray Burst. Science 2023, 380, 1390–1396. [Google Scholar]
- Yao, Y.H.; Wang, Z.; Chen, S.; Chen, T.L.; Feng, Y.L.; Gao, Q.; Gou, Q.B.; Guo, Y.Q.; Hu, H.B.; Kang, M.M.; et al. Prospects for Detecting γ-Ray Bursts at Very High Energies with the HADAR Experiment. Astrophys. J. 2023, 958, 87. [Google Scholar] [CrossRef]
- Cao, Z.; Aharonian, F.A.; An, Q.; Axikegu; Bai, L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; et al. Ultrahigh-energy Photons Up to 1.4 Petaelectronvolts from 12 γ-ray Galactic Sources. Nature 2021, 594, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Murase, K.; Fukugita, M. Energetics of High-Energy Cosmic Radiations. Phys. Rev. D 2019, 99, 063012. [Google Scholar] [CrossRef]
- Murase, K.; Waxman, E. Constraining High-Energy Cosmic Neutrino Sources: Implications and Prospects. Phys. Rev. D 2016, 94, 103006. [Google Scholar] [CrossRef]
- Hillas, A.M. The Origin of Ultra-High-Energy Cosmic Rays. Annu. Rev. Astron. Astrophys. 1984, 22, 425–444. [Google Scholar] [CrossRef]
- Ptitsyna, K.V.; Troitsky, S.V. Physical Conditions in Potential Accelerators of Ultra-High-Energy Cosmic Rays: Updated Hillas Plot and Radiation-Loss Constraints. Physics-Uspekhi 2010, 53, 691. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube. Phys. Rev. Lett. 2016, 117, 241101. [Google Scholar] [CrossRef]
- Madau, P.; Dickinson, M. Cosmic Star Formation History. Ann. Rev. Astron. Astrophys. 2014, 52, 415–486. [Google Scholar] [CrossRef]
- Alves Batista, R.; Biteau, J.; Bustamante, M.; Dolag, K.; Engel, R.; Fang, K.; Kampert, K.H.; Kostunin, D.; Mostafa, M.; Murase, K.; et al. Open Questions in Cosmic-Ray Research at Ultrahigh Energies. Front. Astron. Space Sci. 2019, 6, 23. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic Extraction of Energy from Kerr Black Holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E.J.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; et al. Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory. I. Measurements at Energies above 1017.8 eV. Phys. Rev. D 2014, 90, 122005. [Google Scholar] [CrossRef]
- Fermi, E. On the Origin of the Cosmic Radiation. Phys. Rev. 1949, 75, 1169–1174. [Google Scholar] [CrossRef]
- Blasi, P.; Epstein, R.I.; Olinto, A.V. Ultra-High-Energy Cosmic Rays from Young Neutron Star Winds. Astrophys. J. 2000, 533, L123. [Google Scholar] [CrossRef] [PubMed]
- Fang, K.; Kotera, K.; Olinto, A.V. Ultrahigh Energy Cosmic ray Nuclei from Extragalactic Pulsars and the Effect of Their Galactic Counterparts. J. Cosmol. Astropart. Phys. 2013, 2013, 010. [Google Scholar] [CrossRef]
- Winchen, T.; Buitink, S. Energy Spectrum of Fast Second Order Fermi Accelerators as Sources of Ultra-High-Energy Cosmic Rays. Astropart. Phys. 2018, 102, 25–31. [Google Scholar] [CrossRef]
- Kotera, K.; Amato, E.; Blasi, P. The Fate of Ultrahigh Energy Nuclei in the Immediate Environment of Young Fast-Rotating Pulsars. J. Cosmol. Astropart. Phys. 2015, 2015, 026. [Google Scholar] [CrossRef]
- Schopper, R.; Thorsten Birk, G.; Lesch, H. High-Energy Hadronic Acceleration in Extragalactic Radio Jets. Astropart. Phys. 2002, 17, 347–354. [Google Scholar] [CrossRef]
- Venkatesan, A.; Miller, M.C.; Olinto, A.V. Constraints on the Production of Ultra-High-Energy Cosmic Rays by Isolated Neutron Stars. Astrophys. J. 1997, 484, 323. [Google Scholar] [CrossRef]
- Neronov, A.; Semikoz, D. Particle Acceleration and Formation of Jets in the Cores of Active Galactic Nuclei. New Astron. Rev. 2003, 47, 693–696. [Google Scholar] [CrossRef]
- Murase, K.; Bartos, I. High-Energy Multimessenger Transient Astrophysics. Ann. Rev. Nucl. Part. Sci. 2019, 69, 477–506. [Google Scholar] [CrossRef]
- Murase, K.; Ioka, K.; Nagataki, S.; Nakamura, T. High-Energy Cosmic-Ray Nuclei from High- and Low-Luminosity Gamma-Ray Bursts and Implications for Multimessenger Astronomy. Phys. Rev. D 2008, 78, 023005. [Google Scholar] [CrossRef]
- Dermer, C.D.; Menon, G. High Energy Radiation from Black Holes: Gamma Rays, Cosmic Rays, and Neutrinos; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Gaisser, T.K.; Stanev, T.; Tilav, S. Cosmic Ray Energy Spectrum from Measurements of Air Showers. Front. Phys. 2013, 8, 748–758. [Google Scholar] [CrossRef]
- Liu, R.Y.; Wang, X.Y.; Wu, X. Interpretation of the Unprecedentedly Long-lived High-Energy Emission of GRB 130427A. Astrophys. J. Lett. 2013, 773. [Google Scholar] [CrossRef]
- Wang, X.Y.; Liu, R.Y.; Zhang, H.M.; Xi, S.Q.; Zhang, B. Synchrotron Self-Compton Emission from External Shocks as the Origin of the Sub-TeV Emission in GRB 180720B and GRB 190114C. Astrophys. J. 2019, 884, 117. [Google Scholar] [CrossRef]
- Atoyan, A.M.; Dermer, C.D. Neutral Beams from Blazar Jets. Astrophys. J. 2003, 586, 79. [Google Scholar] [CrossRef]
- Ohira, Y.; Murase, K.; Yamazaki, R. Escape-limited Model of Cosmic-Ray Acceleration Revisited. Astron. Astrophys. 2010, 513, A17. [Google Scholar] [CrossRef]
- Drury, L.O. Escaping the Accelerator: How, When and in What Numbers Do Cosmic Rays Get Out of Supernova Remnants? Mon. Not. R. Astron. Soc. 2011, 415, 1807–1814. [Google Scholar] [CrossRef]
- Katz, B.; Meszaros, P.; Waxman, E. The Spectrum of Cosmic Rays Escaping from Relativistic Shocks. J. Cosmol. Astropart. Phys. 2010, 10, 012. [Google Scholar] [CrossRef]
- Kneiske, T.M.; Bretz, T.; Mannheim, K.; Hartmann, D.H. Implications of Cosmological Gamma-Ray Absorption. 2. Modification of Gamma-Ray Spectra. Astron. Astrophys. 2004, 413, 807–815. [Google Scholar] [CrossRef]
- Gilmore, R.C.; Somerville, R.S.; Primack, J.R.; Dominguez, A. Semi-Analytic Modeling of the EBL and Consequences for Extragalactic Gamma-Ray Spectra. Mon. Not. Roy. Astron. Soc. 2012, 422, 3189. [Google Scholar] [CrossRef]
- Saldana-Lopez, A.; Dominguez, A.; Pérez-González, P.; Finke, J.; Ajello, M.; Primack, J.; Paliya, V.; Desai, A. An Observational Determination of the Evolving Extragalactic Background Light from the Multiwavelength HST/CANDELS Survey in the Fermi and CTA Era. Mon. Not. R. Astron. Soc. 2021, 507, 5144–5160. [Google Scholar] [CrossRef]
- Allard, D. Extragalactic Propagation of Ultrahigh Energy Cosmic-Rays. Astropart. Phys. 2012, 39–40, 33–43. [Google Scholar] [CrossRef]
- Beresnyak, A.; Miniati, F. Turbulent Amplification and Structure of the Intracluster Magnetic Field. Astrophys. J. 2016, 817, 127. [Google Scholar] [CrossRef]
- Rieder, M.; Teyssier, R. A Small-Scale Dynamo in Feedback-dominated Galaxies—III. Cosmological Simulations. Mon. Not. R. Astron. Soc. 2017, 472, 4368–4373. [Google Scholar] [CrossRef]
- Vazza, F.; Brüggen, M.; Gheller, C.; Hackstein, S.; Wittor, D.; Hinz, P.M. Simulations of Extragalactic Magnetic Fields and of Their Observables. Class. Quantum Gravity 2017, 34, 234001. [Google Scholar] [CrossRef]
- Alves Batista, R.; Shin, M.S.; Devriendt, J.; Semikoz, D.; Sigl, G. Implications of Strong Intergalactic Magnetic Fields for Ultrahigh-Energy Cosmic-Ray Astronomy. Phys. Rev. D 2017, 96, 023010. [Google Scholar] [CrossRef]
- Pierog, T.; Karpenko, I.; Katzy, J.M.; Yatsenko, E.; Werner, K. EPOS LHC: Test of Collective Hadronization with Data Measured at the CERN Large Hadron Collider. Phys. Rev. C 2015, 92, 034906. [Google Scholar] [CrossRef]
- Fedynitch, A.; Riehn, F.; Engel, R.; Gaisser, T.K.; Stanev, T. Hadronic Interaction Model Sibyll 2.3c and Inclusive Lepton Fluxes. Phys. Rev. D 2019, 100, 103018. [Google Scholar] [CrossRef]
- Berezinsky, V.S.; Grigor’eva, S.I. A Bump in the ultrahigh-energy cosmic ray spectrum. Astron. Astrophys. 1988, 199, 1–12. [Google Scholar]
- Hardcastle, M.J. Which Radio Galaxies can Make the Highest Energy Cosmic Rays? Mon. Not. R. Astron. Soc. 2010, 405, 2810–2816. [Google Scholar] [CrossRef]
- Murase, K.; Takami, H. Implications of Ultra-High-Energy Cosmic Rays for Transient Sources in the Auger Era. Astrophys. J. Lett. 2009, 690, L14–L17. [Google Scholar] [CrossRef]
- Dermer, C.D.; Razzaque, S. Acceleration of Ultra-High-Energy Cosmic Rays in the Colliding Shells of Blazars and Gamma-Ray Bursts: Constraints from the FermiGamma-Ray SpaceTelescope. Astrophys. J. 2010, 724, 1366–1372. [Google Scholar] [CrossRef]
- Murase, K.; Dermer, C.; Takami, H.; Migliori, G. Blazars as Ultra-High-Energy Cosmic-Ray Sources: Implications for TeV Gamma-Ray Observations. Astrophys. J. 2012, 749, 63. [Google Scholar] [CrossRef]
- Dermer, C.D. Ultra-High Energy Cosmic Rays from Blazar Jets. AIP Conf. Proc. 2013, 1516, 212–216. [Google Scholar] [CrossRef]
- Kim, H.B.; Kim, J. Revisit of Correlation Analysis between Active Galactic Nuclei and Ultra-High Energy Cosmic Rays. Int. J. Mod. Phys. D 2013, 22, 1350045. [Google Scholar] [CrossRef]
- Piran, T.; Beniamini, P. Ultra High Energy Cosmic Rays from Tidal Disruption Events. J. Cosmol. Astropart. Phys. 2023, 11, 049. [Google Scholar] [CrossRef]
- Zhang, B.T.; Murase, K.; Oikonomou, F.; Li, Z. High-Energy Cosmic Ray Nuclei from Tidal Disruption Events: Origin, Survival, and Implications. Phys. Rev. D 2017, 96, 063007. [Google Scholar] [CrossRef]
- Baerwald, P.; Bustamante, M.; Winter, W. Are Gamma-Ray Bursts the Sources of Ultra-High Energy Cosmic Rays? Astropart. Phys. 2015, 62, 66–91. [Google Scholar] [CrossRef]
- Zhang, B.T.; Murase, K.; Kimura, S.S.; Horiuchi, S.; Mészáros, P. Low-Luminosity Gamma-Ray Bursts as the Sources of Ultrahigh-Energy Cosmic Ray Nuclei. Phys. Rev. D 2018, 97, 083010. [Google Scholar] [CrossRef]
- Samuelsson, F.; Bégué, D.; Ryde, F.; Pe’er, A.; Murase, K. Constraining Low-luminosity Gamma-Ray Bursts as Ultra-high-energy Cosmic Ray Sources Using GRB 060218 as a Proxy. Astrophys. J. 2020, 902, 148. [Google Scholar] [CrossRef]
- Globus, N.; Allard, D.; Parizot, E.; Piran, T. Probing the Extragalactic Cosmic-Ray Origin with Gamma-Ray and Neutrino Backgrounds. Astrophys. J. Lett. 2017, 839, L22. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I.F.M.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muñiz, J.; Anastasi, G.A.; Anchordoqui, L.; et al. An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources. Astrophys. J. Lett. 2018, 853, L29. [Google Scholar] [CrossRef]
- Mauro, M.D.; Donato, F.; Lamanna, G.; Sanchez, D.A.; Serpico, P.D. Diffuse γ-Ray Emission From Unresolved BL Lac Objects. Astrophys. J. 2014, 786, 129. [Google Scholar] [CrossRef]
- Chakraborty, N.; Fields, B.D. Inverse-Compton Contribution to the Star-Forming Extragalactic Gamma-Ray Backgroud. Astrophys. J. 2013, 773, 104. [Google Scholar] [CrossRef]
- Ajello, M.; Gasparrini, D.; Sánchez-Conde, M.; Zaharijas, G.; Gustafsson, M.; Cohen-Tanugi, J.; Dermer, C.D.; Inoue, Y.; Hartmann, D.; Ackermann, M.; et al. The Origin of the Extragalactic Backgound Light and Implications for Dark Matter Annihilation. Astrophys. J. Lett. 2015, 800, L27. [Google Scholar] [CrossRef]
- Cuoco, A.; Komatsu, E.; Siegal-Gaskins, J.M. Joint Anisotropy and Source Count Constraints on the Contribution of Blazars to the Diffuse Gamma-Ray Background. Phys. Rev. D 2012, 86, 063004. [Google Scholar] [CrossRef]
- Siegal-Gaskins, J.M.; Reesman, R.; Pavlidou, V.; Profumo, S.; Walker, T.P. Anisotropies in the Gamma-Ray Sky from Millisecond Pulsars. Mon. Not. R. Astron. Soc. 2011, 415, 1074–1082. [Google Scholar] [CrossRef]
- Ajello, M.; Shaw, M.S.; Romani, R.W.; Dermer, C.D.; Costamante, L.; King, O.G.; Max-Moerbeck, W.; Readhead, A.; Reimer, A.; Richards, J.L.; et al. The Luminosity Function of Fermi-Detected Flat-Spectrum Radio Quasars. Astrophys. J. 2012, 751, 108. [Google Scholar] [CrossRef]
- Stecker, F.W.; Shrader, C.R.; Malkan, M.A. The Extragalactic Gamma-Ray Background from Core-dominated Radio Galaxies. Astrophys. J. 2019, 879, 68. [Google Scholar] [CrossRef]
- Yao, Y.H.; Chang, X.C.; Hu, H.B.; Pan, Y.B.; Zhang, H.M.; Li, H.Y.; Qiao, B.Q.; Kang, M.M.; Yang, C.W.; Liu, W.; et al. Contribution of High-energy GRB Emissions to the Spectrum of the Isotropic Diffuse γ-Ray Background. Astrophys. J. 2020, 901, 106. [Google Scholar] [CrossRef]
- Min, F.S.; Yao, Y.H.; Liu, R.Y.; Chen, S.; Lu, H.; Guo, Y.Q. Contribution of γ-Ray Burst Afterglow Emissions to the Isotropic Diffuse γ-Ray Background. Astrophys. J. 2024, 964, 195. [Google Scholar] [CrossRef]
- Linden, T. Star-Forming Galaxies Significantly Contribute to the Isotropic Gamma-Ray Background. Phys. Rev. D 2017, 96, 083001. [Google Scholar] [CrossRef]
- Qu, Y.; Zeng, H.; Yan, D. Gamma-Ray Luminosity Function of BL Lac objects and Contribution to the Extragalactic Gamma-Ray Background. Mon. Not. R. Astron. Soc. 2019, 490, 758–765. [Google Scholar] [CrossRef]
- Roth, M.A.; Krumholz, M.R.; Crocker, R.M.; Celli, S. The Diffuse γ-ray Background is Dominated by Star-Forming Galaxies. Nature 2021, 597, 341–344. [Google Scholar] [CrossRef] [PubMed]
- The Icecube, Pierre Auger and Telescope Array Collaborations. Search for Correlations Between the Arrival Directions of IceCube Neutrino Events and Ultrahigh-Energy Cosmic Rays Detected by the Pierre Auger Observatory and the Telescope Array. J. Cosmol. Astropart. Phys. 2016, 2016, 037. [Google Scholar] [CrossRef]
- The ANTARES Collaboration. Search for Spatial Correlations of Neutrinos with Ultra-high-energy Cosmic Rays. Astrophys. J. 2022, 934, 164. [Google Scholar] [CrossRef]
- Adrián-Martínez, S.; Albert, A.; Al Samarai, I.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; et al. Search for Muon Neutrinos from Gamma-Ray Bursts with the ANTARES Neutrino Telescope Using 2008 to 2011 data. Astron. Astrophys. 2013, 559, A9. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; et al. Time-Dependent Search for Neutrino Emission from X-Ray Binaries with the ANTARES Telescope. J. Cosmol. Astropart. Phys. 2017, 04, 019. [Google Scholar] [CrossRef]
- Stein, R.; van Velzen, S.; Kowalski, M.; Franckowiak, A.; Gezari, S.; Miller-Jones, J.C.A.; Frederick, S.; Sfaradi, I.; Bietenholz, M.F.; Horesh, A.; et al. A Tidal Disruption Event Coincident with a High-Energy Neutrino. Nat. Astron. 2021, 5, 510–518. [Google Scholar] [CrossRef]
- Reusch, S.; Stein, R.; Kowalski, M.; van Velzen, S.; Franckowiak, A.; Lunardini, C.; Murase, K.; Winter, W.; Miller-Jones, J.C.A.; Kasliwal, M.M.; et al. Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino. Phys. Rev. Lett. 2022, 128, 221101. [Google Scholar] [CrossRef]
- Murase, K.; Inoue, S.; Nagataki, S. Cosmic Rays above the Second Knee from Clusters of Galaxies and Associated High-Energy Neutrino Emission. Astrophys. J. 2008, 689, L105. [Google Scholar] [CrossRef]
- Kotera, K.; Allard, D.; Murase, K.; Aoi, J.; Dubois, Y.; Pierog, T.; Nagataki, S. Propagation of Ultrahigh Energy Nuclei in Clusters of Galaxies: Resulting Composition and Secondary Emissions. Astrophys. J. 2009, 707, 370. [Google Scholar] [CrossRef]
- Heinze, J.; Boncioli, D.; Bustamante, M.; Winter, W. Cosmogenic Neutrinos Challenge the Cosmic-Ray Proton Dip Model. Astrophys. J. 2016, 825, 122. [Google Scholar] [CrossRef]
- Ballet, J.; Bruel, P.; Burnett, T.H.; Lott, B.; The Fermi-LAT Collaboration. Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. Ser. 2020, 247, 33. [Google Scholar]
- Aab, A.; Abreu, P.; Aglietta, M.; Albury, J.M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Anastasi, G.A.; et al. Features of the Energy Spectrum of Cosmic Rays above 2.5 × 1018 eV Using the Pierre Auger Observatory. Phys. Rev. Lett. 2020, 125, 121106. [Google Scholar] [CrossRef]
- Anchordoqui, L.A.; García Canal, C.; Soriano, J.F. Probing Strong Dynamics with Cosmic Neutrinos. Phys. Rev. D 2019, 100, 103001. [Google Scholar] [CrossRef]
- Panasyuk, M.I.; Klimov, P.A.; Khrenov, B.A.; Sharakin, S.A.; Zotov, M.; Picozza, P.; Casolino, M.; Ebisuzaki, T.; Gorodetzky, P. Ultra High Energy Cosmic Ray Detector KLYPVE on board the Russian Segment of the ISS. In Proceedings of the 34th International Cosmic Ray Conference, The Hague, The Netherlands, 30 July–6 August 2015. [Google Scholar]
- Álvarez Muñiz, J.; Alves Batista, R.; Balagopal, V.A.; Bolmont, J.; Bustamante, M.; Carvalho, W.; Charrier, D.; Cognard, I.; Decoene, V.; Denton, P.B.; et al. The Giant Radio Array for Neutrino Detection (GRAND): Science and Design. Sci. China Phys. Mech. Astron. 2019, 63, 219501. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, F.; Lu, H.; Guo, Y. Exploring the Components of Cosmogenic UHECR, Neutrino, and Diffuse Gamma Ray from High-Energy Astrophysical Objects. Galaxies 2024, 12, 77. https://doi.org/10.3390/galaxies12060077
Min F, Lu H, Guo Y. Exploring the Components of Cosmogenic UHECR, Neutrino, and Diffuse Gamma Ray from High-Energy Astrophysical Objects. Galaxies. 2024; 12(6):77. https://doi.org/10.3390/galaxies12060077
Chicago/Turabian StyleMin, Fangsheng, Hong Lu, and Yiqing Guo. 2024. "Exploring the Components of Cosmogenic UHECR, Neutrino, and Diffuse Gamma Ray from High-Energy Astrophysical Objects" Galaxies 12, no. 6: 77. https://doi.org/10.3390/galaxies12060077
APA StyleMin, F., Lu, H., & Guo, Y. (2024). Exploring the Components of Cosmogenic UHECR, Neutrino, and Diffuse Gamma Ray from High-Energy Astrophysical Objects. Galaxies, 12(6), 77. https://doi.org/10.3390/galaxies12060077