Linear Polarimetry with γ→e+e− Conversions
Abstract
:1. MeV -ray Astronomy
2. Polarimetry with Pairs
- Only the linear polarization of the incoming radiation takes part in these first-order Born approximation expressions;
- The circular polarization, which was extensively discussed during the conference, does not.
- The value of the polarization asymmetry, A, is close to 0.2 over most of the energy range, with low- and high-energy asymptotes of [13] and .
- As the final state is determined by five variables, the definition of “the” azimuthal angle of the event can be done in several ways: examination of the precision of the measurement shows that the optimal choice is the azimuthal angle of the bisectrix of the direction of the electron and of the positron [13].
3. The HARPO Project
4. Gamma-Ray Astronomy with an Autonoumous Active Target: Optimal Measurement of Charged Particle Momentum from Multiple Scattering with a Bayesian Analysis of Filtering Innovations
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Schönfelder, V. Lessons learnt from COMPTEL for future telescopes. New Astron. Rev. 2004, 48, 193–198. [Google Scholar] [CrossRef]
- McEnery, J. e-ASTROGAM Workshop: The Extreme Universe. Available online: https://agenda.infn.it/internalPage.py?pageId=0&confId=12401 (accessed on 31 October 2017).
- McEnery, J.; Ferrara, E.; Hays, E.; Mitchell, J.; Moiseev, A.; Ojha, R.; Perkins, J.; Racusin, J.; Smith, A.; Thompson, D.; et al. Allsky Medium Energy GammaRay Observatory (AMEGO). Available online: https://pcos.gsfc.nasa.gov/physpag/probe/AMEGO_probe.pdf (accessed on 31 October 2017).
- Tatischeff, V.; Tavani, M.; von Ballmoos, P.; Hanlon, L.; Oberlack, U.; Aboudan, A.; Argan, A.; Bernard, D.; Brogna, A.; Bulgarelli, A.; et al. The e-ASTROGAM gamma-ray space mission. Proc. SPIE 2016. [Google Scholar] [CrossRef]
- Takahashi, S.; Aoki, S.; Kamada, K.; Mizutani, S.; Nakagawa, R.; Ozaki, K.; Rokujo, H. GRAINE project: The first balloon-borne, emulsion gamma-ray telescope experiment. Prog. Theor. Exp. Phys. 2015. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. The Fermi Large Area Telescope on Orbit: Event Classification, Instrument Response Functions, and Calibration. Astrophys. J. Suppl. 2012. [Google Scholar] [CrossRef]
- Bernard, D. TPC in gamma-ray astronomy above pair-creation threshold. Nucl. Instrum. Meth. Phys. Res. A 2013, 701, 225–230. [Google Scholar] [CrossRef]
- Bethe, H.; Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proc. R. Soc. Lond. A 1934, 146, 83–112. [Google Scholar] [CrossRef]
- Heitler, W. The Quantum Theory of Radiation; Dover Publications: Mineola, NY, USA, 1954. [Google Scholar]
- Berlin, T.H.; Madansky, L. On the Detection of gamma-ray Polarization by Pair Production. Phys. Rev. 1950, 78, 623. [Google Scholar] [CrossRef]
- May, M.M. On the Polarization of High Energy Bremsstrahlung and of High Energy Pairs. Phys. Rev. 1951, 84, 265. [Google Scholar] [CrossRef]
- Jauch, J.M.; Rohrlich, F. The Theory of Photons and Electrons; Springer: Berlin/Heidelberg, Germany, 1976. [Google Scholar]
- Gros, P.; Bernard, D. γ-ray polarimetry with conversions to e+e− pairs: Polarization asymmetry and the way to measure it. Astropart. Phys. 2017, 88, 30–37. [Google Scholar] [CrossRef]
- Attié, D. TPC review. Nucl. Instrum. Meth. A 2009, 598, 89. [Google Scholar] [CrossRef]
- Bernard, D. HARPO-A gaseous TPC for high angular resolution γ-ray astronomy and polarimetry from the MeV to the GeV. Nucl. Instrum. Meth. A 2013, 718, 395. [Google Scholar] [CrossRef]
- Gros, P.; Amano, S.; Attié, D.; Bernard, D.; Bruel, P.; Calvet, D.; Colas, P.; Daté, S.; Delbart, A.; Frotin, M.; et al. First measurement of the polarisation asymmetry of a gamma-ray beam between 1.7 to 74 MeV with the HARPO TPC. Proc. SPIE Int. Soc. Opt. Eng. 2016. [Google Scholar] [CrossRef]
- Bernard, D.; Bruel, P.; Frotin, M.; Geerebaert, Y.; Giebels, B.; Gros, P.; Horan, D.; Louzir, M.; Poilleux, P.; Semeniouk, I.; et al. HARPO: A TPC as a gamma-ray telescope and polarimeter. Proc. SPIE Int. Soc. Opt. Eng. 2014. [Google Scholar] [CrossRef]
- Delbart, A. HARPO, TPC as a gamma telescope and polarimeter: First measurement in a polarised photon beam between 1.7 and 74 MeV. Available online: http://inspirehep.net/record/1483325/files/PoS(ICRC2015)1016.pdf (accessed on 31 October 2017).
- Horikawa, K.; Miyamoto, S.; Amano, S.; Mochizuki, T. Measurements for the energy and flux of laser Compton scattering γ-ray photons generated in an electron storage ring: NewSUBARU. Nucl. Instrum. Meth. A 2010, 618, 209–215. [Google Scholar] [CrossRef]
- Sun, C.; Wu, Y.K. Theoretical and simulation studies of characteristics of a Compton light source. Phys. Rev. Spec. Top. Accel. Beams 2011, 14, 044701. [Google Scholar] [CrossRef]
- Geerebaert, Y.; Bernard, D.; Bruel, P.; Frotin, M.; Giebels, B.; Gros, P.; Horan, D.; Louzir, M.; Poilleux, P.; Semeniouk, I.; et al. Electronics for HARPO: Design, development and validation of electronics for a high performance polarised-Gamma-ray detector. In Proceedings of the 2016 IEEE-NPSS Real Time Conference (RT), Padua, Italy, 6–10 June 2016. [Google Scholar]
- Gros, P.; Amano, S.; Attié, D.; Baron, P.; Baudin, D.; Bernard, D.; Bruel, P.; Calvet, D.; Colas, P.; Dat|é, S.; et al. A TPC as high performance gamma-ray telescope and polarimeter: Polarisation measurement in a beam between 1.7 and 74MeV with HARPO. In Proceedings of the 8th Symposium on Large TPCs for Low Energy Rare Events Detection, Paris, France, 5–7 December 2016. [Google Scholar]
- Gros, P.; Bernard, D. γ-ray telescopes using conversions to e+e− pairs: Event generators, angular resolution and polarimetry. Astropart. Phys. 2017, 88, 60–67. [Google Scholar] [CrossRef]
- Bernard, D. Polarimetry of cosmic gamma-ray sources above e+e− pair creation threshold. Nucl. Instrum. Meth. A 2013, 729, 765–780. [Google Scholar] [CrossRef]
- Gros, P.; Amano, S.; Attié, D.; Baron, P.; Baudin, D.; Bernard, D.; Bruel, P.; Calvet, D.; Colas, P.; Daté, S.; et al. Performance measurement of HARPO: A Time Projection Chamber as a gamma-ray telescope and polarimeter. Astropart. Phys. 2017, in press. [Google Scholar] [CrossRef]
- Frotin, M.; Gros, P.; Attié, D.; Bernard, D.; Dauvois, V.; Delbart, A.; Durand, D.; Geerebaert, Y.; Legand, S.; Magnier, P.; et al. Sealed operation, and circulation and purification of gas in the HARPO TPC. arXiv, 2015; arXiv:1512.03248. [Google Scholar]
- Baudin, D. ASTRE: Asic with Switched Capacitor Array (SCA) and Trigger for detector Readout Electronics hardened against SEL. In Proceedings of the 8th International Conference on New Developments in Photo Detection (NDIP 2017), Tours, France, 3–7 July 2017. [Google Scholar]
- Anvar, S.; Baron, P.; Blank, B.; Chavas, J.; Delagnes, E.; Druillole, F.; Hellmuth, P.; Nalpas, L.; Pedroza, J.L.; Pibernat, J.; et al. AGET, the GET front-end ASIC, for the readout of the Time Projection Chambers used in nuclear physic experiments. In Proceedings of the 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Valencia, Spain, 23–29 October 2011; pp. 745–749. [Google Scholar]
- Molière, G. Theorie der Streuung schneller geladener Teilchen. III. Die Vielfachstreuung von Bahnspuren unter Berüksichtigung der statistischen Kopplung. Z. Naturforsch. A 1955, 10, 177. [Google Scholar]
- Frosini, M.; Bernard, D. Charged particle tracking without magnetic field: Optimal measurement of track momentum by a Bayesian analysis of the multiple measurements of deflections due to multiple scattering. Nucl. Instrum. Meth. A 2017, 867, 182–194. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernard, D. Linear Polarimetry with γ→e+e− Conversions. Galaxies 2017, 5, 72. https://doi.org/10.3390/galaxies5040072
Bernard D. Linear Polarimetry with γ→e+e− Conversions. Galaxies. 2017; 5(4):72. https://doi.org/10.3390/galaxies5040072
Chicago/Turabian StyleBernard, Denis. 2017. "Linear Polarimetry with γ→e+e− Conversions" Galaxies 5, no. 4: 72. https://doi.org/10.3390/galaxies5040072
APA StyleBernard, D. (2017). Linear Polarimetry with γ→e+e− Conversions. Galaxies, 5(4), 72. https://doi.org/10.3390/galaxies5040072