Ergosphere, Photon Region Structure, and the Shadow of a Rotating Charged Weyl Black Hole
Abstract
:1. Introduction
2. The Black Hole Solution
The Rotating Counterpart
3. The Ergosphere
4. Shadow of the Black Hole
The Angular Size of the Shadow
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Method of Solving Biquadratic Equations
References
- Akiyama, K. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. 2019, 875, L1. [Google Scholar]
- Rubin, V.C.; Ford, W.K., Jr.; Thonnard, N. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc. Astrophys. J. 1980, 238, 471–487. [Google Scholar] [CrossRef]
- Massey, R.; Kitching, T.; Richard, J. The dark matter of gravitational lensing. Rept. Prog. Phys. 2010, 73, 086901. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E. Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Astier, P. The expansion of the universe observed with supernovae. arXiv 2012, arXiv:1211.2590. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef] [Green Version]
- Weyl, H. Reine Infinitesimalgeometrie. Math. Z. 1918, 2, 384–411. [Google Scholar] [CrossRef] [Green Version]
- Riegert, R.J. Birkhoff’s Theorem in Conformal Gravity. Phys. Rev. Lett. 1984, 53, 315–318. [Google Scholar] [CrossRef]
- Mannheim, P.D. Are galactic rotation curves really flat? Astrophys. J. 1997, 479, 659–664. [Google Scholar] [CrossRef] [Green Version]
- Mannheim, P.D. Alternatives to dark matter and dark energy. Prog. Part. Nucl. Phys. 2006, 56, 340–445. [Google Scholar] [CrossRef] [Green Version]
- Diaferio, A.; Ostorero, L.; Cardone, V. Gamma-ray bursts as cosmological probes: ΛcDM vs. conformal gravity. J. Cosmol. Astropart. Phys. 2011, 2011. [Google Scholar] [CrossRef]
- Varieschi, G.U. Astrophysical Tests of Kinematical Conformal Cosmology in Fourth-Order Conformal Weyl Gravity. Galaxies 2014, 2, 577–600. [Google Scholar] [CrossRef]
- Jizba, P.; Kleinert, H.; Scardigli, F. Inflationary cosmology from quantum conformal gravity. Eur. Phys. J. C 2015, 75, 245. [Google Scholar] [CrossRef] [Green Version]
- Potapov, A.A.; Izmailov, R.N.; Nandi, K.K. Mass decomposition of SLACS lens galaxies in Weyl conformal gravity. Phys. Rev. D 2016, 93, 124070. [Google Scholar] [CrossRef] [Green Version]
- Bambi, C.; Cao, Z.; Modesto, L. Testing conformal gravity with astrophysical black holes. Phys. Rev. D 2017, 95, 064006. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, Y.; Li, X.Z. Dynamical spacetimes in conformal gravity. Nucl. Phys. B 2017, 921, 522–537. [Google Scholar] [CrossRef]
- Zhou, M.; Cao, Z.; Abdikamalov, A.; Ayzenberg, D.; Bambi, C.; Modesto, L.; Nampalliwar, S. Testing conformal gravity with the supermassive black hole in 1H0707-495. Phys. Rev. D 2018, 98, 024007. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Chen, B.; Zhao, H.; Li, J.; Liu, Y. Test of conformal gravity with astrophysical observations. Phys. Lett. B 2013, 727, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Caprini, C.; Hölscher, P.; Schwarz, D.J. Astrophysical gravitational waves in conformal gravity. Phys. Rev. D 2018, 98, 084002. [Google Scholar] [CrossRef] [Green Version]
- Yang, R. Gravitational waves in conformal gravity. Phys. Lett. B 2018, 784, 212–216. [Google Scholar] [CrossRef]
- Momennia, M.; Hendi, S.H. Quasinormal modes of black holes in Weyl gravity: Electromagnetic and gravitational perturbations. Eur. Phys. J. C 2020, 80, 505. [Google Scholar] [CrossRef]
- Faria, F.F. Gravitational waves in massive conformal gravity. Eur. Phys. J. C 2020, 80, 645. [Google Scholar] [CrossRef]
- Mannheim, P.D.; Kazanas, D. Exact vacuum solution to conformal Weyl gravity and galactic rotation curves. Astrophys. J. 1989, 342, 635–638. [Google Scholar] [CrossRef]
- Nesbet, R.K. Conformal Gravity: Dark Matter and Dark Energy. Entropy 2013, 15, 162. [Google Scholar] [CrossRef] [Green Version]
- Knox, L.; Kosowsky, A. Primordial nucleosynthesis in conformal Weyl gravity. arXiv 1993, arXiv:9311006. [Google Scholar]
- Edery, A.; Paranjape, M.B. Classical tests for Weyl gravity: Deflection of light and radar echo delay. Phys. Rev. D 1998, 58, 024011. [Google Scholar] [CrossRef] [Green Version]
- Klemm, D. Topological black holes in Weyl conformal gravity. Class. Quant. Grav. 1998, 15, 3195–3201. [Google Scholar] [CrossRef]
- Edery, A.; Methot, A.A.; Paranjape, M.B. Gauge choice and geodetic deflection in conformal gravity. Gen. Rel. Grav. 2001, 33, 2075–2079. [Google Scholar] [CrossRef]
- Pireaux, S. Light deflection in Weyl gravity: Critical distances for photon paths. Class. Quant. Grav. 2004, 21, 1897–1913. [Google Scholar] [CrossRef]
- Pireaux, S. Light deflection in Weyl gravity: Constraints on the linear parameter. Class. Quant. Grav. 2004, 21, 4317–4334. [Google Scholar] [CrossRef] [Green Version]
- Diaferio, A.; Ostorero, L. X-ray clusters of galaxies in conformal gravity. Mon. Not. R. Astron. Soc. 2009, 393, 215. [Google Scholar] [CrossRef] [Green Version]
- Sultana, J.; Kazanas, D. Bending of light in conformal Weyl gravity. Phys. Rev. D 2010, 81, 127502. [Google Scholar] [CrossRef]
- Mannheim, P.D. Cosmological Perturbations in Conformal Gravity. Phys. Rev. D 2012, 85, 124008. [Google Scholar] [CrossRef] [Green Version]
- Tanhayi, M.R.; Fathi, M.; Takook, M.V. Observable Quantities in Weyl Gravity. Mod. Phys. Lett. 2011, A26, 2403–2410. [Google Scholar] [CrossRef] [Green Version]
- Said, J.L.; Sultana, J.; Adami, K.Z. Exact Static Cylindrical Solution to Conformal Weyl Gravity. Phys. Rev. D 2012, 85, 104054. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Pang, Y.; Pope, C.N.; Vazquez-Poritz, J.F. AdS and Lifshitz Black Holes in Conformal and Einstein-Weyl Gravities. Phys. Rev. D 2012, 86, 044011. [Google Scholar] [CrossRef] [Green Version]
- Villanueva, J.R.; Olivares, M. On the Null Trajectories in Conformal Weyl Gravity. J. Cosmol. Astropart. Phys. 2013, 1306, 040. [Google Scholar] [CrossRef] [Green Version]
- Mohseni, M.; Fathi, M. Focusing of world-lines in Weyl gravity. Eur. Phys. J. Plus 2016, 131, 21. [Google Scholar] [CrossRef] [Green Version]
- Horne, K. Conformal Gravity Rotation Curves with a Conformal Higgs Halo. Mon. Not. R. Astron. Soc. 2016, 458, 4122–4128. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.K.; Wang, Q.h. Exact gravitational lensing in conformal gravity and Schwarzschild–de Sitter spacetime. Phys. Rev. D 2017, 95, 024004. [Google Scholar] [CrossRef] [Green Version]
- Varieschi, G.U. A kinematical approach to conformal cosmology. Gen. Relativ. Gravit. 2010, 42, 929–974. [Google Scholar] [CrossRef] [Green Version]
- ’t Hooft, G. The Conformal Constraint in Canonical Quantum Gravity. arXiv 2010, arXiv:1011.0061. [Google Scholar]
- ’t Hooft, G. Probing the small distance structure of canonical quantum gravity using the conformal group. arXiv 2010, arXiv:1009.0669. [Google Scholar]
- ’t Hooft, G. A Class of Elementary Particle Models Without Any Adjustable Real Parameters. Found. Phys. 2011, 41, 1829. [Google Scholar] [CrossRef] [Green Version]
- Varieschi, G.U.; Burstein, Z. Conformal Gravity and the Alcubierre Warp Drive Metric. ISRN Astron. Astrophys. 2013, 2013, 482734. [Google Scholar] [CrossRef] [Green Version]
- de Vega, H.J.; Sanchez, N.G. Dark matter in galaxies: The dark matter particle mass is about 7 keV. arXiv 2013, arXiv:1304.0759. [Google Scholar]
- Hooft, G.T. Local Conformal Symmetry: The Missing Symmetry Component for Space and Time. arXiv 2014, arXiv:1410.6675. [Google Scholar] [CrossRef]
- Deliduman, C.; Kasikci, O.; Yapiskan, B. Flat Galactic Rotation Curves from Geometry in Weyl Gravity. arXiv 2015, arXiv:1511.07731. [Google Scholar] [CrossRef] [Green Version]
- Varieschi, G.U. Kerr metric, geodesic motion, and Flyby Anomaly in fourth-order Conformal Gravity. Gen. Relativ. Gravit. 2014, 46, 1741. [Google Scholar] [CrossRef] [Green Version]
- Mannheim, P.D.; Kazanas, D. Solutions to the Reissner-Nordström, Kerr, and Kerr–Newman problems in fourth-order conformal Weyl gravity. Phys. Rev. D 1991, 44, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Payandeh, F.; Fathi, M. Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole. Int. J. Theor. Phys. 2012, 51, 2227–2236. [Google Scholar] [CrossRef] [Green Version]
- Fathi, M.; Olivares, M.; Villanueva, J.R. Classical tests on a charged Weyl black hole: Bending of light, Shapiro delay and Sagnac effect. Eur. Phys. J. C 2020, 80, 51. [Google Scholar] [CrossRef]
- Fathi, M.; Villanueva, J.R. Gravitational lensing of a charged Weyl black hole surrounded by plasma. arXiv 2020, arXiv:2009.03402. [Google Scholar]
- Fathi, M.; Kariminezhaddahka, M.; Olivares, M.; Villanueva, J.R. Motion of massive particles around a charged Weyl black hole and the geodetic precession of orbiting gyroscopes. Eur. Phys. J. C 2020, 80, 377. [Google Scholar] [CrossRef]
- Fathi, M.; Olivares, M.; Villanueva, J.R. Gravitational Rutherford scattering of electrically charged particles from a charged Weyl black hole. Eur. Phys. J. Plus 2021, 136, 420. [Google Scholar] [CrossRef]
- Mureika, J.R.; Varieschi, G.U. Black hole shadows in fourth-order conformal Weyl gravity. Can. J. Phys. 2017, 95, 1299–1306. [Google Scholar] [CrossRef] [Green Version]
- Kazanas, D.; Mannheim, P.D. General structure of the gravitational equations of motion in conformal Weyl gravity. Astrophys. J. Suppl. Ser. 1991, 76, 431–453. [Google Scholar] [CrossRef]
- Newman, E.T.; Janis, A.I. Note on the Kerr Spinning-Particle Metric. J. Math. Phys. 1965, 6, 915–917. [Google Scholar] [CrossRef]
- Shaikh, R. Black hole shadow in a general rotating spacetime obtained through Newman–Janis algorithm. Phys. Rev. D 2019, 100, 024028. [Google Scholar] [CrossRef] [Green Version]
- Johannsen, T.; Psaltis, D. Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem. Phys. Rev. D 2011, 83, 124015. [Google Scholar] [CrossRef] [Green Version]
- Bambi, C.; Modesto, L. Rotating regular black holes. Phys. Lett. B 2013, 721, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Moffat, J.W. Black holes in modified gravity (MOG). Eur. Phys. J. C 2015, 75, 175. [Google Scholar] [CrossRef]
- Jusufi, K.; Jamil, M.; Chakrabarty, H.; Wu, Q.; Bambi, C.; Wang, A. Rotating regular black holes in conformal massive gravity. Phys. Rev. D 2020, 101, 044035. [Google Scholar] [CrossRef] [Green Version]
- Hansen, D.; Yunes, N. Applicability of the Newman–Janis algorithm to black hole solutions of modified gravity theories. Phys. Rev. D 2013, 88, 104020. [Google Scholar] [CrossRef] [Green Version]
- Azreg-Aïnou, M. Generating rotating regular black hole solutions without complexification. Phys. Rev. D 2014, 90, 064041. [Google Scholar] [CrossRef] [Green Version]
- Azreg-Aïnou, M. From static to rotating to conformal static solutions: Rotating imperfect fluid wormholes with(out) electric or magnetic field. Eur. Phys. J. C 2014, 74, 2865. [Google Scholar] [CrossRef] [Green Version]
- Poisson, E. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- Bardeen, J.M.; Press, W.H.; Teukolsky, S.A. Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation. Astrophys. J. 1972, 178, 347–370. [Google Scholar] [CrossRef]
- Bardeen, J. Timelike and Null Geodesics in the Kerr Metric. In Les Houches Summer School of Theoretical Physics: Black Holes; CRC Press: Boca Raton, FL, USA, 1973; pp. 215–240. [Google Scholar]
- Chandrasekhar, S. The Mathematical Theory of Black Holes; Oxford Classic Texts in the Physical Sciences; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Ryder, L. Introduction to General Relativity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Boyer, R.H.; Lindquist, R.W. Maximal Analytic Extension of the Kerr Metric. J. Math. Phys. 1967, 8, 265–281. [Google Scholar] [CrossRef]
- Penrose, R. “Golden Oldie”: Gravitational Collapse: The Role of General Relativity. Gen. Relativ. Gravit. 2002, 34, 1141–1165. [Google Scholar] [CrossRef]
- Synge, J.L. The Escape of Photons from Gravitationally Intense Stars. Mon. Not. R. Astron. Soc. 1966, 131, 463–466. [Google Scholar] [CrossRef]
- Cunningham, C.T.; Bardeen, J.M. The Optical Appearance of a Star Orbiting an Extreme Kerr Black Hole. Astrophys. J. Lett. 1972, 173, L137. [Google Scholar] [CrossRef]
- Luminet, J.P. Image of a spherical black hole with thin accretion disk. A&A 1979, 75, 228–235. [Google Scholar]
- Cunningham, C.T.; Bardeen, J.M. The Optical Appearance of a Star Orbiting an Extreme Kerr Black Hole. Astrophys. J. 1973, 183, 237–264. [Google Scholar] [CrossRef]
- Bray, I. Kerr black hole as a gravitational lens. Phys. Rev. D 1986, 34, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, S.E.; Esteban, E.P. Strong-field gravitational lensing by a Kerr black hole. Nuovo C. B Ser. 2004, 119, 489. [Google Scholar] [CrossRef]
- Grenzebach, A.; Perlick, V.; Lämmerzahl, C. Photon regions and shadows of Kerr–Newman-NUT black holes with a cosmological constant. Phys. Rev. D 2014, 89, 124004. [Google Scholar] [CrossRef] [Green Version]
- Grenzebach, A. The Shadow of Black Holes. In The Shadow of Black Holes: An Analytic Description; Springer: Cham, Switzerland, 2016; pp. 55–79. [Google Scholar] [CrossRef]
- Perlick, V.; Tsupko, O.Y.; Bisnovatyi-Kogan, G.S. Black hole shadow in an expanding universe with a cosmological constant. Phys. Rev. D 2018, 97, 104062. [Google Scholar] [CrossRef] [Green Version]
- Bisnovatyi-Kogan, G.S.; Tsupko, O.Y. Shadow of a black hole at cosmological distances. Phys. Rev. D 2018, 98, 084020. [Google Scholar] [CrossRef] [Green Version]
- de Vries, A. The apparent shape of a rotating charged black hole, closed photon orbits and the bifurcation set A 4. Class. Quantum Gravity 1999, 17, 123–144. [Google Scholar] [CrossRef]
- Shen, Z.Q.; Lo, K.Y.; Liang, M.C.; Ho, P.T.P.; Zhao, J.H. A size of ∼1 au for the radio source Sgr A* at the centre of the Milky Way. Nature 2005, 438, 62–64. [Google Scholar] [CrossRef]
- Amarilla, L.; Eiroa, E.F.; Giribet, G. Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity. Phys. Rev. D 2010, 81, 124045. [Google Scholar] [CrossRef] [Green Version]
- Amarilla, L.; Eiroa, E.F. Shadow of a rotating braneworld black hole. Phys. Rev. D 2012, 85, 064019. [Google Scholar] [CrossRef] [Green Version]
- Yumoto, A.; Nitta, D.; Chiba, T.; Sugiyama, N. Shadows of multi-black holes: Analytic exploration. Phys. Rev. D 2012, 86, 103001. [Google Scholar] [CrossRef] [Green Version]
- Amarilla, L.; Eiroa, E.F. Shadow of a Kaluza-Klein rotating dilaton black hole. Phys. Rev. D 2013, 87, 044057. [Google Scholar] [CrossRef] [Green Version]
- Atamurotov, F.; Abdujabbarov, A.; Ahmedov, B. Shadow of rotating non-Kerr black hole. Phys. Rev. D 2013, 88, 064004. [Google Scholar] [CrossRef]
- Abdujabbarov, A.A.; Rezzolla, L.; Ahmedov, B.J. A coordinate-independent characterization of a black hole shadow. Mon. Not. R. Astron. Soc. 2015, 454, 2423–2435. [Google Scholar] [CrossRef] [Green Version]
- Abdujabbarov, A.; Amir, M.; Ahmedov, B.; Ghosh, S.G. Shadow of rotating regular black holes. Phys. Rev. D 2016, 93, 104004. [Google Scholar] [CrossRef] [Green Version]
- Amir, M.; Singh, B.P.; Ghosh, S.G. Shadows of rotating five-dimensional charged EMCS black holes. Eur. Phys. J. C 2018, 78, 399. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, N. Black hole shadow in an asymptotically flat, stationary, and axisymmetric spacetime: The Kerr–Newman and rotating regular black holes. Phys. Rev. D 2018, 97, 064021. [Google Scholar] [CrossRef] [Green Version]
- Cunha, P.V.P.; Herdeiro, C.A.R. Shadows and strong gravitational lensing: A brief review. Gen. Relativ. Gravit. 2018, 50, 42. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, Y.; Younsi, Z.; Fromm, C.M.; Porth, O.; De Laurentis, M.; Olivares, H.; Falcke, H.; Kramer, M.; Rezzolla, L. The current ability to test theories of gravity with black hole shadows. Nat. Astron. 2018, 2, 585–590. [Google Scholar] [CrossRef]
- Mishra, A.K.; Chakraborty, S.; Sarkar, S. Understanding photon sphere and black hole shadow in dynamically evolving spacetimes. Phys. Rev. D 2019, 99, 104080. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Kumar, A.; Ghosh, S.G. Testing Rotating Regular Metrics as Candidates for Astrophysical Black Holes. Astrophys. J. 2020, 896, 89. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, M. Can shadows reflect phase structures of black holes? Eur. Phys. J. C 2020, 80, 790. [Google Scholar] [CrossRef]
- Belhaj, A.; Chakhchi, L.; El Moumni, H.; Khalloufi, J.; Masmar, K. Thermal image and phase transitions of charged AdS black holes using shadow analysis. Int. J. Mod. Phys. A 2020, 35, 2050170. [Google Scholar] [CrossRef]
- Kramer, M.; Backer, D.; Cordes, J.; Lazio, T.; Stappers, B.; Johnston, S. Strong-field tests of gravity using pulsars and black holes. New Astron. Rev. 2004, 48, 993–1002. [Google Scholar] [CrossRef] [Green Version]
- Psaltis, D. Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum. Living Rev. Relativ. 2008, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Kovács, Z.; Lobo, F.S.N. Testing Hořava-Lifshitz gravity using thin accretion disk properties. Phys. Rev. 2009, D80, 044021. [Google Scholar] [CrossRef] [Green Version]
- Psaltis, D.; Özel, F.; Chan, C.K.; Marrone, D.P. A General relativistic null hypothesis test with event horizon telescope observations of the black hole shadow in Sgr A. Astrophys. J. 2015, 814, 115. [Google Scholar] [CrossRef] [Green Version]
- Johannsen, T.; Broderick, A.E.; Plewa, P.M.; Chatzopoulos, S.; Doeleman, S.S.; Eisenhauer, F.; Fish, V.L.; Genzel, R.; Gerhard, O.; Johnson, M.D. Testing General Relativity with the Shadow Size of Sgr A*. Phys. Rev. Lett. 2016, 116, 031101. [Google Scholar] [CrossRef] [PubMed]
- Psaltis, D. Testing general relativity with the Event Horizon Telescope. Gen. Relativ. Gravit. 2019, 51, 137. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I.; Kraav, K. Identification of a Regular Black Hole by Its Shadow. Universe 2019, 5, 163. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Ghosh, S.G. Black Hole Parameter Estimation from Its Shadow. Astrophys. J. 2020, 892, 78. [Google Scholar] [CrossRef]
- Carter, B. Global Structure of the Kerr Family of Gravitational Fields. Phys. Rev. 1968, 174, 1559–1571. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, J.B.; Podolský, J. Exact Space-Times in Einstein’s General Relativity; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Grenzebach, A.; Perlick, V.; Lämmerzahl, C. Photon regions and shadows of accelerated black holes. Int. J. Mod. Phys. D 2015, 24, 1542024. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, K.; Lu, R.S.; Fish, V.L.; Doeleman, S.S.; Broderick, A.E.; Dexter, J.; Hada, K.; Kino, M.; Nagai, H.; Honma, M.; et al. 230 GHz vlbi observations of M87: Event-horizon-scale structure during an enhanced very-high-energy γ-ray state in 2012. Astrophys. J. 2015, 807, 150. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results-XIII. Cosmological parameters. A&A 2016, 594, A13. [Google Scholar] [CrossRef] [Green Version]
- Tamburini, F.; Thidé, B.; Della Valle, M. Measurement of the spin of the M87 black hole from its observed twisted light. Mon. Not. R. Astron. Soc. Lett. 2019, 492, L22–L27. [Google Scholar] [CrossRef]
- Phillips, K.J.H. Guide to the Sun; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Mannheim, P.D. Making the Case for Conformal Gravity. Found. Phys. 2012, 42, 388–420. [Google Scholar] [CrossRef] [Green Version]
- Bambi, C.; Modesto, L.; Rachwał, L. Spacetime completeness of non-singular black holes in conformal gravity. J. Cosmol. Astropart. Phys. 2017, 2017, 003. [Google Scholar] [CrossRef]
- Bambi, C.; Modesto, L.; Porey, S.; Rachwał, L. Black hole evaporation in conformal gravity. J. Cosmol. Astropart. Phys. 2017, 2017, 033. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Abdikamalov, A.B.; Ayzenberg, D.; Bambi, C.; Modesto, L.; Nampalliwar, S.; Xu, Y. Singularity-free black holes in conformal gravity: New observational constraints. EPL (Europhys. Lett.) 2019, 125, 30002. [Google Scholar] [CrossRef] [Green Version]
1 | A more general version of the Newman–Janis method was obtained by Shaikh in [60], which considers the seed static spacetimes of more generality. |
2 | The calculation of the components of the Bach tensor was performed by the software Maple 2018. |
3 | The surface corresponding to the static limit is also called the surface of infinite redshift [73]. |
4 | In other words, they will no longer exist. |
5 | This also proves that the event horizon is a Killing horizon. |
6 | See the discussion in [53] on the photon trajectories around the static CWBH. |
7 | For example, means for the RCWBH and for the KNdSBH, etc. In particular, and . |
8 | rad. |
9 | The change from SI to geometric units for the electric charge is , and the proton’s electric charge is . For the mass, , and we have considered [117]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fathi, M.; Olivares, M.; Villanueva, J.R. Ergosphere, Photon Region Structure, and the Shadow of a Rotating Charged Weyl Black Hole. Galaxies 2021, 9, 43. https://doi.org/10.3390/galaxies9020043
Fathi M, Olivares M, Villanueva JR. Ergosphere, Photon Region Structure, and the Shadow of a Rotating Charged Weyl Black Hole. Galaxies. 2021; 9(2):43. https://doi.org/10.3390/galaxies9020043
Chicago/Turabian StyleFathi, Mohsen, Marco Olivares, and José R. Villanueva. 2021. "Ergosphere, Photon Region Structure, and the Shadow of a Rotating Charged Weyl Black Hole" Galaxies 9, no. 2: 43. https://doi.org/10.3390/galaxies9020043
APA StyleFathi, M., Olivares, M., & Villanueva, J. R. (2021). Ergosphere, Photon Region Structure, and the Shadow of a Rotating Charged Weyl Black Hole. Galaxies, 9(2), 43. https://doi.org/10.3390/galaxies9020043