High-Frequency Polarization Variability from Active Galactic Nuclei
Abstract
:1. Introduction
2. Simplified Model of the Jet Base of an AGN
3. Polarization Variability and AGN Jet Models
3.1. Faraday Rotation
3.2. Polarization and High-Energy Emission
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | Active Galactic Nucleus |
ALMA | Atacama Large mm/submm Array |
EHT | Event Horizon Telescope |
EVPA | Electric-Vector Position Angle |
LOS | Line of Sight |
MAD | Magnetically Arrested Disc |
MHD | Magneto-Hydrodynamics |
NE | North East |
RM | Rotation Measure |
SANE | Standard Furthermore, Normal Evolution |
SMBH | Supermassive Black Hole |
SW | South West |
VLBI | Very Long Baseline Interferometry |
References
- Blandford, R.D.; Payne, D.G. Hydromagnetic Flows from Accretion Disks and the Production of Radio Jets. Mon. Not. R. Astron. Soc. 1982, 199, 883. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.D.; Znajek, R.L. Electromagnetic Extraction of Energy from Kerr Black Holes. Mon. Not. R. Astron. Soc. 1977, 179, 433. [Google Scholar] [CrossRef]
- Cheng, X.-P.; An, T.; Frey, S.; Hong, X.-Y.; He, X.; Kellermann, K.I.; Lister, M.L.; Lao, B.-Q.; Li, X.-F.; Mohan, P.; et al. Compact Bright Radio-loud AGNs. III. A Large VLBA Survey at 43 GHz. Astrophys. J. Suppl. Ser. 2020, 247, 57. [Google Scholar] [CrossRef]
- Kravchenko, E.V.; Gómez, J.L.; Kovalev, Y.Y.; Lobanov, A.P.; Savolainen, T.; Bruni, G.; Fuentes, A.; Anderson, J.M.; Jorstad, S.G.; Marscher, A.P.; et al. Probing the Innermost Regions of AGN Jets and Their Magnetic Fields with RadioAstron. III. Blazar S5 0716+71 at Microarcsecond Resolution. Astrophys. J. 2020, 893, 68. [Google Scholar] [CrossRef]
- Lobanov, A.P. Ultracompact jets in active galactic nuclei. Astron. Astrophys. 1998, 330, 79. [Google Scholar]
- Pacholczyk, A.G. Radio Astrophysics, 1st ed.; W. H. Freeman and Company: New York, NY, USA, 1970. [Google Scholar]
- Marcaide, J.M.; Shapiro, I.I. VLBI study of 1038+528A and B: Discovery of wavelength dependence of peak brightness location. Astrophys. J. 1984, 276, 56. [Google Scholar] [CrossRef]
- Ade, P.A.; Aghanim, N.; Aller, H.D.; Aller, M.F.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck intermediate results. XLV. Radio spectra of northern extragalactic radio sources. Astron. Astrophys. 2016, 596, A106. [Google Scholar]
- Martí-Vidal, I.; Muller, S.; Vlemmings, W.; Horellou, C.; Aalto, S. A strong magnetic field in the jet base of a supermassive black hole. Science 2015, 348, 311. [Google Scholar] [CrossRef] [Green Version]
- Marti-Vidal, I.; Muller, S. Submillimeter polarization and variability of quasar PKS 1830-211. Astron. Astrophys. 2019, 621, A18. [Google Scholar] [CrossRef]
- Marti-Vidal, I.; Muller, S.; Mus, A.; Marscher, A.; Agudo, I.; Gomez, J.L. ALMA full polarization observations of PKS 1830-211 during its record-breaking flare of 2019. Astron. Astrophys. 2020, 638, L13. [Google Scholar] [CrossRef]
- The Event Horizon Telescope Collaboration; Akiyama, K.; Algaba, J.C.; Alberdi, A.; Alef, W.; Anantua, R.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; et al. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett. 2021, 910, L12. [Google Scholar]
- Mertens, F.; Lobanov, A.P.; Walker, R.; Hardee, P.E. Kinematics of the jet in M 87 on scales of 100–1000 Schwarzschild radii. Astron. Astrophys. 2016, 595, A54. [Google Scholar] [CrossRef] [Green Version]
- Hada, K. The Structure and Propagation of the Misaligned Jet M87. Galaxies 2017, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Goddi, C.; Martí-Vidal, I.; Messias, H.; Bower, G.C.; Broderick, A.E.; Dexter, J.; Marrone, D.P.; Moscibrodzka, M.; Nagai, H.; Algaba, J.C.; et al. Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophys. J. Lett. 2021, 910, L14. [Google Scholar] [CrossRef]
- Gabuzda, D. Evidence for Helical Magnetic Fields Associated with AGN Jets and the Action of a Cosmic Battery. Galaxies 2019, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 2011, 418, L79. [Google Scholar] [CrossRef]
- Contopoulos, I.; Kazanas, D. A Cosmic Battery. Astrophys. J. 1998, 508, 859. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Garofalo, D.; Meier, D.L. A Magnetohydrodynamic Model of the M87 Jet. I. Superluminal Knot Ejections from HST-1 as Trails of Quad Relativistic MHD Shocks. Astrophys. J. 2010, 721, 1783. [Google Scholar] [CrossRef] [Green Version]
- Fromm, C.M.; Perucho, M.; Mimica, P.; Ros, E. Spectral evolution of flaring blazars from numerical simulations. Astron. Astrophys. 2016, 588, A101. [Google Scholar] [CrossRef] [Green Version]
- Rees, M.J.; Begelman, M.C.; Blford, R.D.; Phinney, E.S. Ion-supported tori and the origin of radio jets. Nature 1982, 295, 17. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 500, 33. [Google Scholar]
- Narayan, R.; Sądowski, A.; Penna, R.F.; Kulkarni, A.K. GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: Role of outflows. Mon. Not. R. Astron. Soc. 2012, 426, 3241. [Google Scholar] [CrossRef]
- Huang, L.; Shcherbakov, R.V. Faraday conversion and rotation in uniformly magnetized relativistic plasmas. Mon. Not. R. Astron. Soc. 2011, 416, 2574. [Google Scholar] [CrossRef] [Green Version]
- Mościbrodzka, M.; Dexter, J.; Davelaar, J.; Falcke, H. Faraday rotation in GRMHD simulations of the jet launching zone of M87. Mon. Not. R. Astron. Soc. 2017, 468, 2214. [Google Scholar] [CrossRef] [Green Version]
- Bower, G.C.; Broderick, A.; Dexter, J.; Doeleman, S.; Falcke, H.; Fish, V.; Johnson, M.D.; Marrone, D.P.; Moran, J.M.; Moscibrodzka, M.; et al. ALMA Polarimetry of Sgr A*: Probing the Accretion Flow from the Event Horizon to the Bondi Radius. Astrophys. J. 2018, 868, 101. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.E.; Loeb, A. Signatures of Relativistic Helical Motion in the Rotation Measures of Active Galactic Nucleus Jets. Astrophys. J. Lett. 2009, 703, L104. [Google Scholar] [CrossRef]
- Hovatta, T.; O’Sullivan, S.; Martí-Vidal, I.; Savolainen, T.; Tchekhovskoy, A. Magnetic field at a jet base: Extreme Faraday rotation in 3C 273 revealed by ALMA. Astron. Astrophys. 2019, 623, A111. [Google Scholar] [CrossRef]
- Lico, R.; Gómez, J.L.; Asada, K.; Fuentes, A. Interpreting the time variable RM observed in the core region of the TeV blazar Mrk 421. Mon. Not. R. Astron. Soc. 2017, 469, 2. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.Y.; Asada, K.; Rao, R.; Nakamura, M.; Algaba, J.C.; Liu, H.B.; Inoue, M.; Koch, P.M.; Ho, P.T.P.; Matsushita, S.; et al. Measuring Mass Accretion Rate onto the Supermassive Black Hole in M87 Using Faraday Rotation Measure with the Submillimeter Array. Astrophys. J. Lett. 2014, 783, L33. [Google Scholar] [CrossRef] [Green Version]
- Marscher, A.P.; Jorstad, S.G.; D’Arcangelo, F.D.; Smith, P.S.; Williams, G.G.; Larionov, V.M.; Oh, H.; Olmstead, A.R.; Aller, M.F.; Aller, H.D.; et al. The inner jet of an active galactic nucleus as revealed by a radio-to-gamma-ray outburst. Nature 2008, 452, 966. [Google Scholar] [CrossRef] [Green Version]
- Marscher, A.P. Turbulent, Extreme Multi-zone Model for Simulating Flux and Polarization Variability in Blazars. Astrophys. J. 2014, 780, 87. [Google Scholar] [CrossRef]
- Hovatta, T.; Lister, M.L.; Kovalev, Y.Y.; Pushkarev, A.B.; Savolainen, T. The Relation Between Radio Polarization and Gamma-Ray Emission in AGN Jets. IJMPD 2010, 19, 943. [Google Scholar] [CrossRef] [Green Version]
- Pavlidou, V.; Angelakis, E.; Myserlis, I.; Blinov, D.; King, O.G.; Papadakis, I.; Tassis, K.; Hovatta, T.; Pazderska, B.; Paleologou, E.; et al. The RoboPol optical polarization survey of gamma-ray-loud blazars. Mon. Not. R. Astron. Soc. 2014, 442, 1693. [Google Scholar] [CrossRef]
- Lovell, J.; Jauncey, D.L.; Reynolds, J.E.; Wieringa, M.; King, E.A.; Tzioumis, A.K.; McCulloch, P.M.; Edwards, P.G. The Time Delay in the Gravitational Lens PKS 1830-211. Astrophys. J. Lett. 1998, 508, L51. [Google Scholar] [CrossRef] [Green Version]
- Barnacka, A.; Glicenstein, J.-F.; Moudden, Y. First evidence of a gravitational lensing-induced echo in gamma rays with Fermi LAT. Astron. Astrophys. 2011, 528, L3. [Google Scholar] [CrossRef] [Green Version]
- Martí-Vidal, I.; Muller, S.; Combes, F.; Aalto, S.; Beelen, A.; Darling, J.; Guélin, M.; Henkel, C.; Horellou, C.; Marcaide, J.M.; et al. Probing the jet base of the blazar PKS 1830-211 from the chromatic variability of its lensed images. Serendipitous ALMA observations of a strong gamma-ray flare. Astron. Astrophys. 2013, 558, A123. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martí-Vidal, I.; Goddi, C. High-Frequency Polarization Variability from Active Galactic Nuclei. Galaxies 2021, 9, 51. https://doi.org/10.3390/galaxies9030051
Martí-Vidal I, Goddi C. High-Frequency Polarization Variability from Active Galactic Nuclei. Galaxies. 2021; 9(3):51. https://doi.org/10.3390/galaxies9030051
Chicago/Turabian StyleMartí-Vidal, Iván, and Ciriaco Goddi. 2021. "High-Frequency Polarization Variability from Active Galactic Nuclei" Galaxies 9, no. 3: 51. https://doi.org/10.3390/galaxies9030051
APA StyleMartí-Vidal, I., & Goddi, C. (2021). High-Frequency Polarization Variability from Active Galactic Nuclei. Galaxies, 9(3), 51. https://doi.org/10.3390/galaxies9030051