High-Energy Polarization: Scientific Potential and Model Predictions
Abstract
:1. Introduction
2. High-Energy Polarization Degree of Leptonic and Hadronic Blazar Models
3. Time-Dependent High-Energy Polarization of Shock and Magnetic Reconnection
4. Polarization Signatures of Kinetic-Dominated and Magnetic-Dominated Jets
Acknowledgments
Conflicts of Interest
References
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; et al. A change in the optical polarization associated with a γ-ray flare in the blazar 3C279. Nature 2010, 463, 919. [Google Scholar] [CrossRef] [PubMed]
- Blinov, D.; Pavlidou, V.; Papadakis, I.; Kiehlmann, S.; Panopoulou, G.; Liodakis, I.; King, O.G.; Angelakis, E.; Baloković, M.; Das, H.; et al. RoboPol: First season rotations of optical polarization plane in blazars. Mon. Not. R. Astron. Soc. 2015, 453, 1669–1693. [Google Scholar] [CrossRef]
- Larionov, V.M.; Jorstad, S.G.; Morozova, D.A.; Blinov, D.A.; Hagen-Thorn, V.A.; Konstantinova, T.S.; Kopatskaya, E.N.; Larionova, L.V.; Larionova, E.G.; Troitsky, I.S.; et al. The Outburst Of The Blazar S5 0716+71 in 2011 October: Shock In A Helical Jet. Astrophys. J. 2013, 768, 40. [Google Scholar] [CrossRef]
- Marscher, A.P. Turbulent, extreme multi-zone model for simulating flux and polarization variability in blazars. Astrophys. J. 2014, 780, 87. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, W.; Li, H.; Böttcher, M. Polarization Signatures of Relativistic Magnetohydrodynamic Shocks in the Blazar Emission Region. I. Force-free Helical Magnetic Fields. Astrophys. J. 2016, 817, 63. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Guo, F.; Taylor, G. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations. Astrophys. J. 2017, 835, 125. [Google Scholar] [CrossRef]
- Beilicke, M.; Baring, M.G.; Barthelmy, S.; Binns, W.R.; Buckley, R.; Dowkontt, P.; Guo, Q.; Haba, Y.; Israel, M.H.; Kunieda, H.; et al. The hard X-ray polarimeter X-Calibur. Am. Inst. Phys. Conf. Ser. 2012, 1505, 805. [Google Scholar]
- Produit, N.; Barao, F.; Deluit, S.; Hajdas, W.; Leluc, C.; Pohl, M.; Rapin, D.; Vialle, J.P.; Walter, R.; Wigger, C. POLAR, a compact detector for gamma-ray bursts photon polarization measurements. Nucl. Instr. Meth. Phys. Res. A 2005, 550, 616–625. [Google Scholar] [CrossRef]
- Tatischeff, V.; Tavani, M.; Von Ballmoos, P.; Hanlon, L.; Oberlack, U.; Aboudan, A.; Argan, A.; Bernard, D.; Brogna, A.; Bulgarelli, A.; et al. The e-ASTROGAM gamma-ray space mission. arXiv, 2016; arXiv:astro-ph/1608.03739. [Google Scholar]
- Weisskopf, M.C.; Ramsey, B.; O’Dell, S.; Tennant, A.; Elsner, R.; Soffitta, P.; Bellazzini, R.; Costa, E.; Kolodziejczak, J.; Kaspi, V.; et al. The Imaging X-ray Polarimetry Explorer (IXPE). Res. Phys. 2016, 6, 1179–1180. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 2011, 418, L79. [Google Scholar] [CrossRef] [Green Version]
- Maraschi, L.; Ghisellini, G.; Celotti, A. A jet model for the gamma-ray emitting blazar 3C 279. Astrophys. J. 1992, 397, L5. [Google Scholar] [CrossRef]
- Marscher, A.P.; Gear, W.K. Models for high-frequency radio outbursts in extragalactic sources, with application to the early 1983 millimeter-to-infrared flare of 3C 273. Astrophys. J. 1985, 298, 114–127. [Google Scholar] [CrossRef]
- Dermer, C.D.; Schlickeiser, R.; Mastichiadis, A. High-energy gamma radiation from extragalactic radio sources. Astron. Astrophys. 1992, 256, L27–L30. [Google Scholar]
- Sikora, M.; Begelman, M.; Rees, M.J. Comptonization of diffuse ambient radiation by a relativistic jet: The source of gamma rays from blazars? Astrophys. J. 1994, 421, 153–162. [Google Scholar] [CrossRef]
- Mannheim, K.; Biermann, P.L. Gamma-ray flaring of 3C 279—A proton-initiated cascade in the jet? Astron. Astrophys. 1992, 253, L21. [Google Scholar]
- Mücke, A.; Protheroe, R.J. A proton synchrotron blazar model for flaring in Markaria. Astropart. Phys. 2001, 15, 121–136. [Google Scholar] [CrossRef] [Green Version]
- Böttcher, M.; Reimer, A.; Sweeney, K.; Prakash, A. Leptonic and Hadronic Modeling of Fermi-Detected Blazars. Astrophys. J. Lett. 2013, 768, 54. [Google Scholar] [CrossRef]
- Rybicci, G.B.; Lightman, A.P. Radiative Processes in Astrophysics; Wiley: Hoboken, NJ, USA, 1985. [Google Scholar]
- Bonometto, S.; Cazzola, P.; Saggion, A. Polarization in Inverse Compton Effect. Astron. Astrophys. 1970, 7, 292–304. [Google Scholar]
- Bonometto, S.; Saggion, A. Polarization in Inverse Compton Scattering of Synchrotron Radiation. Astron. Astrophys. 1973, 23, 9–13. [Google Scholar]
- Krawczynski, H. The Polarization Properties of Inverse Compton Emission and Implications For Blazar Observations with the Gems X-ray Polarimeter. Astrophys. J. 2012, 744, 30. [Google Scholar] [CrossRef]
- Zhang, H.; Böttcher, M. X-ray and Gamma-Ray Polarization in Leptonic and Hadronic Jet Models of Blazars. Astrophys. J. 2013, 774, 18. [Google Scholar] [CrossRef]
- Chakraborty, N.; Pavlidou, V.; Fields, B.D. High Eenergy Polarization of Blazars: Detection Prospects. Astrophys. J. Lett. 2015, 798, 16. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Behera, B.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; et al. An Exceptional Very High Energy Gamma-Ray Flare of PKS 2155–304. Astrophys. J. Lett. 2007, 664, L71. [Google Scholar] [CrossRef]
- Achterberg, A.; Gallant, Y.A.; Kirk, J.G.; Guthmann, A.W. Particle acceleration by ultrarelativistic shocks: theory and simulations. Mon. Not. R. Astron. Soc. 2001, 328, 393. [Google Scholar] [CrossRef] [Green Version]
- Spitkovsky, A. Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last? Astrophys. J. Lett. 2008, 682, L5. [Google Scholar] [CrossRef]
- Guo, F.; Li, H.; Daughton, W.; Liu, Y.H. Formation of Hard Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Phys. Rev. Lett. 2014, 113, 155005. [Google Scholar] [CrossRef] [PubMed]
- Sironi, L.; Spitkovsky, A. Relativistic Reconnection: An Efficient Source of Non-Thermal Particles. Astrophys. J. Lett. 2014, 783, L21. [Google Scholar] [CrossRef]
- Guo, F.; Li, X.; Li, H.; Daughton, W.; Zhang, B.; Lloyd-Ronning, N.; Liu, Y.H.; Zhang, H.; Deng, W. Efficient Production Of high energy Nonthermal Particles During Magnetic Reconnection In A Magnetically Dominated Ion–Electron Plasma. Astrophys. J. Lett. 2016, 818, L9. [Google Scholar] [CrossRef]
- Blinov, D.; Pavlidou, V.; Papadakis, I.E.; Hovatta, T.; Pearson, T.J.; Liodakis, I.; Panopoulou, G.V.; Angelakis, E.; Baloković, M.; Das, H.; et al. RoboPol: Optical polarization-plane rotations and flaring activity in blazars. Mon. Not. R. Astron. Soc. 2016, 457, 2252–2262. [Google Scholar] [CrossRef]
- Zhang, H.; Diltz, C.; Böttcher, M. Radiation and Polarization Signatures of the 3D Multizone Time-dependent Hadronic Blazar Model. Astrophys. J. 2016, 829, 69. [Google Scholar] [CrossRef]
- Chen, X.; Chatterjee, R.; Zhang, H.; Pohl, M.; Fossati, G.; Böttcher, M.; Bailyn, C.D.; Bonning, E.W.; Buxton, M.; Coppi, P.; et al. Magnetic field amplification and flat spectrum radio quasars. Mon. Not. R. Astron. Soc. 2014, 441, 2188–2199. [Google Scholar] [CrossRef]
- Diltz, C.; Böttcher, M. Time dependent leptonic modeling of Fermi II processes in the jets of flat spectrum radio quasars. J. High Energy Astrophys. 2014, 1, 63–70. [Google Scholar] [CrossRef]
- Stawarz, Ł.; Petrosian, V. On the Momentum Diffusion of Radiating Ultrarelativistic Electrons in a Turbulent Magnetic Field. Astrophys. J. 2008, 681, 1725–1744. [Google Scholar]
- Weidinger, M.; Spanier, F. A self-consistent and time-dependent hybrid blazar emission model Properties and application. Astron. Astrophys. 2015, 573, A7. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.; Böttcher, M. Synchrotron polarization in blazars. Astrophys. J. 2014, 789, 66. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, H.; Zhang, B.; Li, H. Collision-Induced Magnetic Reconnection and A Unified Interpretation of Polarization Properties of GRBs and Blazars. Astrophys. J. Lett. 2016, 821, L12. [Google Scholar] [CrossRef]
- Guan, X.; Li, H.; Li, S. Relativistic MHD Simulations of Poynting Flux-Driven Jets. Astrophys. J. Lett. 2014, 781, 48. [Google Scholar] [CrossRef]
- Mizuno, Y.; Lyubarsky, Y.; Nishikawa, K.I.; Hardee, P.E. Three-dimensional relativistic magnetohydrodynamic simulations of current-driven instability. I. Instability of a static column. Astrophys. J. 2009, 700, 684. [Google Scholar]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H. High-Energy Polarization: Scientific Potential and Model Predictions. Galaxies 2017, 5, 32. https://doi.org/10.3390/galaxies5030032
Zhang H. High-Energy Polarization: Scientific Potential and Model Predictions. Galaxies. 2017; 5(3):32. https://doi.org/10.3390/galaxies5030032
Chicago/Turabian StyleZhang, Haocheng. 2017. "High-Energy Polarization: Scientific Potential and Model Predictions" Galaxies 5, no. 3: 32. https://doi.org/10.3390/galaxies5030032
APA StyleZhang, H. (2017). High-Energy Polarization: Scientific Potential and Model Predictions. Galaxies, 5(3), 32. https://doi.org/10.3390/galaxies5030032