Constraints on Space-Time-Matter Theory in the Framework of the Standard-Model Extension
Abstract
:1. Space-Time-Matter Theory
We presently have in mind as ultimate goal a pure field theory, in which the field variables produce the field of ‘empty space’ as well as the ... elementary particles that constitute ‘matter.’
2. Physical Interpretation
Space, time and mass in themselves are doomed to fade away into mere shadows, and only a kind of union of the three will preserve an independent reality.
3. Lorentz Violation in the Flat-Space Limit
4. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Overduin, J.M.; Henry, R.C. Physics and the Pythagorean theorem. arXiv 2020, arXiv:2005.10671. [Google Scholar]
- Norton, J.R. Einstein’s special theory of relativity and the problems in the electro-dynamics of moving bodies that led him to it. In The Cambridge Companion to Einstein; Janssen, M., Lehner, C., Eds.; Cambridge University Press: Cambridge, UK, 2014; Volume 1, pp. 72–102. [Google Scholar]
- Overduin, J.M.; Wesson, P.S. Kaluza-Klein gravity. Phys. Rep. 1997, 283, 303. [Google Scholar] [CrossRef] [Green Version]
- Wesson, P.S.; de Leon, J.P.; Liu, H.; Mashhoon, B.; Kalligas, D.; Everitt, C.W.F.; Billyard, A.; Lim, P.; Overduin, J.M. A Theory of Space, Time and Matter. Int. J. Mod. Phys. 1996, 11, 3247–3255. [Google Scholar] [CrossRef] [Green Version]
- Wesson, P.S. Space-Time-Matter; World Scientific: Singapore, 1999. [Google Scholar]
- Wesson, P.S.; Overduin, J.M. Principles of Space-Time-Matter; World Scientific: Singapore, 2018. [Google Scholar]
- Wesson, P.S. An embedding for general relativity with variable rest mass. Gen. Rel. Grav. 1984, 16, 193–203. [Google Scholar] [CrossRef]
- Wesson, P.S. Comments on a possible change with cosmological time in the rest masses of particles. Astron. Astrophys. 1988, 189, 4–6. [Google Scholar]
- Wesson, P.S. Clarification of an extended theory of gravity and a reply to Gron and Soleng. Gen. Rel. Grav. 1990, 22, 707–713. [Google Scholar] [CrossRef]
- Williams, L.L. Field Equations and Lagrangian for the Kaluza metric evaluated with tensor algebra software. Hindawi J. Grav. 2015, 2015, 901870. [Google Scholar] [CrossRef]
- Williams, L.L. Field Equations and Lagrangian of the Kaluza Energy-Momentum Tensor. Hindawi J. Grav. 2020, 2020, 1263723. [Google Scholar] [CrossRef]
- Williams, L.L. Long-range scalar forces in five-dimensional general relativity. Hindawi Adv. Math. Phys. 2020, 2020, 9305187. [Google Scholar]
- Wesson, P.S. Variable-gravity theory: A new version of an old idea. In 3rd Canadian Conference on General Relativity and Relativistic Astrophysics, University of Victoria, 4–6 May 1989; Coley, A., Cooperstock, F., Tupper, B., Eds.; World Scientific: Singapore, 1990; pp. 9–13. [Google Scholar]
- Einstein, A.; Grommer, J. Beweis der Nichtexistenz eines überall regulären zentrisch symmetrischen Feldes nach der Feld-theorie von Th. Kaluza. In Scripta Universitatis atque Bibliothecae Hierosolymitanarum: Mathematica et Physica 1; Nijhoff: Leiden, The Netherland, 1923; p. 1. [Google Scholar]
- Dongen, J.V. Einstein and the Kaluza-Klein particle. Stud. Hist. Philos. Mod. Phys. 2002, 33, 185–210. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Physics and reality. J. Frankl. Inst. 1936, 221, 335–370. [Google Scholar] [CrossRef]
- Einstein, A. The Meaning of Relativity; Princeton University Press: Princeton, NJ, USA, 1956; p. 129. [Google Scholar]
- Wheeler, J.A. On the nature of quantum geometrodynamics. Ann. Phys. 1957, 2, 604–614. [Google Scholar] [CrossRef]
- Finkelstein, D.; Rubinstein, J. Connection between spin, statistics, and kinks. J. Math. Phys. 1968, 9, 1762–1775. [Google Scholar] [CrossRef]
- Halpern, L. Geometrical structure of gravitation and matter fields. Int. J. Theor. Phys. 1994, 33, 401–424. [Google Scholar] [CrossRef]
- Dzhunushaliev, V.D. Spherically symmetric solution for torsion and the Dirac equation in 5D spacetime. Int. J. Mod. Phys. 1998, 7, 909–915. [Google Scholar] [CrossRef] [Green Version]
- Trayling, G.; Baylis, W.E. A geometric basis for the standard-model gauge group. J. Phys. A Math. Gen. 2001, 34, 3309–3324. [Google Scholar] [CrossRef] [Green Version]
- Vasilić, M. Consistency analysis of Kaluza-Klein geometric sigma models. Gen. Rel. Grav. 2001, 33, 1783–1798. [Google Scholar] [CrossRef]
- Kalligas, D.; Wesson, P.S.; Everitt, C.W.F. The classical tests in Kaluza-Klein gravity. Astrophys. J. 1995, 439, 548–557. [Google Scholar] [CrossRef]
- Liu, H.; Overduin, J.M. Solar system tests of higher-dimensional gravity. Astrophys. J. 2000, 538, 386–394. [Google Scholar] [CrossRef] [Green Version]
- Overduin, J.M. Solar-system tests of the equivalence principle and constraints on higher-dimensional gravity. Phys. Rev. 2000, 62, 102001. [Google Scholar] [CrossRef] [Green Version]
- Overduin, J.M.; Mitcham, J.; Warecki, Z. Expanded solar-system limits on violations of the equivalence principle. Class. Quant. Grav. 2014, 31, 015001. [Google Scholar] [CrossRef] [Green Version]
- Overduin, J.M.; Wesson, P.S.; Mashhoon, B. Decaying dark energy in higher-dimensional gravity. Astron. Astrophys. 2007, 473, 727–731. [Google Scholar] [CrossRef] [Green Version]
- Overduin, J.M.; Everett, R.D.; Wesson, P.S. Constraints on Kaluza-Klein gravity from Gravity Probe B. Gen. Rel. Grav. 2013, 45, 1723–1731. [Google Scholar] [CrossRef] [Green Version]
- Overduin, J.M. Spacetime, Spin and Gravity Probe B. Class. Quant. Grav. 2015, 32, 224003. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. The Confrontation between General Relativity and experiment. Liv. Rev. Rel. 2014, 17, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, A.J.; Doughty, N.A. Kaluza-Klein unification and the Fierz-Pauli weak-field limit. Am. J. Phys. 1992, 60, 150–157. [Google Scholar] [CrossRef]
- Bailin, D.; Love, A. Kaluza-Klein theories. Rep. Prog. Phys. 1987, 50, 1087–1170. [Google Scholar] [CrossRef]
- Sakharov, A.D. Cosmological transitions with changes in the signature of the metric. Sov. Phys. 1984, 60, 214–218. [Google Scholar]
- Aref’eva, I.Y.; Volovich, I.V. Kaluza-Klein theories and the signature of space-time. Phys. Lett. 1985, 164, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Burakovsky, L.; Horwitz, L.P. 5D generalized inflationary cosmology. Gen. Rel. Grav. 1995, 27, 1043–1070. [Google Scholar] [CrossRef] [Green Version]
- Bars, I.; Kounnas, C. Theories with two times. Phys. Lett. 1997, 402, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Wesson, P.S. Five-dimensional relativity and two times. Phys. Lett. 2002, 538, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Band, W. Klein’s fifth dimension as spin angle. Phys. Rev. 1939, 56, 204. [Google Scholar] [CrossRef]
- Hara, O. A study of charge independence in terms of Kaluza’s five dimensional theory. Prog. Theor. Phys. 1959, 21, 919–937. [Google Scholar] [CrossRef] [Green Version]
- Rumer, Y.B. Action as a space coordinate. I. Zh. Eksp. Teor. Fiz. 1949, 19, 86–94. (In Russian) [Google Scholar]
- Rumer, Y.B. Studies in 5-Optics; West Siberian Branch of the Academy of Science: Moscow, Russia, 1956; (In Russian). Available online: http://www.neo-classical-physics.info/uploads/3/4/3/6/34363841/rumer_-_studies_in_5-optics.pdf (accessed on 1 January 2021).
- Fukui, T. Fundamental constants and higher-dimensional universe. Gen. Rel. Grav. 1988, 20, 1037–1045. [Google Scholar] [CrossRef]
- Fukui, T. Vacuum cosmological solution in a 6D universe. Gen. Rel. Grav. 1992, 24, 389. [Google Scholar] [CrossRef]
- Carmeli, M. Cosmological Special Relativity: The Large-Scale Structure of Space, Time and Velocity, 2nd ed.; World Scientific: Singapore, 2002. [Google Scholar]
- Overduin, J.M. The experimental verdict on spacetime from Gravity Probe B. In Space, Time and Spacetime; Petkov, V., Ed.; Springer: Berlin, Germany, 2010; pp. 25–59. [Google Scholar]
- Vos, D.A.J.; Hilgevoord, J. Five-dimensional aspect of free particle motion. Nucl. Phys. 1967, 1, 494–510. [Google Scholar] [CrossRef]
- Edmonds, J.D. Five-dimensional space-time: Mass and the fundamental length. Int. J. Theor. Phys. 1974, 11, 309–315. [Google Scholar] [CrossRef]
- Edmonds, J.D. Extended relativity: Mass and the fifth dimension. Found. Phys. 1975, 5, 239–249. [Google Scholar] [CrossRef]
- Minkowski, H. Space and Time. In The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity; Lorentz, H.A., Einstein, A., Minkowski, H., Weyl, H., Eds.; Dover Publications: New York, NY, USA, 1952; pp. 75–91. [Google Scholar]
- Mattingly, D. Modern tests of Lorentz invariance. Liv. Rev. Relativ. 2005, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Robertson, H.P. Postulate versus observation in the special theory of relativity. Rev. Mod. Phys. 1949, 21, 378–382. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, R.; Sexl, R.U. A test theory of special relativity: I. Simultaneity and clock synchronization. Gen. Relativ. Grav. 1977, 8, 497–513. [Google Scholar] [CrossRef]
- Reinhardt, S.; Saathoff, G.; Buhr, H.; Carlson, L.A.; Wolf, A.; Schwalm, D.; Karpuk, S.; Novotny, C.; Huber, G.; Zimmermann, M.; et al. Test of relativistic time dilation with fast optical atomic clocks at different velocities. Nat. Phys. 2007, 3, 861–864. [Google Scholar] [CrossRef]
- Tobar, M.E.; Wolf, P.; Bize, S.; Santarelli, G.; Flambaum, V. Testing local Lorentz and position invariance and variation of fundamental constants by searching the derivative of the comparison frequency between a cryogenic sapphire oscillator and hydrogen maser. Phys. Rev. 2010, 81, 022003. [Google Scholar] [CrossRef] [Green Version]
- Overduin, J.M.; Ali, H. Extra dimensions and violations of Lorentz symmetry. In Seventh Meeting on CPT and Lorentz Symmetry; Kostelecký, V.A., Ed.; World Scientific: Singapore, 2017; pp. 253–255. [Google Scholar]
- Colladay, D.; Kostelecký, V.A. Lorentz-violating extension of the standard model. Phys. Rev. 1998, 58, 116002. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. 2004, 69, 105009. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Mewes, M. Signals for Lorentz violation in electrodynamics. Phys. Rev. 2002, 66, 056005. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Mewes, M. Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys. Rev. 2009, 80, 015020. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 2011, 83, 11, arXiv:0801.0287v14 (2021 version). [Google Scholar] [CrossRef] [Green Version]
- Altschul, B. Laboratory bounds on electron Lorentz violation. Phys. Rev. 2010, 82, 016002. [Google Scholar] [CrossRef] [Green Version]
- Hohensee, M.A.; Chu, S.; Peters, A.; Müller, H. Equivalence principle and gravitational redshift. Phys. Rev. Lett. 2011, 106, 151102. [Google Scholar] [CrossRef] [Green Version]
- Hohensee, M.A.; Leefer, N.; Budker, D.; Harabati, C.; Dzuba, V.A. Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium. Phys. Rev. Lett. 2013, 111, 050401. [Google Scholar] [CrossRef] [Green Version]
- Hohensee, M.A.; Müller, H.; Wiringa, R.B. Equivalence principle and bound kinetic energy. Phys. Rev. Lett. 2013, 111, 151102. [Google Scholar] [CrossRef] [Green Version]
- Stecker, F.W. Limiting superluminal electron and neutrino velocities using the 2010 Crab Nebula flare and the IceCube PeV neutrino events. Astropart. Phys. 2014, 56, 16–18. [Google Scholar] [CrossRef] [Green Version]
- Dzuba, V.A.; Flambaum, V.V. Limits on gravitational Einstein equivalence principle violation from monitoring atomic clock frequencies during a year. Phys. Rev. 2017, 95, 015019. [Google Scholar] [CrossRef] [Green Version]
- Wolf, P.; Chapelet, F.; Bize, S.; Clairon, A. Cold atomic clock test of Lorentz invariance in the matter sector. Phys. Rev. Lett. 2006, 96, 060801. [Google Scholar] [CrossRef] [Green Version]
- Katori, T. Tests of Lorentz and CPT violation with MiniBooNE neutrino oscillation excesses. Mod. Phys. Lett. 2012, 27, 1230024. [Google Scholar] [CrossRef]
- Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; et al. Test of Lorentz invariance with atmospheric neutrinos. Phys. Rev. 2015, 91, 052003. [Google Scholar] [CrossRef] [Green Version]
- Pihan-Le Bars, H.; Guerlin, C.; Lasseri, R.D.; Ebran, J.P.; Bailey, Q.G.; Bize, S.; Khan, E.; Wolf, P. Lorentz-symmetry test at Planck-scale suppression with nucleons in a spin-polarized 133Cs cold atom clock. Phys. Rev. 2017, 97, 075026. [Google Scholar]
- Bekenstein, J.D. Are particle rest masses variable? Theory and constraints from solar system experiments. Phys. Rev. 1977, 15, 1458–1468. [Google Scholar] [CrossRef]
- Liu, H.; Wesson, P.S. On the Klein-Gordon equation in higher dimensions: Are particle masses variable? Gen. Rel. Gravit. 2000, 32, 583–592. [Google Scholar] [CrossRef]
- Wetterich, C. Variable gravity universe. Phys. Rev. 2014, 89, 024005. [Google Scholar] [CrossRef] [Green Version]
- Overduin, J.M.; Wesson, P.S. The Light/Dark Universe: Light fom Galaxies, Dark Matter and Dark Energy; World Scientific: Singapore, 2014. [Google Scholar]
- Overduin, J.M.; Everitt, C.W.F.; Worden, P.; Mester, J. STEP and fundamental physics. Class. Quant. Grav. 2012, 29, 184012. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Overduin, J.; Ali, H.; Walz, F. Constraints on Space-Time-Matter Theory in the Framework of the Standard-Model Extension. Galaxies 2021, 9, 26. https://doi.org/10.3390/galaxies9020026
Overduin J, Ali H, Walz F. Constraints on Space-Time-Matter Theory in the Framework of the Standard-Model Extension. Galaxies. 2021; 9(2):26. https://doi.org/10.3390/galaxies9020026
Chicago/Turabian StyleOverduin, James, Hamna Ali, and Francis Walz. 2021. "Constraints on Space-Time-Matter Theory in the Framework of the Standard-Model Extension" Galaxies 9, no. 2: 26. https://doi.org/10.3390/galaxies9020026
APA StyleOverduin, J., Ali, H., & Walz, F. (2021). Constraints on Space-Time-Matter Theory in the Framework of the Standard-Model Extension. Galaxies, 9(2), 26. https://doi.org/10.3390/galaxies9020026