Modeling of Spiral Structure in a Multi-Component Milky Way-Like Galaxy
Abstract
:1. Introduction
2. Observational Data
2.1. Density Distribution of Stars
2.2. Rotation Curves
2.3. Velocity Dispersion of Stars
2.4. Stellar Bulge and Bar
2.5. Gas Distribution
2.6. Dark Matter Halo
3. Numerical Code and Stability Criteria
3.1. Equations and Numerical Algorithm
3.2. Stability Criteria
4. Simulations
- Rotation curve of the cold gaseous component .
- Rotation curve of the stellar disk .
- Velocity dispersion of the stars in the solar neighborhood together with its radial dependence .
- Surface density of the thin stellar disk in the solar neighborhood .
- Radial scale length of the density distribution of the thin stellar disk .
- Surface density of the gaseous disk in the solar neighborhood together with the surface density dependence on radius .
- Vertical scale height of the thin stellar disk h.
- Size of the stellar bar .
- Radial scale length of the bulge density distribution b and its mass .
4.1. Spiral Structure
4.2. Density Profile and Rotation Curve
4.3. Stellar Velocity Dispersion
4.4. Disk Kinematics in Central Regions
5. Discussion
Swing Amplification vs. Global Modes
- —
- What is the mechanism of spiral saturation at the nonlinear stage of instability? Laughlin et al. [135] concluded that nonlinear self-interaction of a growing mode is responsible for mode saturation, but further study is needed.
- —
- Why does the presence of gas in the stellar-gaseous gravitating disk extend the lifetime of the spiral pattern? Goldreich & Lynden-Bell [82] pointed out, back in the sixties, the importance of gas to the formation of spiral structure: S0 galaxies are topographically similar to normal spirals but they have no gas, no dust, and no spiral arms. The importance of gas in sustaining the spiral structure was also confirmed in numerical simulations [93]. In light of new observational data, the spiral structure in galaxies continues to pose questions to theory.
6. Summary
- —
- An axisymmetric two-component gravitating disk with parameters close to those of the azimuthally averaged Milky Way galaxy—in terms of observed rotation curve, velocity dispersion profile, and masses of the bulge and of the stellar and gaseous disk components—is unstable towards near-exponentially growing spirals having numbers of arms (2–4).
- —
- At the nonlinear stage of instability, the spirals saturate at few tens of percent in the central regions of the disk, to a few percent at the disk’s periphery.
- —
- At the nonlinear stage, a prominent bar is formed in the central regions of the disk with a large semi-axis of about 3 kpc.
- —
- Outside the bar region, a complex spiral structure, represented by a superposition of two-, three-, and four-armed spiral patterns, rotating with different angular velocities, is formed. The spiral structure of the Milky Way galaxy is interpreted in some papers as single spiral pattern with a fixed number of arms and spiral pitch angle, and one rotation resonance with fixed position. We show that this is not the case for the Milky Way-like disk.
- —
- We demonstrate that the peak in the rotation curve of the disk of the Milky Way galaxy, which is located in its central regions, is a result of the non-circular motions caused by the bar which develops in the disk.
- —
- We confirm that the presence of a massive and centrally concentrated bulge prevents the formation of a bar, in agreement with [122].
- —
- We also show that the presence of gas of about ten percent the disk’s mass extends the lifetime of the spiral structure to a few Gyr as compared to what is found in purely collisionless models.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COBE/DIRBE | Cosmic Background Explorer/Diffuse Infrared Background Experiment |
SPH | Smoothed-particle hydrodynamics |
OpenMP-CUDA | Open Multi-Processing - Compute Unified Device Architecture |
VLBI | Very Long Baseline Interferometry |
References
- Bertin, G.; Lin, C.C. Spiral Structure in Galaxies a Density Wave Theory; MA MIT Press: Cambridge, MA, USA, 1996; 271p. [Google Scholar]
- Shu, F.H. Six Decades of Spiral Density Wave Theory. Annu. Rev. Astron. Astrophys. 2016, 54, 667–724. [Google Scholar] [CrossRef]
- Bertin, G.; Lin, C.C.; Lowe, S.A.; Thurstans, R.P. Modal approach to the morphology of spiral galaxies. I—Basic structure and astrophysical viability. Astrophys. J. 1989, 338, 78–103. [Google Scholar] [CrossRef]
- Gerola, H.; Seiden, P.E. Stochastic star formation and spiral structure of galaxies. Astrophys. J. 1978, 223, 129–139. [Google Scholar] [CrossRef]
- Sellwood, J.A.; Trick, W.H.; Carlberg, R.G.; Coronado, J.; Rix, H.-W. Discriminating among theories of spiral structure using Gaia DR2. Mon. Not. R. Astron. Soc. 2019, 484, 3154–3167. [Google Scholar] [CrossRef] [Green Version]
- Bertin, G.; Lin, C.C.; Lowe, S.A.; Thurstans, R.P. Modal Approach to the Morphology of Spiral Galaxies. II. Dynamical Mechanisms. Astrophys. J. 1989, 338, 104–120. [Google Scholar] [CrossRef]
- Dobbs, C.; Baba, J. Dawes Review 4: Spiral Structures in Disc Galaxies. Publ. Astron. Soc. Aust. 2014, 31, e035. [Google Scholar] [CrossRef] [Green Version]
- D’Onghia, E. Disk-stability Constraints on the Number of Arms in Spiral Galaxies. Astrophys. J. Lett. 2015, 808, L8. [Google Scholar] [CrossRef]
- Fujii, M.S.; Bédorf, J.; Baba, J.; Portegies Zwart, S. The dynamics of stellar discs in live dark-matter haloes. Mon. Not. R. Astron. Soc. 2018, 477, 1451–1471. [Google Scholar] [CrossRef] [Green Version]
- Michikoshi, S.; Kokubo, E. Galactic Spiral Arms by Swing Amplification. Astrophys. J. 2016, 821, 35. [Google Scholar] [CrossRef] [Green Version]
- Sellwood, J.A.; Carlberg, R.G. Spiral instabilities: Mechanism for recurrence. Mon. Not. R. Astron. Soc. 2019, 489, 116–131. [Google Scholar] [CrossRef] [Green Version]
- Pettitt, A.R.; Tasker, E.J.; Wadsley, J.W.; Keller, B.W.; Benincasa, S.M. Star formation and ISM morphology in tidally induced spiral structures. Mon. Not. R. Astron. Soc. 2017, 468, 4189–4204. [Google Scholar] [CrossRef] [Green Version]
- Khoperskov, A.V.; Khoperskov, S.A.; Zasov, A.V.; Bizyaev, D.V.; Khrapov, S.S. Interaction between collisionless galactic discs and non-axisymmetric dark matter haloes. Mon. Not. R. Astron. Soc. 2013, 431, 1230–1239. [Google Scholar] [CrossRef] [Green Version]
- Shabani, F.; Grebel, E.K.; Pasquali, A.; D’Onghia, E.D.; Gallagher, J.S., III; Adamo, A.; Messa, M.; Elmegreen, B.G.; Dobbs, C.; Gouliermis, D.A.; et al. Search for star cluster age gradients across spiral arms of three LEGUS disc galaxies. Mon. Not. R. Astron. Soc. 2018, 478, 3590–3604. [Google Scholar] [CrossRef] [Green Version]
- Peterken, T.G.; Merrifield, M.R.; Aragon-Salamanca, A.; Coleman, N.D.; Krawczyk, M.; Masters, K.L.; Wijmans, A.-M.; Westfall, K.B. A direct test of density wave theory in a grand-design spiral galaxy. Nat. Astron. 2019, 3, 178–182. [Google Scholar] [CrossRef]
- Bialopetravicius, J.; Narbutis, D. Study of star clusters in the M83 galaxy with a convolutional neural network. Astron. J. 2020, 160, 264. [Google Scholar] [CrossRef]
- Abdeen, S.; Kennefick, D.; Kennefick, J.; Eufrasio, R.; Davies, B.L.; Miller, R.; Shields, D.W.; Monson, E.B.; Basset, C.; O’Mara, H. Evidence in favour of density wave theory through star formation history maps and spatially resolved stellar clusters. arXiv 2020, arXiv:2010.14540. [Google Scholar]
- Hou, L.G.; Han, J.L.; Shi, W.B. The spiral structure of our Milky Way Galaxy. Astron. Astrophys. 2009, 499, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.G.; Han, J.L. The observed spiral structure of the Milky Way. Astron. Astrophys. 2014, 569, A125. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Reid, M.; Dame, T.; Menten, K.; Sakai, N.; Li, J.; Brunthaler, A.; Moscadelli, L.; Zhang, B.; Zheng, X. The local spiral structure of the Milky Way. Sci. Adv. 2016, 2, e1600878. [Google Scholar] [CrossRef] [Green Version]
- Bland-Hawthorn, J.; Gerhard, O. The Galaxy in Context: Structural, Kinematic, and Integrated Properties. Annu. Rev. Astron. Astrophys. 2016, 54, 529–596. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Zheng, X.-W. The bar and spiral arms in the Milky Way: Structure and kinematics. Res. Astron. Astrophys. 2020, 20, 159. [Google Scholar] [CrossRef]
- Sanna, A.; Reid, M.J.; Dame, T.M.; Menten, K.M.; Brunthaler, A. Mapping spiral structure on the far side of the Milky Way. Science 2017, 358, 227–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Reid, M.J.; Zhang, L.; Wu, Y.; Hu, B.; Sakai, N.; Menten, K.M.; Zheng, X.; Brunthaler, A.; Dame, T.M.; et al. Parallaxes for Star-forming Regions in the Inner Perseus Spiral Arm. Astron. J. 2019, 157, 200. [Google Scholar] [CrossRef] [Green Version]
- Katz, D.; Antoja, T.; Romero-Gómez, M.; Drimmel, R.; Reylé, C.; Seabroke, G.M.; Soubiran, C.; Babusiaux, C.; Di Matteo, P.; et al. Gaia Data Release 2. Mapping the Milky Way disc kinematics. Astron. Astrophys. 2018, 616, A11. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Bian, S.B.; Reid, M.J.; Li, J.J.; Zhang, B.; Yan, Q.Z.; Dame, T.M.; Menten, K.M.; He, Z.H.; Liao, S.L.; et al. A comparison of the local spiral structure from Gaia DR2 and VLBI maser parallaxes. Astron. Astrophys. 2018, 616, L15. [Google Scholar] [CrossRef] [Green Version]
- Khoperskov, S.; Gerhard, O.; Di Matteo, P.; Haywood, M.; Katz, D.; Khrapov, S.; Khoperskov, A.; Arnaboldi, M. Hic sunt dracones: Cartography of the Milky Way spiral arms and bar resonances with Gaia Data Release 2. Astron. Astrophys. 2020, 4, L8. [Google Scholar] [CrossRef] [Green Version]
- Griv, E.; Gedalin, M.; Shih, I.-C.; Hou, L.-G.; Jiang, I.-G. The nearby spiral density-wave structure of the Galaxy: Line-of-sight velocities of the Gaia DR2 main-sequence A, F, G, and K stars. Mon. Not. R. Astron. Soc. 2020, 493, 2111–2126. [Google Scholar] [CrossRef]
- Brown, A.G.A.; Vallenari, A.; Prusti, T.; de Bruijne, J.H.J.; Babusiaux, C.; Biermann, M. Gaia Early Data Release 3: Summary of the contents and survey properties. arXiv 2020, arXiv:2012.01533. [Google Scholar]
- Rodriguez-Fernandez, N.J.; Combes, F. Gas flow models in the Milky Way embedded bars. Astron. Astrophys. 2008, 489, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Baba, J.; Saitoh, T.R.; Wada, K. On the Interpretation of the l-v Features in the Milky Way Galaxy. Publ. Astron. Soc. Jpn. 2010, 62, 1413–1422. [Google Scholar] [CrossRef] [Green Version]
- Sormani, M.C.; Binney, J.; Magorrian, J. Gas flow in barred potentials—III. Effects of varying the quadrupole. Mon. Not. R. Astron. Soc. 2015, 454, 1818–1839. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Rich, R.M.; Kormendy, J.; Howard, C.D.; De Propris, R.; Kunder, A. Our Milky Way as a Pure-disk Galaxy—A Challenge for Galaxy Formation. Astrophys. J. Lett. 2010, 720, L72–L76. [Google Scholar] [CrossRef] [Green Version]
- Fujii, M.S.; Bédorf, J.; Baba, J.; Portegies Zwart, S. Modelling the Milky Way as a dry Galaxy. Mon. Not. R. Astron. Soc. 2019, 482, 1983–2015. [Google Scholar] [CrossRef]
- Korchagin, V.I.; Khoperskov, S.A.; Khoperskov, A.V. Role of gaseous disk in the formation of the spiral structure of the Milky Way galaxy. Balt. Astron. 2016, 25, 356–361. [Google Scholar] [CrossRef] [Green Version]
- Drimmel, R.; Spergel, D.N. Three-dimensional Structure of the Milky Way Disk: The Distribution of Stars and Dust beyond 0.35 Rsolar. Astrophys. J. 2001, 556, 181–202. [Google Scholar] [CrossRef] [Green Version]
- Bovy, J.; Rix, H.-W.; Schlafly, E.F.; Nidever, D.L.; Holtzman, J.A.; Shetrone, M.; Beers, T.C. The Stellar Population Structure of the Galactic Disk. Astrophys. J. 2016, 823, 30. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Xu, Y.; Wang, H.; Wan, J. Rediscovering the Galactic outer disk with LAMOST data. Proc. Int. Astron. Union 2017, 13, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Gerhard, O.E. Structure and Mass Distribution of the Milky Way Bulge and Disk. Astron. Soc. Pac. Conf. Ser. 2001, 230, 21–30. [Google Scholar]
- Piffl, T.; Binney, J.; McMillan, P.J.; Steinmetz, M.; Helmi, A.; Wyse, R.F.G.; Bienaym, O.; Bland-Hawthorn, J.; Freeman, K.; Gibson, B.; et al. Constraining the Galaxy’s dark halo with RAVE stars. Mon. Not. R. Astron. Soc. 2014, 445, 3133–3151. [Google Scholar] [CrossRef] [Green Version]
- Khoperskov, A.V.; Tyurina, N.V. A Dynamical Model of the Galaxy. Astron. Rep. 2003, 47, 443–457. [Google Scholar] [CrossRef]
- McKee, C.F.; Parravano, A.; Hollenbach, D.J. Stars, Gas, and Dark Matter in the Solar Neighborhood. Astrophys. J. 2015, 814, 13. [Google Scholar] [CrossRef] [Green Version]
- Mosenkov, A.V.; Sotnikova, N.Y.; Reshetnikov, V.P.; Bizyaev, D.V.; Kautsch, S.J. Does the stellar disc flattening depend on the galaxy type? Mon. Not. R. Astron. Soc. 2015, 451, 2376–2389. [Google Scholar] [CrossRef] [Green Version]
- Comerón, S.; Salo, H.; Knapen, J.H. The reports of thick discs’ deaths are greatly exaggerated. Thick discs are NOT artefacts caused by diffuse scattered light. Astron. Astrophys. 2018, 610, A5. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Jog, C.J. Vertical stellar density distribution in a non-isothermal galactic disc. Mon. Not. R. Astron. Soc. 2020, 499, 2523–2533. [Google Scholar] [CrossRef]
- Bahcall, J.N. The distribution of stars perpendicular to galactic disk. Astrophys. J. 1984, 276, 156–168. [Google Scholar] [CrossRef]
- Khoperskov, A.; Bizyaev, D.; Tiurina, N.; Butenko, M. Numerical modelling of the vertical structure and dark halo parameters in disc galaxies. Astron. Nachrichten 2010, 331, 731–745. [Google Scholar] [CrossRef] [Green Version]
- Juric, M.; Ivezic, Z.; Brooks, A.; Lupton, R.H.; Schlegel, D. The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution. Astrophys. J. 2008, 673, 864–914. [Google Scholar] [CrossRef]
- Wan, J.-C.; Liu, C.; Deng, L.-C. Red Clump Stars from LAMOST II: The outer disc of the Milky Way. Res. Astron. Astrophys. 2017, 17, 79. [Google Scholar] [CrossRef] [Green Version]
- Eilers, A.-C.; Hogg, D.W.; Rix, H.-W.; Ness, M.K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. Astrophys. J. 2019, 871, 120. [Google Scholar] [CrossRef] [Green Version]
- Sofue, Y. Rotation Curve of the Milky Way and the Dark Matter Density. Galaxies 2020, 8, 37. [Google Scholar] [CrossRef]
- Chrobakova, Z.; Lopez-Corredoira, M.; Sylos Labini, F.; Wang, H.-F.; Nagy, R. Gaia-DR2 extended kinematical maps. III. Rotation curves analysis, dark matter, and MOND tests. Astron. Astrophys. 2020, 642, A95. [Google Scholar] [CrossRef]
- Rastorguev, A.S.; Utkin, N.D.; Zabolotskikh, M.V.; Dambis, A.K.; Bajkova, A.T.; Bobylev, V.V. Galactic masers: Kinematics, spiral structure and the disk dynamic state. Astrophys. Bull. 2017, 72, 122–140. [Google Scholar] [CrossRef] [Green Version]
- Marasco, A.; Fraternali, F.; van der Hulst, J.M.; Oosterloo, T. Distribution and kinematics of atomic and molecular gas inside the solar circle. Astron. Astrophys. 2017, 607, A106. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.J.; Menten, K.M.; Brunthaler, A.; Zheng, X.W.; Dame, T.M.; Xu, Y.; Wu, Y.; Zhang, B.; Sanna, A.; Sato, M.; et al. Trigonometric Parallaxes of High Mass Star Forming Regions The Structure and Kinematics of the Milky Way. Astrophys. J. 2014, 783, 130. [Google Scholar] [CrossRef] [Green Version]
- Quiroga-Nunez, L.H.; van Langevelde, H.J.; Reid, M.J.; Green, J.A. Simulated Galactic methanol maser distribution to constrain Milky Way parameters. Astron. Astrophys. 2017, 604, A72. [Google Scholar] [CrossRef] [Green Version]
- Bobylev, V.V.; Bajkova, A.T. Galactic rotation curve and spiral density wave parameters from 73 masers. Astron. Lett. 2013, 39, 809–818. [Google Scholar] [CrossRef] [Green Version]
- Clemens, D.P. Massachusetts-Stony Brook Galactic plane CO survey: The galactic disk rotation curve. Astrophys. J. 1985, 295, 422–436. [Google Scholar] [CrossRef]
- Sofue, Y. Rotation Curve and Mass Distribution in the Galactic Center—From Black Hole to Entire Galaxy. Publ. Astron. Soc. Jpn. 2013, 65, 118. [Google Scholar] [CrossRef]
- Sofue, Y. Rotation and mass in the Milky Way and spiral galaxies. Publ. Astron. Soc. Jpn. 2017, 69, R1. [Google Scholar] [CrossRef] [Green Version]
- Dambis, A.K.; Mel’Nik, A.M.; Rastorguev, A.S. Rotation curve of the system of classical Cepheids and the distance to the galactic center. Astron. Lett. 1995, 21, 291–307. [Google Scholar]
- Lopez-Corredoira, M. Milky Way rotation curve from proper motions of red clump giants. Astron. Astrophys. 2014, 563, A128. [Google Scholar] [CrossRef]
- Peng, X.; Wu, Z.; Qi, Z.; Du, C.; Ma, J.; Zhou, X.; Jia, Y.; Wang, S. The Study of Galactic Disk Kinematics with SCUSS and SDSS Data. Publ. Astron. Soc. Pac. 2018, 130, 074102. [Google Scholar] [CrossRef]
- Bajkova, A.T.; Bobylev, V.V. Rotation curve and mass distribution in the Galaxy from the velocities of objects at distances up to 200 kpc. Astron. Lett. 2016, 42, 567–582. [Google Scholar] [CrossRef] [Green Version]
- Blum, R.D.; Carr, J.S.; Depoy, D.L.; Sellgren, K.; Terndrup, D.M. Radial Velocities of M Giants at 300 Parsec Projected Radius from the Galactic Center. Astrophys. J. 1994, 422, 111–117. [Google Scholar] [CrossRef]
- Rich, R.M. Kinematics and Abundances of K Giants in the Nuclear Bulge of the Galaxy. Astrophys. J. 1990, 362, 604–619. [Google Scholar] [CrossRef]
- Minniti, D.; White, S.D.M.; Olszewski, E.W.; Hill, J.M. Rotation of the Galactic Bulge. Astrophys. J. Lett. 1992, 393, 47–50. [Google Scholar] [CrossRef]
- Lewis, J.R.; Freeman, K.C. Kinematics and Chemical Properties of the Old Disk in the Galaxy. Astron. J. 1989, 97, 139–162. [Google Scholar] [CrossRef]
- Rich, R.M.; Reitzel, D.B.; Howard, C.D.; Zhao, H. The Bulge Radial Velocity Assay: Techniques and a Rotation Curve. Astrophys. J. 2007, 658, L29–L32. [Google Scholar] [CrossRef]
- Tremaine, S.; Gebhardt, K.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; Green, R.; Grillmair, C.; Ho, L.C.; et al. The Slope of the Black Hole Mass versus Velocity Dispersion Correlation. Astrophys. J. 2002, 574, 740–753. [Google Scholar] [CrossRef]
- Guiglion, G.; Recio-Blanco, A.; de Laverny, P.; Kordopatis, G. The Gaia-ESO Survey: New constraints on the Galactic disc velocity dispersion and its chemical dependencies. Astron. Astrophys. 2015, 583, A91. [Google Scholar] [CrossRef] [Green Version]
- Kunder, A.; Koch, A.; Rich, R.M.; de Propris, R.; Howard, C.D.; Stubbs, S.A.; Johnson, C.I.; Shen, J.; Wang, Y.; Robin, A.C.; et al. The Bulge Radial Velocity Assay (BRAVA). II. Complete Sample and Data Release. Astron. J. 2012, 143, 57. [Google Scholar] [CrossRef] [Green Version]
- Tiede, G.P.; Terndrup, D.M. Kinematics, Metallicities, and Stellar Distributions in the Inner Disk and Bulge of the Milky Way. Astron. J. 1999, 118, 895–910. [Google Scholar] [CrossRef]
- Rafikov, R.R. The local axisymmetric instability criterion in a thin, rotating, multicomponent disc. Mon. Not. R. Astron. Soc. 2001, 323, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Adibekyan, V.Z.; Figueira, P.; Santos, N.C.; Hakobyan, A.A.; Sousa, S.G.; Pace, G.; Delgado, M.E.; Robin, A.C.; Israelian, G.; Gonzalez Hernandez, J.I. Kinematics and chemical properties of the Galactic stellar populations. The HARPS FGK dwarfs sample. Astron. Astrophys. 2013, 554, A44. [Google Scholar] [CrossRef] [Green Version]
- Hayden, M.R.; Recio-Blanco, A.; de Laverny, P.; Mikolaitis, S.; Worley, C.C. The AMBRE project: The thick thin disk and thin thick disk of the Milky Way. Astron. Astrophys. 2017, 608, L1. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, O.A.; Gadotti, D. The Milky Way Bulge: Observed Properties and a Comparison to External Galaxies. Astrophys. Space Sci. Libr. 2016, 418, 199–232. [Google Scholar] [CrossRef]
- Valenti, E.; Zoccali, M.; Gonzalez, O.A.; Minniti, D.; Alonso-García, J.; Marchetti, E.; Hempel, M.; Renzini, A.; Rejkuba, M. Stellar density profile and mass of the Milky Way bulge from VVV data. Astron. Astrophys. 2016, 587, L6. [Google Scholar] [CrossRef]
- Portail, M.; Gerhard, O.; Wegg, C.; Ness, M. Dynamical modelling of the galactic bulge and bar: The Milky Way’s pattern speed, stellar and dark matter mass distribution. Mon. Not. R. Astron. Soc. 2017, 465, 1621–1644. [Google Scholar] [CrossRef] [Green Version]
- Bobylev, V.V.; Bajkova, A.T. Galactic orbits of globular clusters in the region of the Galactic bulge. Astron. Rep. 2017, 61, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Michtchenko, T.A.; Lépine, J.R.D.; Barros, D.A.; Vieira, R.S.S. Combined dynamical effects of the bar and spiral arms in a Galaxy model. Application to the solar neighbourhood. Astron. Astrophys. 2018, 615, A10. [Google Scholar] [CrossRef] [Green Version]
- Goldreich, P.; Lynden-Bell, D., II. Spiral arms as sheared gravitational instabilities. Mon. Not. R. Astron. Soc. 1965, 130, 125–158. [Google Scholar] [CrossRef]
- Nakanishi, H.; Sofue, Y. Three-dimensional distribution of the ISM in the Milky Way galaxy. III. The total neutral gas disk. Publ. Astron. Soc. Jpn. 2016, 68, 5. [Google Scholar] [CrossRef] [Green Version]
- Khoperskov, S.; Zinchenko, I.; Avramov, B.; Khrapov, S.; Berczik, P.; Saburova, A.; Ishchenko, M.; Khoperskov, A.; Pulsoni, C.; Venichenko, Y.; et al. Extreme kinematic misalignment in IllustrisTNG galaxies: The origin, structure, and internal dynamics of galaxies with a large-scale counterrotation. Mon. Not. R. Astron. Soc. 2021, 500, 3870–3888. [Google Scholar] [CrossRef]
- Graziani, L.; Salvadori, S.; Schneider, R.; Kawata, D.; de Bennassuti, M.; Maselli, A. Galaxy formation with radiative and chemical feedback. Mon. Not. R. Astron. Soc. 2015, 449, 3137–3148. [Google Scholar] [CrossRef] [Green Version]
- Graziani, L.; de Bennassuti, M.; Schneider, R.; Kawata, D.; Salvadori, S. The history of the dark and luminous side of Milky Way-like progenitors. Mon. Not. R. Astron. Soc. 2017, 469, 1101–1116. [Google Scholar] [CrossRef] [Green Version]
- Grand, R.J.J.; Gomez, F.A.; Marinacci, F.; Pakmor, R.; Springel, V.; Campbell, D.J.R.; Frenk, C.S.; Jenkins, A.; White, S.D.M. The Auriga Project: The properties and formation mechanisms of discgalaxies across cosmic time. Mon. Not. R. Astron. Soc. 2017, 467, 179–207. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.F.; Wetzel, A.; Keres, D.; Faucher-Giguere, C.-A.; Quataert, E.; Boylan-Kolchin, M.; Murray, N.; Hayward, C.C.; Garrison-Kimmel, S.; Feldmann, R.; et al. FIRE-2 simulations: Physics versus numerics in galaxy formation. Mon. Not. R. Astron. Soc. 2018, 480, 800–863. [Google Scholar] [CrossRef] [Green Version]
- Zasov, A.V.; Saburova, A.S.; Khoperskov, A.V.; Khoperskov, S.A. Dark matter in galaxies. Physics-Uspekhi 2017, 60, 3–39. [Google Scholar] [CrossRef] [Green Version]
- De Lucia, G. Lighting Up Dark Matter Haloes. Galaxies 2019, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Deason, A.J.; Erkal, D.; Belokurov, V.; Fattahi, A.; Gómez, F.A.; Grand, R.J.J.; Pakmor, R.; Xue, X.-X.; Liu, C.; Yang, C.; et al. The mass of the Milky Way out to 100 kpc using halo stars. Mon. Not. R. Astron. Soc. 2021, 501, 5964–5972. [Google Scholar] [CrossRef]
- Khoperskov, A.V.; Zasov, A.V.; Tyurina, N.V. Minimum Velocity Dispersion in Stable Stellar Disks. Numerical Simulations. Astron. Rep. 2003, 47, 357–376. [Google Scholar] [CrossRef]
- Khoperskov, S.A.; Khoperskov, A.V.; Khrykin, I.S.; Korchagin, V.I.; Casetti-Dinescu, D.I.; Girard, T.; van Altena, W.; Maitra, D. Global gravitationally organized spiral waves and the structure of NGC 5247. Mon. Not. R. Astron. Soc. 2012, 427, 1983–1993. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, A.A.; Sotnikova, N.Y.; Koshkin, A.A. Simulations of slow bars in anisotropic disk systems. Astron. Lett. 2017, 43, 61–74. [Google Scholar] [CrossRef]
- Maureira-Fredes, C.; Amaro-Seoane, P. GRAVIDY, a GPU modular, parallel direct-summation N-body integrator: Dynamics with softening. Mon. Not. R. Astron. Soc. 2018, 473, 3113–3127. [Google Scholar] [CrossRef]
- Sawada, K.; Matsuda, T.; Hachisu, I. Spiral shocks on a Roche lobe overflow in a semi-detached binary system. Mon. Not. R. Astron. Soc. 1986, 219, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Bisikalo, D.V.; Boyarchuk, A.A.; Kuznetsov, O.A. The effect of viscosity on the flow morphology in semidetached binary systems. Results of 3D simulations. II. Astron. Rep. 2000, 44, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Khoperskov, S.A.; Khoperskov, A.V.; Eremin, M.A.; Butenko, M.A. Polygonal structures in a gaseous disk: Numerical simulations. Astron. Lett. 2011, 37, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Dobbs, C.L.; Bonnell, I.A.; Clark, P.C. Centrally condensed turbulent cores: Massive stars or fragmentation? Mon. Not. R. Astron. Soc. 2005, 360, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Vasiliev, E.O. Thermal instability in a collisionally cooled gas. Mon. Not. R. Astron. Soc. 2012, 419, 3641–3648. [Google Scholar] [CrossRef] [Green Version]
- Khoperskov, S.A.; Vasiliev, E.O.; Sobolev, A.M.; Khoperskov, A.V. The simulation of molecular clouds formation in the Milky Way. Mon. Not. R. Astron. Soc. 2013, 428, 2311–2320. [Google Scholar] [CrossRef] [Green Version]
- Vorobyov, E.I.; Recchi, S.; Hensler, G. Stellar hydrodynamical modeling of dwarf galaxies: Simulation methodology, tests, and first results. Astron. Astrophys. Suppl. Ser. 2015, 579, A9. [Google Scholar] [CrossRef] [Green Version]
- Vasiliev, E.O.; Shchekinov, Y.A. Supernova Remnants in the Hα and Hβ Lines. Astrophysics 2017, 60, 1–18. [Google Scholar] [CrossRef]
- Dobbs, C.L.; Pringle, J.E. The exciting lives of giant molecular clouds. Mon. Not. R. Astron. Soc. 2013, 432, 653–667. [Google Scholar] [CrossRef]
- Khoperskov, S.A.; Vasiliev, E.O.; Ladeyschikov, D.A.; Sobolev, A.M.; Khoperskov, A.V. Giant molecular cloud scaling relations: The role of the cloud definition. Mon. Not. R. Astron. Soc. 2016, 455, 1782–1795. [Google Scholar] [CrossRef] [Green Version]
- Duarte-Cabral, A.; Dobbs, C.L. What can simulated molecular clouds tell us about real molecular clouds? Mon. Not. R. Astron. Soc. 2016, 458, 3667–3683. [Google Scholar] [CrossRef] [Green Version]
- Monaghan, J.J. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 1992, 30, 543–574. [Google Scholar] [CrossRef]
- Khrapov, S.; Khoperskov, A. Smoothed-particle hydrodynamics models: Implementation features on GPUs. Commun. Comput. Inf. Sci. 2017, 793, 266–277. [Google Scholar] [CrossRef] [Green Version]
- Muller, M.; Charypar, D.; Gross, M. Particle-based fluid simulation for interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, CA, USA, 26–27 July 2003; pp. 154–159. [Google Scholar]
- Monaghan, J.J. Smoothed particle hydrodynamics. Rep. Prog. Phys. 2005, 68, 1703–1759. [Google Scholar] [CrossRef]
- Desbrun, M.; Gascuel, M.P. Smoothed particles: A new paradigm for animating highly deformable bodies. In Computer Animation and Simulation; Eurographics Workshop on Computer Animation and Simulation (EGCAS): Poitiers, France, 1996; pp. 61–76. [Google Scholar]
- Khrapov, S.S.; Khoperskov, S.A.; Khoperskov, A.V. New features of parallel implementation of N-body problems on GPU. Bull. South Ural State Univ. Ser. Math. Model. Program. Comput. Softw. 2018, 11, 124–136. [Google Scholar] [CrossRef]
- Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 1964, 139, 1217–1238. [Google Scholar] [CrossRef]
- Romeo, A.B.; Falstad, N. A simple and accurate approximation for the Q stability parameter in multicomponent and realistically thick discs. Mon. Not. R. Astron. Soc. 2013, 433, 1389–1397. [Google Scholar] [CrossRef] [Green Version]
- Sellwood, J.A.; Athanassoula, E. Unstable modes from galaxy simulations. Mon. Not. R. Astron. Soc. 1986, 221, 195–212. [Google Scholar] [CrossRef] [Green Version]
- Vallée, J.P. New Velocimetry and Revised Cartography of the Spiral Arms in the Milky Way—A Consistent Symbiosis. Astron. J. 2008, 135, 1301–1310. [Google Scholar] [CrossRef]
- Vallée, J.P. Constraining the pitch angle of the galactic spiral arms in the Milky Way. New Astron. Rev. 2017, 79, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Nikiforov, I.I.; Veselova, A.V. Geometric Aspects and Testing of the Galactic Center Distance Determination from Spiral Arm Segments. Astron. Lett. 2018, 44, 81–102. [Google Scholar] [CrossRef] [Green Version]
- Dame, T.M.; Elmegreen, B.G.; Cohen, R.S.; Thaddeus, P. The largest molecular cloud complexes in the first galactic quadrant. Astrophys. J. 1986, 305, 892–908. [Google Scholar] [CrossRef]
- Norman, C.A.; Sellwood, J.A.; Hasan, H. Bar Dissolution and Bulge Formation: An Example of Secular Dynamical Evolution in Galaxies. Astrophys. J. 1996, 462, 114–124. [Google Scholar] [CrossRef]
- Kataria, S.K.; Das, M. A study of the effect of bulges on bar formation in disc galaxies. Mon. Not. R. Astron. Soc. 2018, 475, 1653–1664. [Google Scholar] [CrossRef]
- Ostriker, J.P.; Peebles, P.J.E. A Numerical Study of the Stability of Flattened Galaxies: Or, can Cold Galaxies Survive? Astrophys. J. 1973, 186, 467–480. [Google Scholar] [CrossRef]
- Polyacheko, E.V.; Berczik, P.; Just, A. On the bar formation mechanism in galaxies with cuspy bulges. Mon. Not. R. Astron. Soc. 2016, 462, 3727–3738. [Google Scholar] [CrossRef]
- Athanassoula, E. Bar-Halo Interaction and Bar Growth. Astrophys. J. 2002, 569, L83–L86. [Google Scholar] [CrossRef]
- Long, S.; Shlosman, I.; Heller, C. Secular damping of stellar bars in spinning dark matter Halos. Astrophys. J. Lett. 2014, 783, L18. [Google Scholar] [CrossRef] [Green Version]
- Collier, A.; Shlosman, I.; Heller, C. Stellar bars in counter-rotating dark matter haloes: The role of halo orbit reversals. Mon. Not. R. Astron. Soc. 2019, 489, 3102–3115. [Google Scholar] [CrossRef] [Green Version]
- Bajkova, A.T.; Carraro, G.; Korchagin, V.I.; Budanova, N.O.; Bobylev, V.V. Milky Way Subsystems from Globular Cluster Kinematics Using Gaia DR2 and HST Data. Astrophys. J. 2020, 895, 69–87. [Google Scholar] [CrossRef]
- Chemin, L.; Renaud, F.; Soubiran, C. Incorrect rotation curve of the Milky Way. Astron. Astrophys. 2015, 578, A14. [Google Scholar] [CrossRef]
- Renaud, F.; Bournaud, F.; Emsellem, E.; Elmegreen, B.; Teyssier, R.; Alves, J.; Chapon, D.; Combes, F.; Dekel, A.; Gabor, J.; et al. A sub-parsec resolution simulation of the Milky Way: Global structure of the interstellar medium and properties of molecular clouds. Mon. Not. R. Astron. Soc. 2013, 436, 1836–1851. [Google Scholar] [CrossRef] [Green Version]
- Deg, N.; Widrow, L.M.; Randriam Ampandry, T.; Carignan, C. GALACTICS with gas. Mon. Not. R. Astron. Soc. 2019, 486, 5391–5399. [Google Scholar] [CrossRef]
- Korchagin, V.; Kikuchi, N.; Miyama, S.M.; Orlova, N.; Peterson, B.A. Global spiral modes in NGC 1566: Observations and theory. Astrophys. J. 2000, 541, 565–578. [Google Scholar] [CrossRef] [Green Version]
- Toomre, A. Theories of spiral structure. Annu. Rev. Astron. Astrophys. 1977, 15, 437–478. [Google Scholar] [CrossRef]
- Wahde, M.; Donner, K.J. Determination of the orbital parameters of the M 51 system using a genetic algorithm. Astron. Astrophys. 2001, 379, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Sellwood, J.A.; Calberg, R.G. Spiral instabilities: Linear and nonlinear effects. Monthly Notices of the Royal Astronomical Society. arXiv 2020, arXiv:2011.03041. [Google Scholar]
- Laughlin, G.; Korchagin, V.; Adams, F. Spiral Mode Saturation in Self-Gravitating Disks. Astrophys. J. 1997, 477, 410–423. [Google Scholar] [CrossRef]
Experiment | M | kpc | M | Mpc | h pc | M | a kpc | M | b kpc | kpc | M | Mpc | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
455 | 4.80 | 2.25 | 1508 | 42.7 | 300 | 5.53 | 3.6 | 1.15 | 1.32 | 0.2 | 1.2 | 0.24 | 0.05 | 6.72 | 1.17/1.05 | 5.06 | 1.01 |
470 | 3.61 | 2.25 | 1136 | 32 | 300 | 6.28 | 3.5 | 1.74 | 0.956 | 0.16 | 0.7 | 0.61 | 0.085 | 8.57 | 1.39/1.21 | 3.4 | 1.16 |
473 | 3.61 | 2.25 | 1136 | 32 | 300 | 6.28 | 3.5 | 1.74 | 0.956 | 0.16 | 0.7 | 0.61 | 0.085 | 8.57 | 1.25/1.12 | 3.39 | 1.07 |
474 | 3.61 | 2.25 | 1136 | 32 | 192 | 6.28 | 3.5 | 1.74 | 0.956 | 0.16 | 0.7 | 0.61 | 0.085 | 8.57 | 1.12/1.02 | 3.36 | 0.98 |
475 | 3.61 | 2.25 | 1136 | 32 | 243 | 6.28 | 3.5 | 1.74 | 0.956 | 0.16 | 0.7 | 0.61 | 0.085 | 8.57 | 1.26/1.12 | 3.37 | 1.08 |
481 | 4.87 | 2.25 | 1531 | 43.9 | 300 | 5.51 | 3.5 | 1.13 | 0.956 | 0.16 | 0.7 | 0.633 | 0.065 | 9.06 | 1.16/1.03 | 3.81 | 1 |
482 | 4.87 | 2.25 | 1531 | 43.9 | 243 | 5.51 | 3.5 | 1.13 | 0.956 | 0.16 | 0.7 | 0.633 | 0.065 | 9.06 | 1.17/1.03 | 3.7 | 1 |
490 | 5.01 | 2.25 | 1576 | 44 | 300 | 5.23 | 2.25 | 1.04 | 0.672 | 0.16 | 0.7 | 0.651 | 0.065 | 9.07 | 1.30/1.09 | 3.63 | 1.06 |
600 | 3.80 | 2.25 | 1194 | 33.7 | 300 | 6.03 | 3.8 | 1.59 | 0.964 | 0.30 | 1.4 | 0.642 | 0.085 | 9.02 | 1.36/1.22 | 3.3 | 1.13 |
601 | 3.80 | 2.25 | 1194 | 33.7 | 243 | 6.03 | 3.8 | 1.59 | 0.964 | 0.30 | 1.4 | 0.642 | 0.085 | 9.02 | 1.23/1.13 | 3.28 | 1.05 |
602 | 3.80 | 2.25 | 1194 | 33.7 | 300 | 6.03 | 3.8 | 1.59 | 0.964 | 0.30 | 1.4 | 0.642 | 0.085 | 9.02 | 1.49/1.27 | 3.31 | 1.21 |
610 | 4.10 | 2.25 | 1290 | 36.8 | 300 | 5.97 | 2.81 | 1.46 | 1.158 | 0.30 | 1.5 | 0.533 | 0.130 | 7.58 | 1.40/1.24 | 4.1 | 1.19 |
701 | 3.72 | 2.25 | 1170 | 33.4 | 315 | 5.90 | 3.33 | 1.59 | 1.165 | 0.30 | 1.4 | 0.484 | 0.130 | 13.7 | 1.27/1.14 | 2.18 | 1.05 |
702 | 3.72 | 2.25 | 1170 | 33.4 | 315 | 5.90 | 3.33 | 1.59 | 1.165 | 0.30 | 1.4 | 0.484 | 0.130 | 13.7 | 0.98/0.95 | 2.18 | 0.88 |
703 | 3.72 | 2.25 | 1170 | 33.4 | 388 | 5.90 | 3.33 | 1.59 | 1.165 | 0.30 | 1.4 | 0.484 | 0.130 | 13.7 | 1.32/1.19 | 2.19 | 1.09 |
705 | 3.72 | 2.25 | 1170 | 33.4 | 388 | 5.90 | 3.0 | 1.59 | 1.159 | 0.31 | 1.6 | 0.484 | 0.130 | 13.7 | 1.34/1.21 | 2.18 | 1.11 |
706 | 3.72 | 2.25 | 1170 | 33.4 | 388 | 6.02 | 3.00 | 1.62 | 1.01 | 0.39 | 1.8 | 0.484 | 0.130 | 13.7 | 1.33/1.2 | 2.19 | 1.10 |
707 | 3.72 | 2.25 | 1170 | 33.4 | 388 | 6.02 | 3.00 | 1.62 | 1.01 | 0.39 | 1.8 | 0.391 | 0.105 | 11.1 | 1.33/1.2 | 2.72 | 1.12 |
720 | 2.72 | 3.00 | 481 | 33.4 | 300 | 10.32 | 3.01 | 3.79 | 1.64 | 0.21 | 2.0 | 0.412 | 0.151 | 13.7 | 1.94/1.79 | 2.94 | 1.58 |
730 | 3.08 | 2.60 | 725 | 33.4 | 300 | 10.32 | 3.01 | 3.79 | 1.64 | 0.21 | 2.0 | 0.505 | 0.164 | 13.7 | 1.59/1.44 | 2.58 | 1.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khrapov, S.; Khoperskov, A.; Korchagin, V. Modeling of Spiral Structure in a Multi-Component Milky Way-Like Galaxy. Galaxies 2021, 9, 29. https://doi.org/10.3390/galaxies9020029
Khrapov S, Khoperskov A, Korchagin V. Modeling of Spiral Structure in a Multi-Component Milky Way-Like Galaxy. Galaxies. 2021; 9(2):29. https://doi.org/10.3390/galaxies9020029
Chicago/Turabian StyleKhrapov, Sergey, Alexander Khoperskov, and Vladimir Korchagin. 2021. "Modeling of Spiral Structure in a Multi-Component Milky Way-Like Galaxy" Galaxies 9, no. 2: 29. https://doi.org/10.3390/galaxies9020029
APA StyleKhrapov, S., Khoperskov, A., & Korchagin, V. (2021). Modeling of Spiral Structure in a Multi-Component Milky Way-Like Galaxy. Galaxies, 9(2), 29. https://doi.org/10.3390/galaxies9020029